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1 Introduction
We are concerned with fully nonlinear second order uniformly elliptic PDEs:

$F(x, Du, D^{2}u)=f(x)$ in $\Omega.$ $(E)$

Here, $\Omega\subset R^{n}$ is a bounded domain with smooth boundary $\partial\Omega$ , and $f\in$

$L^{p}(\Omega)$ for $p>\hat{p}$ , where $\hat{p}\in[\frac{n}{2}, n)$ is called Escauriaza’s constant depending
only on known quantities. For simplicity, we suppose that $F$ does not contain
$u$-variable.

We suppose that the following hypotheses: the first one is the uniform
ellipticity;

$\mathcal{P}^{-}(X-Y)\leq F(x, \xi, X)-F(x, \xi, Y)\leq \mathcal{P}^{+}(X-Y) (A1)$

for $x\in\Omega,$ $\xi\in R^{n},$ $X,$ $Y\in S^{n}$ . Here $S^{n}$ denotes the set of $n\cross n$ symmetric
matrices, and for fixed $0<\lambda\leq\Lambda$ , the Pucci operators $\mathcal{P}^{\pm}(X)$ $:=\mathcal{P}_{\lambda,\Lambda}^{\pm}(X)$

are given by

$\mathcal{P}^{+}(X)$ $:= \max\{-$ trace $(AX)|A\in S_{\lambda,\Lambda}^{n}\}$ and $\mathcal{P}^{-}(X)$ $:=-\mathcal{P}^{+}(-X)$ ,

where $S_{\lambda,\Lambda}^{n}$ $:=\{Z\in S^{n}|\lambda I\leq Z\leq\Lambda I\}$ , There exists nonnegative $\mu\in L^{q}(\Omega)$

with $q\geq n$ such that

$|F(x, \xi, X)-F(x, \eta, X)|\leq\mu(x)|\xi-\eta| (A2)$

for $x\in\Omega,$ $\xi,$ $\eta\in R^{n}$ and $X\in S^{n}.$

Without loss of generality, we may suppose

$F(x, 0, O)=0$ for $x\in\Omega$ $(A3)$

by considering $F(x, \xi, X)-F(x, 0, O)$ in place of $F$ if necessary. We note
that $(A3)$ together with $(A2)$ yields

$|F(x, \xi, O)|\leq\mu(x)|\xi|$ for $x\in\Omega$ and $\xi\in R^{n}$
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A typical example for $F$ is the following linear operator:

$F(x, Du, D^{2}u)=-$trace $(A(x)D^{2}u)+\langle b(x),$ $Du\rangle,$

where $A(x)\in S_{\lambda,\Lambda}^{n}$ for $x\in\Omega$ , and $b=(b_{1}, \ldots, b_{n})$ with $b_{i}\in L^{q}(\Omega)$ for
$i=1,2,$ $\ldots,$

$n$ . Note that we will not assume continuity on $A$ and $b$ . There-
fore, we cannot use the notion of weak solutions in the distribution sense.
It is known that viscosity solutions are correct weak solutions when fully
nonlinear PDEs are (degenerate) elliptic. However, if we only suppose that
the inhomogeneous term $f$ in $(E)$ belong to $L^{p}(\Omega)$ (not necessarily $C(\Omega)$ ),
the notion of viscosity solutions introduced by Crandall and Lions is not ap-
propriate. Thus, our weak solutions will be $L^{p}$-viscosity solutions introduced
by $Caffarelli-Crandal1-Kocan-\acute{S}wi_{9}ch[3]$ in 1996, which was motivated by a
pioneering work by Caffarelli [1] in 1989. We also refer to [2] as a nice survey
book.

Throughout this article, we only state the assertions for subsolutions but
it is easy to obtain the results associated with supersolutions. We also sup-
pose

diam $(\Omega)=1$

for simplicity. It is easy to obtain the dependence on diam $(\Omega)$ in the results
below by scaling argument.

The definition of $U$-viscosity solutions of $(E)$ is as follows:

Definition We call $u\in C(\Omega)$ an $L^{p}$-viscosity subsolution (resp., supersolu-
tion) of $(E)$ if for $\phi\in W_{1oc}^{2,p}(\Omega)$ ,

$ess \lim_{yarrow}\inf_{x}\{F(y, D\phi(y), D^{2}\phi(y))-f(y)\}\leq 0$

$( resp., ess\lim_{yarrow}\sup_{x}\{F(y, D\phi(y), D^{2}\phi(y))-f(y)\}\geq 0)$

provided $u-\phi$ attains its local maximum (resp., minimum) at $x\in\Omega.$

We also recall the definition of $L^{p}$-strong solutions:

Definition We call $u\in C(\Omega)$ an $L^{p}$-strong subsolution (resp., supersolution,
solution) of $(E)$ if $u\in W_{1oc}^{2,p}(\Omega)$ , and

$F(x, Du(x), D^{2}u(x))\leq f(x)$ $(resp., \geq f(x),$ $=f(x))$ $a.e$ . in $\Omega.$
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We recall a classical version of the Aleksandrov-Bakelman-Pucci (ABP
for short) maximum principle for $L^{n}$-strong solutions.

ABP maximum principle There exists $C_{0}>0$ such that if $f,$ $\mu\in L^{n}(\Omega)$ ,
and $u\in C(\overline{\Omega})$ is an $L^{n}$-strong subsolution of $(E)$ , then it follows that

$\sup_{\Omega}u\leq\sup_{\partial\Omega}u+C_{0}e^{C_{0}\Vert\mu\Vert_{L^{n}(\Omega)}^{n}}\Vert f^{+}\Vert_{L^{n}(\Gamma[u;\Omega])}.$

Here, for $g:\Omegaarrow R$ , the upper contact set for $g$ in $\Omega$ is defined by

$\Gamma[g;\Omega]=$ { $x\in\Omega|\exists\xi\in R^{n}$ such that $g(y)\leq g(x)+\langle\xi,$ $y-x\rangle$ for all $y\in\Omega$ }.

The upper contact set plays an important role when we study the $L^{p}$-regularity
theory although we will not treat it here.

We note that in the above, we only need $u$ to be an $L^{p}$-viscosity subsolu-
tion of

$\mathcal{P}^{-}(D^{2}u)-\mu(x)|Du|=f^{+}(x)$ in $\Omega,$ $(E’)$

which $L^{p}$-viscosity subsolutions of $(E)$ satisfy in the If-viscosity sense under
$(A1),$ $(A2),$ $(A3)$ .

This article is based on a series of joint works with A. Swigch (Georgia
Institute of Technology).

2 Motivation
The ABP maximum principle for viscosity solutions was first obtained by
Caffarelli [1]. However, we had to assume that the inhomogeneous term
$f\in L^{n}(\Omega)$ is continuous. Afterwards, introducing the notion of $U$-viscosity
solutions, we can remove this restriction in [3].

Fok [5] first studied viscosity solutions when $(E)$ may have unbounded
coefficients to the first derivatives; $\mu$ in $(A2)$ .

We shall explain why we impose $(A2)$ while in the literature, we have
investigated the case of $\mu\equiv\gamma$ for a constant $\gamma\geq 0.$

Consider the follwoing quasilinear equation

$-$ trace$(A(x, Du)D^{2}u)+b(x, Du)=f(x)$ , (1)
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where the symmetic matrix $A(x, \xi)$ is uniformly elliptic, and Lipschitz con-
tinuous in the second variable; there exists $\gamma\geq 0$ such that for $x\in\Omega,$

$\xi,$ $\eta\in R^{n},$

$\lambda I\leq A(x, \xi)\leq\Lambda I$ , and $\Vert A(x, \xi)-A(x, \eta)\Vert\leq\gamma|\xi-\eta|.$ $(aO)$

When we study the equation (1), it is difficult to use the standard pertur-
bation technique introduced by Caffarelli in [1] and further developed in [3]
since we only consider Pucci extremal equations

$\mathcal{P}^{\pm}(D^{2}u)\pm\gamma|Du|=f(x)$ .

Hence, we cannot prove basic properties of solutions of (1). However, using
the $U$-strong solutions of

$\mathcal{P}^{\pm}(D^{2}u)\pm\mu(x)|Du|=f(x)$ ,

where $\mu\in L^{q}(\Omega)$ , we can proceed our theory.
Note that if $A$ satisfies $(aO)$ , then it follows that for $x\in\Omega,$ $\xi,$ $\eta\in R^{n},$

$X,$ $Y\in S^{n},$

$\mathcal{P}^{-}(X-Y)-\gamma\min\{\Vert X\Vert, \Vert Y\Vert\}|\xi-\eta|$

$\leq$ $-$ trace$\{A(x, \xi)X-A(x, \eta)Y\}$ $(a1)$

$\leq \mathcal{P}^{+}(X-Y)+\gamma\min\{\Vert X\Vert, \Vert Y\Vert\}|\xi-\eta|.$

We suppose that $B$ satisfies that for $x\in\Omega,$ $\xi,$ $\eta\in R^{n},$

$|b(x, \xi)-b(x, \eta)|\leq\gamma|\xi-\eta|. (a2)$

Example of $A$ : We give an example of $A$ which satisfies $(aO)$ with $\gamma=\lambda+\Lambda$

when $n=2.$

$A(x, \xi):=\frac{1}{|\xi|+1}(\begin{array}{ll}\lambda|\xi|+\Lambda 00 \Lambda|\xi|+\lambda\end{array}).$

We denote by $B_{r}(x)$ for $x\in R^{n}$ and $r>0$ , the open ball with the center
$x\in R^{n}$ and the radius $r>0$ . We will also write $B_{r}$ for $B_{r}(0)$ .

Proposition 1. Let $A,$ $A_{k}:\Omega\cross R^{n}arrow S^{n}$ satisfy $(a1)$ , and $b,$ $b_{k}:\Omega\cross R^{n}arrow$

$R$ satisfy $(a2)$ , and let $f,$ $f_{k}\in L^{p}(\Omega)$ for $k\in N$ and $p>n$ . Let $u_{k}\in C(\Omega)$

$(k\in N)$ be $U$-viscosity subsolutions of

$-$trace$(A_{k}(x, Du)D^{2}u)+b_{k}(x, Du)=f_{k}(x)$ in $\Omega.$
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Assume also that for every $B_{2r}(z)\subset\Omega,$ $u_{k}arrow u$ uniformly in $B_{r}(z)$ as $karrow\infty,$

and for $\phi\in W^{2,p}(B_{r}(z))$

$\lim_{karrow\infty}\Vert(G[\phi]-G_{k}[\phi])^{+}\Vert_{LP(B_{r}(z))}=0$

where

$G_{k}[\phi](x)=-$ trace$(A_{k}(x, D\phi(x))D^{2}\phi(x))+b_{k}(x, D\phi(x))-f_{k}(x)$ ,

and

$G[\phi](x)=-trace(A(x, D\phi(x))D^{2}\phi(x))+b(x, D\phi(x))-f(x)$ .

Then, $u$ is an $\nu$-viscosity subsolution of (1).

Proof. Suppose that $u$ is not an $Ii^{p}$-viscosity subsolution of (1). Then, there
exist $\hat{x}\in\Omega,$ $r,$ $\theta>0,$ $\varphi\in W^{2,p}(B_{r}(\hat{x}))$ such that $u-\varphi$ has a maximum at $\hat{x}$

over $B_{2r}(\hat{x})\subset\Omega$ but

$G[\varphi](x)\geq 2\theta$ $a.e$ . in $B_{r}(\hat{x})$ .

We may assume that $\hat{x}=0\in\Omega$ and $(u-\varphi)(O)=0$ . Setting $\psi(x)=$

$\varphi(x)+\eta|x|^{2}$ , where $\eta=\theta/(2n\Lambda)$ , we have $u-\psi\leq-\eta r^{2}$ on $\partial B_{r}.$

In view of Theorem 7.1 in [8], by setting $h=1+\Vert D^{2}\varphi\Vert$ , and $g_{k}=$

$(G[\varphi]-G_{k}[\varphi])^{+}$ , there exists an $U$-strong subsolution $w\in C(\overline{B}_{r})$ of

$\mathcal{P}^{+}(D^{2}w)+\gamma h(x)|Dw|=-2\eta\gamma h(x)|x|-g_{k}(x)$ in $B_{r}$ , (2)

such that $w=0$ on $\partial B_{r}$ , and

$0\leq-w\leq Cr^{2-\frac{n}{p}}(r+\Vert g_{k}\Vert_{L^{p}(B_{r})})$ in $B_{r}.$

Hence, for small $r$ , there is $K(r)\in N$ such that if $k\geq K(r)$ , then
$u_{k}-(\psi-w)$ has a local maximum at $x_{k}\in B_{r}$ such that $x_{k}arrow 0$ as $karrow\infty.$

Therefore, we have
$ess \lim_{xarrow x}\inf_{k}G_{k}[\psi-w](x)\leq 0$ . (3)

. On the other hand, we have

$G_{k}[\psi-w](x) \geq G_{k}[\varphi](x)-\mathcal{P}^{+}(D^{2}w)+\mathcal{P}^{-}(2\eta I)$

$-\gamma h(x)(|Dw(x)|+2\eta|x|)$

$\geq G_{k}[\varphi](x)+g_{k}(x)-2n\eta\Lambda$

$\geq G[\varphi](x)-\theta$

$\geq$
$\theta$ $a.e$ . in $B_{r},$
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which contradicts to (3). Q. $E.$ $D.$

In Proposition 1, the assumption $p>n$ is essential since we do not know
if we have $\nu$-strong solution of (2) when $n=p.$

3 Main results
First, we recall Escauriaza’s constant $\hat{p}\in[\frac{n}{2}, n)$ in [4].

Fix $p>\hat{p}$ (Notice that we may choose $p<n$). Then, there exist $\hat{C}>0$

such that for any $g\in If(\Omega)$ and $h\in C(\partial\Omega)$ , there exists an $\nu$-strong
subsolution $u\in C(\overline{\Omega})$ of

$\mathcal{P}^{+}(D^{2}u)=g(x)$ in $\Omega$

such that $u=h$ on $\partial\Omega,$

$- \hat{C}\Vert g^{-}\Vert_{L^{p}(\Omega)}-\min_{\partial\Omega}h\leq u\leq\max h\partial\Omega+\hat{C}\Vert g^{+}\Vert_{L^{p}(\Omega)}$ in $\Omega,$

and
$||u \Vert_{W^{2,p}(\Omega)}\leq\hat{C}(_{\partial}\max_{\Omega}|h|+\Vert g\Vert_{L^{p}(\Omega)})$ .

The last estimate was local one in [1, 2, 4]. However, recently, Winter in
[9] established the global estimate.

Our ABP maximum principle for $L^{p}$-viscosity subsolutions of $(E’)$ is as
follows:

Theorem 2. Assume $f\in L^{p}(\Omega)$ and $\mu\in L^{q}(\Omega)$ . Let $u\in C(\overline{\Omega})$ be an
$\nu$-viscosity subsolution of $(E’)$ .
(i) If $q\geq p\geq n$ and $q>n$ , then it follows that

$\sup_{\Omega}u\leq\sup_{\partial\Omega}u+C_{0}e^{C_{0}||\mu||_{L^{n}(\Omega)}^{n}}\Vert f^{+}\Vert_{L^{n}(\Omega)},$

where $C_{0}>0$ is from Proposition 1.
(ii) If $q>n>p>\hat{p}$ , then it follows that

$\sup_{\Omega}u\leq\sup_{\partial\Omega}u+C_{1}\{e^{C_{0}\Vert\mu\Vert_{L^{n}(\Omega)}^{n}}\Vert\mu\Vert_{L^{q}(\Omega)}^{N}+\sum_{k=0}^{N-1}\Vert\mu\Vert_{L^{q}(\Omega)}^{k}\}\Vert f^{+}\Vert_{Lp(\Omega)}$, (4)

112



where $C_{1}=C_{1}(n, \lambda, \Lambda,p, q)>0$ and $N=N(n,p, q)\in N$ are universal
constants.
(iii) If $q=n>p>\hat{p}$ , and $\Vert\mu\Vert_{L^{n}(\Omega)}\leq\epsilon_{0}$ , then it follows that

$\sup_{\Omega}u\leq\sup_{\partial\Omega}u+C_{2}\Vert f^{+}\Vert_{L^{p}(\Omega)},$

where $\epsilon_{0}=\epsilon_{0}(n, \lambda, \Lambda, p)>0$ and $C_{2}=C_{2}(n, \lambda, \Lambda, p)>0$ are universal
constants.

Remark. It is possible to change $L^{n}(\Omega)$ by $L^{n}(\Gamma[u;\Omega])$ in (i).

We shall simply write $1\cdot\Vert_{p}$ for $\Vert\cdot\Vert_{L^{p}(\Omega)}$ . We will use $C>0$ for various
constants depending on known quantities.

Idea of proof. (i) For each $\delta>0$ , it is enough to find an $U$-strong subsolution
$v:=v_{\delta}\in C(\overline{\Omega})$ of

$\mathcal{P}^{+}(D^{2}v)+\mu(x)|Dv|=-\delta-f^{+}(x)$ in $\Omega$ (5)

such that $v=0$ on $\partial\Omega$ , and $0\leq-v\leq Ce^{C\Vert\mu\Vert_{n}^{n}}(\delta+\Vert f^{+}\Vert_{n})$ in $\Omega$ . In fact,
since $\mathcal{P}^{-}(X+Y)\leq \mathcal{P}^{-}(X)+\mathcal{P}^{+}(Y)$ holds for $X,$ $Y\in S^{n}$ , it is easy to verify
that $w:=u+v$ is an $U$-viscosity subsolution of

$\mathcal{P}^{-}(D^{2}w)-\mu(x)|Dw|=-\delta$ in $\Omega$ , (6)

which yields
$\sup_{\Omega}w=\sup_{\partial\Omega}w.$

Because, if $w$ attains its maximum at $x\in\Omega$ , then the definition immediately
gives a contradiction to (6).

Therefore, we have

$\sup_{\Omega}u\leq\sup_{\Omega}w+\sup_{\Omega}(-v)\leq\sup_{\partial\Omega}u+C(\delta+\Vert f^{+}\Vert_{n})$ ,

which shows our assertion by sending $\deltaarrow 0.$

In order to find the $L^{p}$-strong subsolution of (5), we approximate $\mu$ and
$f^{+}$ by smooth functions $\mu_{k}$ and $f_{k}$ , and let $u_{k}$ be classical solutions of

$\mathcal{P}^{+}(D^{2}u_{k})+\mu_{k}(x)|Du_{k}|=-\delta-f_{k}(x)$ in $\Omega$ (7)
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such that $u_{k}=0$ on $\partial\Omega$ . Notice that in view of Evans-Krylov estimates, we
can find $u_{k}\in C(\overline{\Omega})\cap C^{2}(\Omega)$ since $(\xi, X)\in R^{n}\cross S^{n}arrow \mathcal{P}^{+}(X)+\mu_{k}(x)|\xi|$ are
convex for any $x\in\Omega.$

We get $L^{\infty}$ estimate by the classical ABP maximum principle with $\Vert\mu_{k}\Vert_{n}$

and $\Vert f_{k}\Vert_{n}$ while we can proceed $\nu$-estimates on $D^{2}u_{k}$ by the argument in
[3] with $\Vert\mu\Vert_{q}$ for $q>n.$

It is worth mentioning that our hypothesis $q>n$ is crucial to estimate
$\mu|Du|$ terms.

(ii) In this case, we do not know the existence of $\nu$-strong subsolutions
of (5) at this stage. Because we do not have $L^{\infty}$ estimate for the associated
approximate PDE (7). Instead, according to [4], we know the existence of
$L^{p}$-strong subsolutions of

$\mathcal{P}^{+}(D^{2}v)=-f^{+}(x)$ in $\Omega$

such that $v=0$ on $\partial\Omega,$ $0\leq-v(x)\leq C\Vert f^{+}\Vert_{p}$ in $\Omega$ , and

$\Vert v\Vert_{W^{2,p}(\Omega)}\leq C\Vert f^{+}\Vert_{p}.$

Setting $w:=u+v$ , we verify that it is an $\nu$-viscosity subsolution of

$\mathcal{P}^{-}(D^{2}w)-\mu(x)|Dw|=fi(x)$ $:=\mu(x)|Dv(x)|$ in $\Omega.$

Though we have non-zero inhomogeneous term $f_{1}$ , it is easy to show

$f_{1}\in L^{p_{1}}(\Omega)$ for some $p_{1}>p.$

Since $Dv\in W^{1,p}(\Omega)\subset\nu^{*}(\Omega)$ , where $p^{*}=np/(n-p)$ , and $\mu\in L^{q}(\Omega)$ for
$q>n$ , we can take $p_{1}=p^{*}q/(p^{*}+q)$ .

If $p_{1}\geq n$ , then we may apply the assertion (i) to this $w$ . If $p_{1}<n$ , then
we can proceed this argument; find an $\nu 1$ -strong subsolution $v_{1}$ of

$\mathcal{P}^{+}(D^{2}v_{1})=-f_{1}(x)$ in $\Omega$

such that $v_{1}=0$ on $\partial\Omega$ , and $0\leq-v_{1}\leq C\Vert f_{1}\Vert_{p_{1}}\leq C\Vert\mu\Vert_{q}\Vert f^{+}\Vert_{p}$ in $\Omega.$

By setting $w_{1}$ $:=u+v+v_{1}$ , it is easy to check that it is an $\nu$-viscosity
subsolution of

$\mathcal{P}^{-}(D^{2}w_{1})-\mu(x)|Dw_{1}|=f_{2}(x)$ $:=\mu(x)|Dv_{1}(x)|$ in $\Omega.$
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Again, we can check that $f_{2}\in L^{p_{2}}(\Omega)$ for $p_{2}>p_{1}$ . Continuing this procedure
until $p_{N}\geq n$ for some integer $N$ , we apply the assertion (i) to $w_{N}$ $:=u+v+$
$v_{1}+\cdots+v_{N}.$

(iii) Note that we cannot find an $L^{p}$-strong subsolution of (5) when $q>$

$n>p>\hat{p}$ . In this case, it seems hard to construct an If-strong subsolution of
(5) in general. However, we can get enough estimates on (classical) solutions
of (7) provided $\Vert\mu\Vert_{n}$ is small. More precisely, for nonnegative $\mu_{k}\in L^{n}(\Omega)\cap$

$C^{\infty}(\Omega)$ , and $g_{k}\in U(\Omega)\cap C^{\infty}(\Omega)$ such that $\Vert\mu-\mu_{k}\Vert_{n}arrow 0$ and $\Vert g-g_{k}\Vert_{p}arrow 0$

as $karrow\infty$ , let $v_{k}\in C(\overline{\Omega})\cap C^{2}(\Omega)$ be classical solutions of

$\mathcal{P}^{+}(D^{2}v_{k})+\mu_{k}(x)|Dv_{k}|=g_{k}(x)$ in $\Omega$

such that $v_{k}=0$ on $\partial\Omega.$

Thanks to Caffarelli-Escauriaza’s estimates, we have

$\Vert D^{2}v_{k}\Vert_{p}\leq C\Vert \mathcal{P}^{+}(D^{2}v_{k})\Vert_{p}\leq C\{\Vert f_{k}\Vert_{p}+\Vert\mu_{k}\Vert_{n}\Vert Dv_{k}\Vert_{p^{*}}\}.$

On the other hand, we have

$\Vert v_{k}\Vert_{\infty}\leq C\{\Vert f_{k}\Vert_{p}+\Vert\mu_{k}\Vert_{n}\Vert Dv_{k}\Vert_{p^{*}}\}.$

These estimates imply $W^{2,p}$ estimates on $v_{k}$ if $\Vert\mu_{k}\Vert_{n}$ is small enough. Q. $E.$ $D.$

Remark. We obtained (i), (ii) in [7], and (iii) in [8].

4 Applications
The most important applications of the ABP maximum principle are the
weak Harnack inequality, and $U$-regularity. However, we shall focus on the
other applications here.

In this article, in what follows, we shall consider the case of

$q>n>p>\hat{p}$

since it is easier to obtain the corresponding results in the case when $q\geq$

$p\geq n$ and $q>n$ . We will discuss the remaining case $(i.e. q=n>p>\hat{p})$ in
the future.

There are several expected properties whose proofs are not trivial when
$q>n>p>\hat{p}$ :
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(Pl) The existence of $\nu$-strong solutions of Pucci extremal equations (see
(8) below) with unbounded coefficients to the first derivative.

(P2) $U$-strong solutions satisfy the ABP maximum principle.

(P3) $\nu$-strong solutions are $\nu$-viscosity solutions.

(P4) If $\nu$-viscosity solutions are $W_{1oc}^{2,p}(\Omega)$ , then they are $\nu$-strong solutions.

In the proof of Theorem 2 (ii), given $g\in L^{p}(\Omega)$ , we did not use the
existence of $L^{p}$-strong subsolutions of

$\mathcal{P}^{+}(D^{2}u)+\mu(x)|Du|=g(x)$ in $\Omega$ (8)

such that $u=0$ on $\partial\Omega$ because we could not prove it. However, since we
have established the ABP maximum principle in case when $q>n>p>\hat{p},$

we can obtain enough estimates on the associated approximate solutions as
in (i).

In the next proposition, we only show the existence of $\nu$-strong subso-
lutions by an approximation procedure. However, we will see that they are
$\nu$-strong solutions by use of the ABP maximum principle for $L^{p}$-strong so-
lutions, which is not trivial.

Proposition 3. For $q>n>p>\hat{p}$ , let $g\in L^{p}(\Omega)$ and $\mu\in L^{q}(\Omega)$ . Then,
there exists an $\nu$-strong subsolution $u\in C$ (Slt) of (8) such that $u=0$ on $\partial\Omega,$

$\Vert u\Vert_{\infty}\leq C_{1}\{e^{C_{0}\Vert\mu\Vert_{n}^{n}}\Vert\mu\Vert_{q}^{N}+\sum_{k=0}^{N-1}\Vert\mu\Vert_{q}^{k}\}\Vert g\Vert_{p}$, (9)

and
$\Vert u\Vert_{W^{2,p}(\Omega)}\leq C_{3}\Vert g\Vert_{p}$ , (10)

where $C_{3}=C_{3}(n, \lambda, \Lambda,p, q, \Vert\mu\Vert_{q})>0$ is a universal constant.

Proof. Let $g_{k}$ and $\mu_{k}$ be smooth functions such that

$\lim_{karrow\infty}\Vert g_{k}-g\Vert_{p}=\lim_{karrow\infty}\Vert\mu_{k}-\mu\Vert_{q}=0.$

Let $u_{k}\in C(\overline{\Omega})\cap C^{2}(\Omega)$ be classical solutions of

$\mathcal{P}^{+}(D^{2}u_{k})+\mu_{k}(x)|Du_{k}|=g_{k}(x)$ in $\Omega$ (11)
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such that $u_{k}=0$ on $\partial\Omega.$

We remark that here is not the place to apply the classical ABP maximum
principle with $\Vert g_{k}\Vert_{p}$ $($not $\Vert g_{k}\Vert_{n}$ ! $)$ . Instead, we use the same argument as in
the proof of (ii) in Theorem 2 to obtain

$\sup_{\Omega}u_{k}\leq C_{1}\{e^{C_{0}\Vert\mu_{k}\Vert_{n}^{n}}\Vert\mu_{k}\Vert_{q}^{N}+\sum_{j=1}^{N-1}\Vert\mu_{k}\Vert_{q}^{k}\}\Vert g_{k}^{+}\Vert_{p}$ . (12)

By noting that $w:=-u_{k}$ is a classical subsolution of

$\mathcal{P}^{-}(D^{2}w)-\mu_{k}(x)|Dw|=g_{k}^{-}(x)$ in $\Omega,$

(12) holds for $-u_{k}$ with $g_{k}^{-}$ in place of $g_{k}^{+}$ . Hence, we have $L^{\infty}$ estimate on
$u_{k}.$

Once we have $L^{\infty}$ estimates, it is rather standard to show the $W^{2,p}$ esti-
mates on $u_{k}$ as in [7]. To this end, we have to suppose $\Vert\mu_{k}\Vert_{q}$ is small enough.
However, this restriction can be removed by considering this procedure in
small subdomains (both inside and near the boundary of $\Omega$ ).

Because of $p> \frac{n}{2}$ , we can see that there exists $u\in W^{2,p}(\Omega)\cap C(\overline{\Omega})$ such
that $u_{k}arrow u$ uniformly in St, $Du_{k}arrow Du$ strongly in $L^{p}$ , and $D^{2}u_{k}arrow D^{2}u$

weakly in $\nu$ as $karrow\infty$ along a subsequence if necessary. Now it is easy to
show that this $u$ has desired properties. Q. $E.$ $D.$

Remark. In [7], we first prove (Pl) and then, (P2) because we only knew
$W_{1oc}^{2,p}$ estimate on $u_{k}$ . In fact, we can only prove that $u_{k}arrow u$ uniformly in $K$

for each compact set $K\subset\Omega$ by the local $W^{2,p}$ estimates. Thus, we do not
know if $u=0$ holds on $\partial\Omega$ . To recover this difficulty, in [7], we first showed
(P2) to derive that $u_{k}$ is a Cauchy sequence in $L^{\infty}(\Omega)$ . See also [3].

Now, we present a proof of (P2).

Proposition 4. For $q>n>p>\hat{p}$ , let $f\in U(\Omega)$ and $\mu\in L^{q}(\Omega)$ . If
$u\in C(\overline{\Omega})$ is an $U$-strong subsolution of $(E’)$ , then (4) holds true.

Proof. We shall recall the proof of Theorem 2.5 in [7] for the reader’s
convenience since it is not very clearly written in [7].

First, we approximate $u$ by $u_{k}\in C^{2}(\Omega)\cap C(\overline{\Omega})$ such that

$\lim_{karrow\infty}\Vert u-u_{k}\Vert_{L^{\infty}(\Omega)}=karrow\infty hm\Vert u-u_{k}\Vert_{W^{2,p}(K)}=0$
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for each compact set $K\subset\Omega$ , and

$\lim_{karrow\infty}\{\mathcal{P}^{+}(D^{2}u_{k}(x))+\mu(x)|Du_{k}(x)|\}=\mathcal{P}^{+}(D^{2}u(x))+\mu(x)|Du(x)|$ $a.e$ . in $\Omega.$

As in the proof of (ii) of Theorem 2, we have

$\sup_{K}u_{k}\leq\sup_{\partial K}u_{k}+C_{1}\{e^{Co\Vert\mu\Vert_{n}^{n}}\Vert\mu\Vert_{q}^{N}+\sum_{j=1}^{N-1}\Vert\mu\Vert_{q}^{j}\}\Vert f_{k}^{+}\Vert_{p},$

where $f_{k}=\mathcal{P}^{+}(D^{2}u_{k})+\mu(x)|Du_{k}|$ . Note that $C_{i}$ does not depend on $K.$

Sending $karrow\infty$ in the above, we can finish the proof because the compact
set $K\subset\Omega$ is arbitrary.

We give a $pro$of of (P3).

Proposition 5. For $q>n>p>\hat{p}$ , suppose that $(A1),$ $(A2)$ and $(A3)$

hold. If $u\in C(\Omega)$ is an $\nu$-strong subsolution (resp., supersolution) of $(E)$ ,
then it is an If-viscosity subsolution (resp., supersolution) of $(E)$ .

Proof. Suppose the contrary; there are $\phi\in W_{1oc}^{2,p}(\Omega),\hat{r}>0$ and $\theta>0$ such
that $u-\phi$ takes its maximum at $\hat{x}\in B_{2\hat{r}}(\hat{x})\subset\Omega$ , and

$F(x, D\phi(x), D^{2}\phi(x))\geq f(x)+\theta$ $a.e$ . in $B_{\hat{r}}(\hat{x})$ .

We may suppose that $\hat{x}=0\in\Omega$ , and $(u-\phi)(O)=0.$

Setting $\psi(x)=\phi(x)+\eta|x|^{2}$ , where $\eta=\theta/(2n\Lambda)$ , we note that $u-\psi$ takes
its maximum at $0$ . Hence, we have

$\theta+f(x)\leq \mathcal{P}^{+}(-2\eta I)+2\eta|x|\mu(x)+F(x, D\psi(x), D^{2}\psi(x))$ $a.e$ . in $B_{\hat{r}}.$

Since $u$ is an $L^{p}$-strong subsolution of $(E)$ , by noting $\mathcal{P}^{+}(-2\eta I)=\theta,$ $(A1)$

and $(A2)$ yield

$\mathcal{P}^{-}.(D^{2}(u-\psi)(x))-\mu(x)|D(u-\psi)(x)|\leq 2\eta|x|\mu(x)$ $a.e$ . in $B_{\hat{r}}.$

The scaled version of the ABP maximum principle for $L^{p}$-strong subsolutions
yields

$0= \sup_{B_{r}}(u-\psi)\leq\sup_{\partial B_{r}}(u-\psi)+Cr^{3-\frac{n}{p}}\Vert\mu\Vert_{L^{p}(B_{r})}$
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for $0<r\leq\hat{r}$ . Since $\sup_{\partial B_{r}}(u-\psi)\leq-\eta r^{2}$ and $\Vert\mu\Vert_{L^{p}(B_{r})}\leq\v{C} r^{\frac{n}{p}-\frac{n}{q}}\Vert\mu\Vert_{Lq(B_{r})},$

the above implies
$0\leq-\eta r^{2}+\tilde{C}Cr^{3-\frac{n}{q}},$

which is a contradiction for small $r>0$ . Q.E. $D.$

In the end, we shall show that the limit $u$ in the proof of Proposition 3
is indeed an $\nu$-strong solution of (8). For this purpose, we recall a stability
result.

Proposition 6. For $q>n>p>\hat{p}$ , let $F,$ $F_{k}$ : $\Omega\cross R^{n}\cross S^{n}arrow R$ satisfy
$(A1),$ $(A2)$ and $(A3)$ with $\mu,$ $\mu_{k}\in L^{q}(\Omega)$ , respectively. Let $f,$ $f_{k}\in L^{p}(\Omega)$ .
Suppose that $u_{k}\in C(\Omega)$ be an $\nu$-viscosity subsolution (resp., supersolution)
of

$F_{k}(x, Du_{k}, D^{2}u_{k})=f_{k}(x)$ in $\Omega$

such that $u_{k}arrow u$ uniformly in each compact set $K\subset\Omega$ as $karrow\infty$ , and

$\lim_{karrow\infty}\Vert(G[\phi]-G_{k}[\phi])^{+}\Vert_{L^{p}(B_{r}(x))}=0$

$( resp.,\lim_{karrow\infty}\Vert(G[\phi]-G_{k}[\phi|)^{-}\Vert_{L^{p}(B_{r}(x))}=0)$

provided that $B_{2r}(x)\subset\Omega$ and $\phi\in W^{2,p}(B_{r}(x))$ , where

$G[\phi](y)=F(y, D\phi(y), D^{2}\phi(y))-f(y)$

and
$G_{k}[\phi](y)=F_{k}(y, D\phi(y), D^{2}\phi(y))-f_{k}(y)$ .

Then, $u$ is an $U$-viscosity subsolution (resp., supersolution) of $(E)$ .

Since we may prove this assertion by the argument in the proof of Propo-
sition 1 with minor changes, we leave it to the readers. See [7] for the details.

Proposition 7. For $q>n>p>\hat{p}$ , let $g\in U(\Omega)$ and $\mu\in L^{q}(\Omega)$ . Then,
there exists an $U$-strong solution $u\in C(\overline{\Omega})$ of (8) such that $u=0$ on $\partial\Omega,$

(9) and (10).

Proof. It is sufficient to show that $u$ constructed in the proof of Proposition
3 is indeed an $L^{p}$-strong supersolution of (8).
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Since $u_{k}$ is an $U$-strong supersolution of (11), it is also an $L^{p}$-viscosity
supersolution of (11) due to Proposition 5. Now, in view of Proposition 6,
it is easy to verify that the limit $u$ is an $U$-viscosity supersolution of (8).
Thus, in view of Proposition 9.1 in [7], it turns out that $u$ is an If-strong
supersolution of (8). Q. $E.$ $D.$
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