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ABSTRACT. The author gives a brief survey on cubature formulas on Wiener space and studies their
connection to splitting methods for noncommutative exponential maps. These formulae have many
applications in the field of numerical solutions of stochastic differential equations.

1. INTRODUCTION

A cubature formula for a finite measure $\nu$ on $R^{d}$ is defined as follows: If there exist positive weights
$\lambda_{i}$ and points $x_{i}\in R^{d}(1\leq i\leq k)$ such that for any polynomial $\mathcal{P}$ with degree less than or equal to $m$

$\int_{R^{d}}\mathcal{P}(x)\nu(dx)=\sum_{i=1}^{k}\lambda_{i}\mathcal{P}(x_{i})$,

then we say that the pair $(\lambda_{i}, x_{i})_{1\leq i\leq k}$ defines a cubature formula with degree $m$ . The existence and
construction of the above finite $d$-dimensional cubature formulas has been well-studied (see e.g. Stroud
[10] $)$ . One important application of the formula $(\lambda_{i}, x_{i})_{1\leq i\leq k}$ is the numerical integration formula

$\int_{R^{d}}f(x)\nu(dx)\approx\sum_{i=1}^{k}\lambda_{i}f(x_{i})$

for smooth functions $f$ . The reason why this method works is based on the Taylor expansion or polynomial
approximation of $f$ . Therefore the regularity of $f$ is a sufficient condition for the method to work well.

The main objective of this article is to review how to construct cubature formulas on Wiener space
1 using splitting methods which have been applied to many research fields such as numerical partial
differential equations (e.g. [1]). Cubature formulas on Wiener space play a similar role to that in finite
dimensional space in the calculation of infinite dimensional integrals2.

Wiener space is defined as the space of continuous functions $C([O, 1];R^{d})$ equipped with the so-called
Wiener measure 3, under which the mapping $B_{t}$ $:=\omega(t)$ for $\omega\in C([O, 1];R^{d})$ is a standard Brownian
motion 4. On this space, multiple integrals with respect to the time var\’iable $t\mapsto B_{t}$ have a similar
importance to polynomials in finite dimension. For example, the It6-Wiener chaos expansion theorem
([2]) shows that $L^{2}$-random variables on Wiener space can be expanded by series of the multiple integrals.
As seen later, cubature formulas on Wiener space can be applied to numerical approximations of stochastic
differential equations, which appear in finance, physics, filtering etc. In this case, the stochastic Taylor
expansion gives the error estimation.

Key words and phrases. Cubature on Wiener space; splitting method, weak approximation of SDE; Ninomiya-Victoir
scheme.

lan infinite dimensional space to be defined below.
$2_{expectat}$ions.
$3_{which}$ replaces the Lebesgue measure in finite dimensions.
$4_{also}$ called Wiener process.
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This paper is organized as follows. In Section 2, we formulate the cubature formula and prepare some
basic tools to discuss algebraic properties of the formula. In Section 3, we introduce the idea of splitting
methods for exponential maps and also give some results applicable to the construction of cubature
formulae.

This article is based on the talk given in the workshop ‘Designs, Codes, Graphs and Related Areas’ at
the Research Institute for Mathematical Sciences (RIMS), Kyoto University, July 2012.

2. CUBATURE ON WIENER SPACE

2.1. Definitions. Let $(B_{t}^{1}, \ldots, B_{t}^{d})_{t\in[0,1]}$ be a $d$-dimensional standard Brownian motion on a complete
probability space $(\Omega, \mathcal{F}, P)$ , and set the $(d+1)$-dimensional path $B=(B_{t}^{0}, B_{t}^{1}, \ldots, B_{t}^{d})_{t\in[0,1]}$ with $B_{t}^{0}=t.$

We use the following notation.. Let $\alpha\in \mathcal{I}:=\{\emptyset\cup (\bigcup_{k\in N}\{0,1, \ldots , d\}^{k})\}$ be an multi-index and then define the degree of $\alpha$ by

$\Vert\alpha\Vert;=\{\begin{array}{ll}k+\#\{\alpha_{j}=0\}, \alpha=(\alpha_{1}, \ldots, \alpha_{k})\in\{0,1, \ldots,d\}^{k}, k\geq 10, \alpha=\emptyset.\end{array}$

. $C_{0,BV}([0, t];R^{d+1})$ : the set of all $R^{d+1}$ -valued continuous functions $g=(g_{s}^{0}, \ldots,g_{s}^{d})_{s\in[0,t]}$ of
bounded variation in $[0, t]$ and which start at zero.. For $\alpha=$ $(\alpha_{1}, \ldots , \alpha_{k})\in\{0,1, \ldots , d\}^{k},$ $k\geq 1$ , we define the multiple Fisk-Stratonovich integral as
follows.

$I(t, \alpha, \circ dB):=\int_{0<t_{k}<\cdots<t_{1}<t}\circ dB_{t_{k}}^{\alpha_{k}}\cdots\circ dB_{t_{1}}^{\alpha_{1}}.$. Similarly, for $g=(g_{t}^{0}, \ldots,g_{t}^{d})_{t\in[0,1]}\in C_{0,BV}([0,1];R^{d+1})$ , we define

$I(t, \alpha, dg):=\int_{0<t_{k}<\cdots<t_{1}<t}dg_{t_{k}}^{\alpha_{k}}\cdots dg_{t_{1}}^{\alpha_{1}}.$. Throughout the paper, we say that a measurable application
$\omega=(\omega_{t})_{t\in[0,1]}:\Omegaarrow C_{0,BV}([0,1];R^{d+1})$

is a “random path” if it satisfies the moment condition
$I(1, \alpha, d|\omega|)\in L^{1}(\Omega, \mathcal{F}, P)$

for any $\alpha\in \mathcal{I}$ and almost all $\omega\in\Omega$ . Here $|\cdot|$ denotes the total variation path, i.e., $|\omega|_{t}^{i}$ $:=$

$\sup_{0=t_{0}<t_{1}<\cdots<t_{k}=t}\sum_{j=1}^{k}|\omega_{t_{j}}^{i}-\omega_{t_{j-1}}^{i}|.$. $A$ random path $\omega$ has finite mass if there exist finite functions $(g_{i})_{1\leq i\leq L}\subset C_{0,BV}([0,1];R^{d+1})$

and positive weights $(p_{i})_{1\leq i\leq L}$ such that $P(\omega=g_{i})=p_{i}$ and $\sum_{i=1}^{L}p_{i}=1.$

Definition 2.1. $A$ random path $\omega$ defines a cubature formula with degree $m$ if $\omega$ has finite mass and
satisfies for every $\Vert\alpha\Vert\leq m$

(2.1) $E[I(1, \alpha, odB)]=E[I(1, \alpha, d\omega)] (=\sum_{i=1}^{L}p_{i}I(1, \alpha, dg_{i}))$ .

We denote the space of all random paths which define cubature formulas with degree $m$ by $($Cub$)_{m}.$

Remark 2.2. The original paper by Lyons and Victoir [5] assumes $\omega^{0}(t)=t$ . However the above
generalization is straightforward.

We extend $($ Cub$)_{m}$ to a more general class which includes Ninomiya-Victoir and Ninomiya-Ninomiya
schemes (degree 5 formulas). The random path $\omega$ for these two schemes already appeared in Kusuoka’s
papers [3, 4].
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Definition 2.3. $A$ random path $\omega$ defines a moment matching formula with degree $m$ if for every
$\Vert\alpha\Vert\leq m$

(2.2) $E[I(1, \alpha, \circ dB)]=E[I(1, \alpha, dw)].$

We denote the space of all random paths satisfiring (2.2) by $(M)_{m}$ . Clearly, $($ Cub$)_{m}\subseteq(M)_{m}.$

Example 2.4. Here, we give two examples of random paths with moment matching of degrees 3 and 5.
That is, elements of $(M)_{m}$ with $m=3,5.$

(Degree 3) For each $0\leq i\leq d$ , define
$d\omega_{t}^{i}:=B_{1}^{t}dt.$

Then this $\omega$ defines a degree 3 formula. Indeed, due to the symmetry of the Gaussian law of $B_{1}$ , if
$\Vert\alpha\Vert=1$ or 3, $E[I(1, \alpha, \circ dB)]=E[I(1, \alpha, d\omega)]=0$ . Thus it is enough to check the case $\Vert\alpha\Vert=2$ . If
$\alpha_{1}\neq\alpha_{2}$ , clearly $E[I(1,\alpha, \circ dB)]=E[I(1, \alpha, d\omega)]=0$ . If $\alpha_{1}=\alpha_{2}=i\geq 1$ , we have by It\^o’s formula5,
$I(1, \alpha, \circ dB)=(B_{1}^{i})^{2}/2=I(1, \alpha, d\omega)$ .

(Degree 5) (Ninomiya-Victoir scheme) Let $\Lambda$ be a random variable with probability

$P(\Lambda=1)=P(\Lambda=-1)=1/2$

and which is independent of $(B_{t})$ . Then we define a piecewise smooth path $\omega$ by

$du_{t}^{i};=\{\begin{array}{ll}(d+2)dt, (d+2)B_{1}^{i}dt, if1\leq i\leq d,\Lambda,t\frac{+1+2i}{d+2},\frac{)i+1}{d+2})ifi=0,t\in[0,\frac{1}{=1d+2})\bigcup_{\in}[\frac{d}{d,[},1(d+2)B_{1}^{i}dt, ifl \leq i\leq d, \Lambda=-1, t\in[\frac{d+1-i}{d+2}, \frac{d+2-i}{d+2})0, otherwise.\end{array}$

We remark $\omega_{t}^{0}\neq t.$

Let $\omega$ be a random path and then define the time-scaled path $(\omega_{s}[t])_{\epsilon\in[0,t]}$ by

$\omega_{\epsilon}^{i}[t]:=\{\begin{array}{ll}t\omega_{s/t}^{0}, i=0\sqrt{t}\omega_{s/t}^{:}, 1\leq i\leq d.\end{array}$

Under $(Cub)_{m}$ or $(M)_{m}$ , the scaling property for the Brownian motion (i.e. $B_{t}=d\sqrt{t}B_{1}$ where $=d$ denotes
equality in law, also called equality in distribution) implies

$E[I(t, \alpha, \circ dB)]=t^{\Vert\alpha}$ II $E[I(1, \alpha, \circ dB)]=t^{||\alpha\Vert}E[I(1, \alpha, d\omega)]=E[I(t, \alpha, d\omega[t])]$

for every $t>0$ . Therefore, it is enough to reduce our attention to the case $t=1$ for the construction of
cubature formulas.

2.2. Application: random $ODE$ and stochastic Taylor expansion. Let $X_{t}=X_{t}^{x}$ be the unique
solution to the stochastic differential equation (SDE)

(2.3) $X_{t}^{x}=x+ \sum_{i=0}^{d}\int_{0}^{t}V_{i}(X_{S}^{x})\circ dB_{s}^{i}$

where $V_{i}\in C_{b}^{\infty}(R^{N};R^{N})$ . We also define a random ordinary differential equation ( $ODE$)

$\overline{X}_{t}^{x}=x+\sum_{1=0}^{d}\int_{0}^{t}V_{i}(\overline{X}_{s}^{x})du_{S}^{i}.$

We denote by $\overline{X}_{t}^{x}(du)$ the solution.

$5_{For}$ more on this, see below.
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The well-known It$\^{o}^{)}s$ formula in stochastic calculus is a fundamental theorem of calculus (or change
of variable formula) as follows:

$f(X_{t}^{x})=f(x)+ \sum_{i=0}^{d}\int_{0}^{t}(V_{i}f)(X_{s}^{x})\circ dB_{s}^{i}$

for a smooth function $f$ , where $V_{i}$ acts on $f$ as a vector field $\sum_{j=1}^{N}V_{i}^{j}\frac{\partial}{\partial x_{j}}$ on $R^{N}$ . We can apply this
formula to the integrands of the (stochastic) integrals. Then we get the so-called stochastic Taylor
expansion

$f(X_{t}^{x})= \sum_{||\alpha\Vert\leq m}I(t, \alpha, \circ dB)(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)+($remainder) .

Of course, we can also apply the fundamental of calculus to the bounded variation function $\omega$ , and then
we have a similar formula

$f( \overline{X}_{t}^{x}(d\omega[t]))=\sum_{||\alpha||\leq m}I(t, \alpha, d\omega[t])(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)+($ remainder) .

We can show the following error estimates by using stochastic Taylor expansions.

Theorem 2.5. Let a random path $\omega$ satisfy the condition $(M)_{m}$ . Then for any $f\in C_{b}^{\infty}(R^{N};R)$ , there
exists a constant $C=C(m, f)$ such that

$|E[f(X_{t}^{x})]-E[f(\overline{X}_{t}^{x}(d\omega[t]))]|\leq Ct^{(m+1)/2}.$

Sketch of proof. The fundamental theorem of stochastic calculus (i.e. It\^o’s formula) can be applied to $\omega$

and $B$ ;

$f(X_{t}^{x})- \sum_{||\alpha||\leq m}I(t, \alpha, \circ dB)(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)=:R_{m}^{X}(t, x)$,

$f( \overline{X}_{t}^{x}(d\omega[t]))-\sum_{\Vert\alpha\Vert\leq m}I(t, \alpha, d\omega[t])(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)=:R_{m}^{\overline{X}}(t, x)$ .

We obtain from the assumption $(M)_{m}$

$E[ \sum_{\Vert\alpha||\leq m}I(t, \alpha, \circ dB)(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)]=E[\sum_{||\alpha||\leq m}I(t, \alpha, d\omega[t])(V_{\alpha_{k}}\cdots V_{\alpha_{1}}f)(x)].$

One can easily check that the remainders $R_{m}^{X}$ and $R_{m}^{\overline{X}}$ consist of the multiple integrals of $B$ and $\omega$ with
degree $m+1$ and $m+2$ . Therefore the result follows from the time-scaling property for $B_{t}$ and $\omega[t].$ $\square$

If $t$ is not small, we can use a Markov chain type approximation as follows.

Theorem 2.6. Let $\omega(i)(1\leq i\leq n)$ be $i.i.d$. mndom paths satisfying the condition defining $(M)_{m}$ . Let
us define a new mndom path $\overline{\omega}$ in $[0,1]$ by

$\overline{\omega}_{t}:=(\omega(i))_{t-(i-1)/n}[n^{-1}]$

for $t \in[\frac{i-1}{n}, \frac{i}{n})$ . Then for any $f\in C_{b}^{\infty}(R^{N};R)$ , there exists a constant $C=C(m, f)$ such that

$|E[f(X_{1}^{x})]-E[f( \overline{X}_{1}^{x}(d\overline{\omega}))]|\leq\frac{C}{n^{(m-1)/2}}.$
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2.3. Formal series and expansion of SDEs. When we investigate the short time asymptotics of the
map $t\mapsto E[f(\overline{X}_{t}^{x}(d\omega[t]))]$ , the vector fields $V_{0},$

$\ldots,$
$V_{d}$ are considered just as the coefficients of the series.

On the other hand, we notice that the coefficient of $t^{k}$ is spanned by $\{V_{\alpha_{k}}\cdots V_{\alpha_{1}}f;\Vert\alpha\Vert=k\}$ . Hence it
is natural to regard it as formal power series with respect to the variables $V_{0},$

$\ldots,$
$V_{d}$ , and to forget the

time parameter $t$ with $t=1.$

To discuss formal power series with variables $V_{0},$
$\ldots,$

$V_{d}$ , we use the following notation.. $A=\{v_{0}, v_{1}, \cdots, v_{d}\}$ : Alphabets.. Powers (words) of $v=(v_{0}, \ldots,v_{d})$ :

$v^{\alpha};=\{\begin{array}{ll}v_{\alpha_{k}}\cdots v_{\alpha_{1}}, \alpha=(\alpha_{1’},\ldots, \alpha_{k})\in\{0,1, \ldots, d\}^{k}, k\geq 11, \alpha=\emptyset.\end{array}$

. $R\langle A\rangle$ : $R$-algebra of noncommutative polynomials on $A.$. $R\langle\langle A\rangle\rangle$ : $R$-algebra of noncommutative formal power series on $A$ with product topology. We
regard $R\langle\langle A\rangle\rangle$ as the space of $R$-valued functions defined on all powers of $A.$. $J_{m}$ : The projection from $R\langle\langle A\rangle\rangle$ to polynomials of degree less than or equal to $m$ , i.e.

$J_{m}(x)$
$:= \sum_{\Vert\alpha||\leq m}a_{\alpha}v^{\alpha}$

for
$x= \sum_{\alpha}a_{\alpha}v^{\alpha}\in R\langle\langle A\rangle\rangle,$

$(a_{\alpha})\subset R.$

. $\exp(x)$ $:=1+ \sum_{k=1^{\frac{x^{k}}{k!}}}^{\infty}$ for $x= \sum_{||\alpha||>0}a_{\alpha}v^{\alpha}$ and $(a_{\alpha})\subset$ R. We note that this mapping is
well-defined since $a_{\emptyset}=0$ and so $J_{k-1}(x^{k})=0$ for every $k.$. $\Gamma\langle\cdot\rangle$ : The linear map from $R\langle A\rangle$ to differential operators defined by $\Gamma\langle v^{\alpha}\rangle$ $:=V_{\alpha_{k}}\cdots V_{\alpha_{1}}.$. $\Gamma\langle t,$ $\cdot\rangle$ : The linear map from $R\langle A\rangle$ to differential operators defined by $\Gamma\langle t,$ $v^{\alpha}\rangle$ $:=t^{||\alpha||}V_{\alpha_{k}}\cdots V_{\alpha_{1}}.$

Remark 2.7. In Lyons-Victoir [5], instead of polynomials on $A$ , they consider the expansion with respect
to Lie polynomials generated by

$[v_{i_{1}}, [v_{i_{2}}, [\cdots[v_{i_{k-1}}, v_{i_{k}}]\cdots]]]$

$([v_{i}, v_{j}] :=v_{i}v_{j}-v_{j}v_{i})$ . It is shown that the existence of the function in $C_{0,BV}([0, t];R^{d+1})$ corresponding
to the exponential map $\exp(\mathcal{L})$ with arbitrary Lie polynomial $\mathcal{L}6$ . Their approach for constructing
cubature formulas consists of two parts: The first is to find a pair of weights $(p_{i})$ and Lie polynomials
$(\mathcal{L}_{i})$ such that $\sum_{i=1}^{k}p_{i}J_{\mathfrak{m}}(\exp(\mathcal{L}_{i}))=J_{m}(\exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))$ . The second is to construct bounded
variation functions that come from $\exp(\mathcal{L}_{i})$ .

Let us define the $R\langle\langle A\rangle\rangle$ -valued SDE:

$X_{t}=1+\sum_{:=0}^{d}\int_{0}^{t}X_{S}v_{i}\circ dB_{S}^{:}$

which has the unique solution given by

$X_{t}=1+\sum_{||\alpha\Vert>0}I(t, \alpha, \circ dB)v^{\alpha}.$

The following result is well-known (e.g. [5]).

Proposition 2.8.

$E[ X_{1}]=\exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{l}^{2})$ .

$6_{Chen’ s}$ theorem on Wiener space
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Remark 2.9. The above result corresponds to the expansion $($ for $f\in C_{b}^{\infty})$

$E[f(X_{t}^{x})]=f(x)+ \sum_{j=1}^{k}\frac{t^{j}}{j!}(V_{0}+\frac{1}{2}\sum_{i=1}^{d}V_{i}^{2})^{j}f(x)+O(t^{k+1})$

$= \Gamma\langle t, J_{k}(\exp(v_{i}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))\ranglef(x)+O(t^{k+1})$ .

That is to say, the operation $f(\cdot)\mapsto E[f(X_{t})]$ has the structure of the form $\exp(t\mathcal{L})$ where $\mathcal{L}$ is the
generator of the Markov process $X_{t}$ and is given by $\mathcal{L}=V_{0}+\frac{1}{2}\sum_{i=1}^{d}V_{i}^{2}.$

We next consider the $R\langle\langle A\rangle\rangle$-valued random $ODE$ defined as

(2.4) $\overline{x}_{t}=1+\sum_{i=0}^{d}\int_{0^{t_{X_{s}v_{i}d\omega_{s}^{i}}}}^{-}.$

The solution is denoted by by $\overline{X}_{t}(d\omega)$ . As in the case of $X_{t}$ , we can solve $\overline{X}_{t}(d\omega)$ as

$\overline{X}_{t}(de)=1+\sum_{||\alpha||>0}I(t, \alpha, d\omega)v^{\alpha}.$

To be more precise, we define the solution of (2.4) rigorously. Let $g\in C_{0,BV}([0,1];R^{d+1})$ and $a\in R\langle\langle A\rangle\rangle$

be fixed and consider the $R\langle\langle A\rangle\rangle$-valued linear $ODE$

(2.5) $\overline{Y}_{t}=a+\sum_{i=0}^{d}\int_{0^{t_{Y_{s}v_{i}dg_{s}^{i}}}}^{-}.$

We say that $(\overline{Y}_{t})_{t\geq 0}$ is a solution of (2.5) if the coefficients of $\overline{Y}_{t}$ (as a formal series) are continuous
function with respect to $t$ and $\overline{Y}_{t}$ satisfies the equation (2.5).

Lemma 2.10. The equation (2.5) has the unique solution given by

$\overline{Y}_{t}=a(1+\sum_{\Vert\alpha||>0}I(t, \alpha, dg)v^{\alpha})$ .

Proof. We can check that the function $t \mapsto a(1+\sum_{||\alpha||>0}I(t, \alpha, dg)v^{\alpha})$ is a solution of (2.5). If (2.5) has
another solution $\tilde{Y}_{t}$ , then using the Taylor expansion we can derive that $J_{m}(\overline{Y}_{t}-\tilde{Y}_{t})=0$ for every $m.$

Therefore the uniqueness of solutions holds. $\square$

We can define the solution of (2.4) pathwisely by means of the above lemma. By Proposition 2.8, we
obtain the equivalent condition for cubature formulae.
Theorem 2.11. Let $\omega$ be a random path. Then we have the followings.

(i) For each $m\in N,$ $\omega$ satisfies $(M)_{m}$ if and only if

$E[J_{m}( \overline{X}_{1} (de))]=J_{m}(\exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))$ .

(ii) Assume that $\omega$ has finite mass. Then for each $m\in N,$ $\omega$ satisfies $(Cub)_{m}$ if and only if the above
equality holds.

Proof. Notice that $(M)_{m}$ holds if and only if

$E[J_{m}( \overline{X}_{1}(d\omega))]-E[J_{m}(X_{1})]=\sum_{\Vert\alpha||\leq m}(E[I(t, \alpha, d\omega)]-E[I(t, \alpha, \circ dB)])v^{\alpha}=0.$
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By using Proposition 2.8, this condition holds if and only if

$E[J_{m}( \overline{X}_{1}(dw))]-J_{m}(\exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))=0.$

$\square$

3. SPLITTING METHODS AND CONSTRUCTION OF CUBATURE FORMULAS

We now review the idea of splitting methods (or exponential product formulas) that have been applied
to approximations of ODEs, PDEs and more general exponential maps (e.g. [8], [9], [11], [12], [1], [13]).
For simplicity, we consider two matrices $A,$ $B\in R^{kxk}$ such that $AB\neq BA$ . We can easily show by the
Taylor expansion

$\exp(tA)\exp(tB)=\exp(t(A+B))+O(t^{2})$ ,

$\exp(\frac{t}{2}A)\exp(tB)\exp(\frac{t}{2}A)=\exp(t(A+B))+O(t^{3})$ ,

$\frac{1}{2}\exp(tA)\exp(tB)+\frac{1}{2}\exp(tB)\exp(tA)=\exp(t(A+B))+O(t^{3})$ .

The above computation and basic ideas are applicable to more general (unbounded) operator $A,$ $B$ . As
mentioned in Remark 2.9, our interest is the case where $A,$ $B(, C, D. . .$ $)$ are generators of some Markov
processes.

3.1. Splitting method for $R\langle\langle A\rangle\rangle$-valued SDEs. Let us define $(d+1)$ SDE\’{s} considered as the splitting
of $X_{t}$ in each direction of $(B_{t}^{0}, B_{t}^{1}, \ldots, B_{t}^{d})$ . For $i=0,1,$ $\ldots,$

$d$ , define the $R\langle\langle A\rangle\rangle$-valued SDE

$X_{t}^{(i)}=1+\int_{0}^{t}X_{s}^{(l)}v_{i}\circ dB_{s}^{i}.$

We can immediately solve the above equations.

Lemma 3.1. $(a)$

$X_{1}^{(0)}=\exp(v_{0})$ .
$(b)$ For $i\geq 1,$

$X_{1}^{(i)}=\exp(B_{1}^{i}v_{i})$ ,

$E[ X_{1}^{(i)}]=\exp(\frac{v_{i}^{2}}{2})$ .

Remark 3.2. The lemma is an algebraic version of the following probabilistic consideration: Let $B_{t}$ be
a one dimensional Brownian motion, $W$ be a $C_{b}^{\infty}(R^{N};R^{N})$-vector field, and $\exp(sW)x$ be the solution
to the $ODE$

$Y_{S}^{x}=x+ \int_{0}^{8}W(Y_{r}^{x})dr.$

Then using It\^o’s formula, we can show that $\exp(B_{t}W)x$ is the solution to the SDE

$X_{t}^{x}=x+ \int_{0}^{t}W(X_{r}^{x})\circ dB_{r}.$

This equation has much better analytical tractability than the original SDE (2.3) which is driven by a
multidimensional Brownian motion. In other words, the splitting methods help us to avoid simulations
of “L\’evy areas” defined as $I^{ij}(t)$ $:= \int_{0}^{t}\int_{0}^{s}odB_{r}^{i}\circ dB_{8}^{j}-\int_{0}^{t}\int_{0}^{s}\circ dB_{r}^{j}\circ dB_{s}^{i}$ for $i\neq j$ . It is important to
point out that (i) Levy areas naturally appear in the stochastic Taylor expansion via $\int_{0}^{t}\int_{0}^{8}\circ dB_{r}^{i}\circ dB_{s}^{j}=$
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$\frac{1}{2}(B_{t}^{i}B_{t}^{j}+I^{ij}(t))$ . (ii) The exact distribution of L\’evy areas is not known. It is even difficult to know its
moments.

We introduce some formulae of splitting methods with degree 5.

Theorem 3.3. [Ninomiya-Victoir scheme]: For $Z=$ $(Z^{1}, \ldots , Z^{d})\sim N(0, I_{d})$ ,

$E[J_{5}( \frac{1}{2}(\exp(v_{0}/2)\exp(Z^{1}v_{1})\cdots\exp(Z^{d}v_{d})\exp(v_{0}/2)+\exp(v_{0}/2)\exp(Z^{d}v_{d})\cdots\exp(Z^{1}v_{1})\exp(v_{0}/2)))]$

$=E[J_{5}( \frac{1}{2}(\exp(v_{0})\exp(Z^{1}v_{1})\cdots\exp(Z^{d}v_{d})+\exp(Z^{d}v_{d})\cdots\exp(Z^{1}v_{1})\exp(v_{0})))]$

$=J_{5}( \exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))$ .

[Strang’s splitting type scheme]: For $Z=(Z^{1}, \ldots, Z^{2d-1})\sim N(0, I_{2d-1})$ ,

$E[J_{5}(exp(v_{0}/2)\exp(Z^{1}v_{1}/\sqrt{2})\cdots\exp(Z^{d-1}v_{d-1}/\sqrt{2})\exp(Z^{d}v_{d})$

$\exp(Z^{d+(d-1)}v_{d-1}/\sqrt{2})\cdots\exp(Z^{d+1}v_{1}/\sqrt{2})\exp(v_{0}/2))]$

$=J_{5}( \exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))$ .

Proof. Using the independence of $(Z^{i})$ , we can derive

$E[ \exp(Z^{i}v_{i})\exp(Z^{j}v_{j})]=E[\exp(Z^{i}v_{i})]E[\exp(Z^{j}v_{j})]=\exp(\frac{v_{i}^{2}}{2})\exp(\frac{v_{j}^{2}}{2})$

for $i,j\geq 1,$ $i\neq j$ . Therefore we can obtain the desired results from formal computation of the Taylor
series for exponential maps such as we have seen in previous for the matrices $A,$ $B.$ $\square$

Remark 3.4. The weight $\frac{1}{2},$

,
corresponds to the probability weight of a Bernoulli random variable

independent of $Z$ (recall Example 2.4).

Another formula is given by Ninomiya and Ninomiya ([6]). They forcus on the number of solving or
approximating ODEs. The proof differs from Theorem 3.3 due to the lack of independence.

Theorem 3.5. [Ninomiya-Ninomiya scheme]: For $Z=(Z^{1}, \ldots, Z^{2d})\sim N(O, I_{2d})$ ,

$E[J_{5}( \exp(\frac{v_{0}}{2}+\sum_{i=1}^{d}(\frac{1}{2}Z^{i}+\frac{1}{\sqrt{2}}\dot{Z}^{d+i})v_{i})\exp(\frac{v_{0}}{2}+\sum_{i=1}^{d}(\frac{1}{2}Z^{i}-\frac{1}{\sqrt{2}}Z^{d+i})v_{i}))]$

$=J_{5}( \exp(v_{0}+\frac{1}{2}\sum_{i=1}^{d}v_{i}^{2}))$ .

Proof. As in the proof of Theorem 3.3, it follows from the computation of the moments of correlated
Gaussian random variables with degree 2 and 4. $\square$

3.2. Construction of paths of bounded variation. We give here a hint for construction of moment
matching or cubature formulas of degree 5.

Lemma 3.6. Let $Z=(Z^{0}, \ldots, Z^{d})$ be a mndom $var\cdot$iable and for $0\leq i\leq d,$

$d\omega_{t}^{i}:=Z^{i}dt.$
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Then

$\overline{X}_{1}(d\omega)=\exp(\sum_{i=0}^{d}Z^{i}v_{i})$ .

Proof. The result follows from

$\overline{X}_{1}(d\omega)=1+\sum_{j=1}^{\infty}(\sum_{i=0}^{d}Z^{i}v_{1})^{j}\int_{0<t_{j}<\cdots<t_{1}<1}dt_{j}\cdots dt_{1}=1+\sum_{j=1}^{\infty}(\sum_{l=0}^{d}Z^{i}v_{i})^{j}\frac{1}{j!}.$

$\square$

The above lemma shows the relationship between the exponential $\exp(\sum_{i=0}^{d}Z^{i}v_{i})$ and the random
$ODE\overline{X}_{1}(d\omega)$ . We now extend this lemma to discuss more general compositions of the exponential maps
including Ninomiya-Ninomiya type schemes.

Theorem 3.7. (1) Let $\ell\in N$ be fixed and $Z=(Z^{ij})_{0\leq i\leq d,1\leq j\leq p}$ be a $R^{(d+1)\ell}$ -valued mndom vanable.
Let us define for each $1\leq j\leq\ell$

(3.1) $dw_{t}^{i};= \ell Z^{ij}dt, t\in[\frac{j-1}{\ell},\frac{j}{\ell})\cdot$

Then we have

$\overline{X}_{1}(d\omega)=\exp(\sum_{i=0}^{d}Z^{i1}v_{i})\cdots\exp(\sum_{i=0}^{d}Z^{u}v_{i})$ .

(2) Let $(Z^{0j})_{1\leq j\leq\ell}$ be non-negative constants such that $\sum_{j=1}^{\ell}Z^{0j}=1$ , and $(Z^{ij})_{1\leq i\leq d,1\leq j\leq\ell}$ be Gauss-
ian random vanables (which need not to be independent). Assume that $\omega$ defined in (3.1) satisfies $(M)_{m},$

and $\overline{Z}=(\overline{Z}^{ij})_{1\leq i\leq d,1\leq j\leq\ell}$ is a discrete $R^{d\ell}$ -valued mndom variable with probabilities $(p_{l})_{1\leq\downarrow\leq L}$ so that

$E[ \mathcal{P}((Z^{ij})_{1\leq i\leq d,1\leq j\leq\ell})]=\sum_{l=1}^{L}p\downarrow \mathcal{P}((\overline{Z}^{ij}(l))_{1\leq\iota\leq d,1\leq j\leq\ell})$

for any polynomial $\mathcal{P}$ on $R^{d\ell}$ with degree less than or equal to $m$ . Then a mndom path $\overline{\omega}$ given by

$d \overline{\omega}_{t}^{0}:=\ell Z^{0j}dt, t\in[\frac{j-1}{\ell},\frac{j}{\ell})$ ,

$d \overline{\omega}_{t}^{i}:=\ell\overline{Z}^{ij}dt, t\in[\frac{j-1}{\ell},\frac{j}{\ell}), i\geq 1$

defines a cubature formula with degree $m.$

Proof. The result (1) is obtained from Lemma 3.6 and the uniqueness of solutions of $\overline{X}_{t}(d\omega)$ (Lemma
2.10). Indeed, for $t\in[1/\ell, 2/\ell)$ ,

$\exp(\sum_{i=0}^{d}Z^{i1}v_{i})\exp((t-1/\ell)\sum_{i=0}^{d}Z^{i2}v_{i})$

$= \overline{X}_{1/\ell}(1+\sum_{i=0}^{d}l_{/\ell^{\exp}}^{t}((s-1/P)\sum_{i=0}^{d}Z^{i2}v_{i})v_{i}d\omega_{s}^{i})$

$=1+ \sum_{i=0}^{d}(\int_{0}^{1/\ell}\exp(s\sum_{i=0}^{d}Z^{i1}v_{i})v_{i}d\omega_{s}^{i}+\int_{1/\ell}^{t}\exp(\sum_{i=0}^{d}Z^{i1}v_{i})\exp((s-1/\ell)\sum_{i=0}^{d}Z^{i2}v_{i})v_{i}d\omega_{s}^{i})$ .

This implies $\overline{X}_{2/\ell}(d\omega)=\exp(\sum_{i=0}^{d}Z^{i1}v_{t})\exp(\sum_{i=0}^{d}Z^{i2}v_{i})$ . We obtain the result for $\overline{X}_{1}(d\omega)$ by
induction.
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Through the representation via exponential maps, we notice that the conditions $(M)_{m}$ and $(Cub)_{m}$

depend only on the polynomials of $Z$ with degree less than or equal to $m$ . Therefore the assertion (2)
immediately follows. $\square$

Remark 3.8. Theorem 3. $7$ lifts the original problem of cubature formula essentially in infinite dimension
down the finite dimensional problem of Gaussian measure.
Remark 3.9. The condition for the covariance of $Z$ so that (3.1) satisfies $(M)_{m}$ hae been given in [6].
However nobody has shown the existence of such a covariance with $m\geq 7.$

Remark 3.10. Let a path of $\omega$ in Theorem 3.7 be fixed. Then the random $ODE\overline{X}_{t}(d\omega)$ becomes an
$ODE$ which has piecewise random coefficients. We can apply the Runge-Kutta method for the $ODE$ in
each interval ([6], [13]).
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