
To BCI from Subtractive Algebra

井関 清志 (Kiyoshi ISEKI)

After introducing the cocepts BCK, BCI (1966), many
mathematicians have tried the generalizations of both
systems. The final one(1994) is due to A.Ursini(Univ.
of Siena). It is a subtractive algebra[32]. This is
an algebra with a constant $0$ and a binary operation
*satisfying the following two axioms:

$x*x=0. x*0=x.$
In our discussion, there is another important identity,
which is very often used. Its identity is

$0*x=0.$

On the other hand, in BCI, the following facts hold.

1. $x*0=x,$ $x*x=0,$
2. $x\leq y\Rightarrow z*y\leq z*x,$ $x*z\leq y*z,$

3. $(x*y)*z=(x*z)*y$ , (permutation rule)

4. $(0*x)*(0*y)=0*(x*y)$ ,
5. The minimal element of a branch with $x$ is given

by $0*(0*x)$ .
6. If $x$ is a minimal element, then $0*(0*x)=x.$
7. $x*y=y*x=0\Rightarrow x=y$. (quasi-identity)
8. $0\leq x$ for all $x$ in BCK, but not in BCI.
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We have the atlas of proper BCI of order $n\leq$

5(J.Hao[8], B.Hu[10]). J.Meng, Y.B.Jun and E.H.Roh[21]
gave all proper BCI of order 6.

From now, we omi$t^{*}$ , so $x*y$ is denoted by $xy$

The first generalization BCH of both systems is
due to Q.Hu. BCH is defined by the following con-
ditions.
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Y.Komori(1984) introduced the concept of BCC-
algebra:

1. $0x=0,$

2. $x0=x,$

3. $((xy)(zy))(xz)=0.$

4. $xy=yx=0\Rightarrow x=y.$

This syestem was extensively studied by W.A.Dudek([3],[4],[5]
and [6] $)$ .
Remark $((xy)(xz))(zy)=0$ and $xO=x\Rightarrow$

$(x(xy))y=0.$
From the first identity, $((xO)(xz))(zO)=0$ , Hence

$xO=x\Rightarrow(x(xz))z=0$ . The identity obtained is
one of the axioms of BCK, BCI.

Y.B.Jun, $E,H$ ,Roh and H.S.Kim (1998) introduced
the concept of $BH$-algebra([17],[32]):

1 $xx=0,$
2. $x0=x,$
3. $xy=yx=0\Rightarrow x=y.$

J.Neggers and H.S.Kim(2001) gave interesting ex-
amples of a $BH$-algebra. Let $\mathbb{R}$ be the set of real
numbers.

$xy=\{\begin{array}{ll}0, if x=0,\frac{(x-y)^{2}}{x}, otherwise.\end{array}$

It is easy check that $(\mathbb{R},$

$.,$
$0\rangle$ is a $BH$-algebra satis-

fying $Ox=0$, but not a BCH-algebra. We know an
example of $BH$ in which Ox $=0$ does not hold.
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. Neggers and H.S.Kim(1999) gave an algebra which
is called a $d$-algebra[25].

1. $xx=0,$
2. $0x=0.$

3. $xy=0=yx\Rightarrow x=y.$

The system includes a quasi-identity.
There is a simple example of a $d$-algebra. Let X be

the set of non-negative real numbers. Define
$xy= \max\{0,x-y\}.$

Then $X$ is a $d$-algebra with $x0=x.$
Remark If a $d$-algebra is associative, it is trivial.

$0=0x=(xx)x=x(xx)=x0$ Hence $x=0$. So the
$d$-algebra is trivial. J.Negger and H.S.Kim [25].

They(2002) introduce a new concept of $B$-algebra[30].
The axioms are

1. $xx=0,$
2. $x0=x,$
3. $(xy)z=x(z(0y))$ .
There is an interesting example of $B$-algebra. Let

$X$ be the set of all real numbers except for nonneg-
ative -$n$ , Define $xy$ by

$xy= \frac{n(x-y)}{n+y}$

Then $X$ is a B–algebra. On the other hand, define
$xy=xy^{-1}$ in a given group $G$ . Then $G$ is a B-
algebra. M.Kondo and Y.B.Jun[21] proved that the
class of $B$-algebra is same with the class of groups.
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However, J.Neggers and H.S.Kim work is never worth-
less(For example, $A$ ,Walendziak [34]).

C.B.Kim and H.S.Kim defined $BM$ algebra with
a constant $0$ amd a binary operatio$n^{*}$ satisfying

1. $00=0,$
2. $x0=x,$
3. $(zx)(zy)=yx.$

Coxeter algabra is introduced by $H,S$ , Kim, Y.H.Kim
and J.Neggers(2004)

1. $xx=0,$
2. $x0=x,$
3. $(xy)z=(xz)y.$

K.Iseki, J.Neggers and H.S.Kim defined $J$-algebra.

1. $x*0=x,$
2. $x*(x*(y*(y*x)))=y*(y*(x*(x*y))$.
Remark. In set theory, there is an identity:

$A-(A-(B-(B-C)))=A\cap B\cap C.$

Axiom 2 is a special case of the above identity.

S.M.Hong, Y.B.Jun and M.Aliozturk(2003) defined
an algebra which is called $gBCK$-algebra.

1. $x0=x,$

2. $xx=0,$

3. $(xy)z=(xz)y,$

4. $(xy)z=(xz)(yz))$
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A positive implicative BCK is $gBCK$-akgebra, The
following relations are true:

a$)$ $0x=0,$

b$)$ $(xy)x=0,$

c $)$ $xy=0\Rightarrow(xz)(yz)=0.$

Proof,

$0=00=(xx)(xx)=(xx)x=0x.$

$(xy)x=(xx)y=0y=0.$

$xy=0\Rightarrow(xz)(yz)=(xy)z=0z=0.$

In 2005, Y.B.Jun and H.S.Kim introduced the con-
cept of a substraction algebra. This is defined
by the following axioms:

1. $x(yx)=x,$

2. $x(xy)=y(yx)$ ,

3. $(xy)z=(xz)y.$

The algebra does not include a constant $0$ . How-
ever, $xx$ acts as a constant $0.$

I introduced two systems in our early works. One
of them is I-algebra which is formulated as follows:

1. $x0=x,$
2. $0x=0,$
3. $((xy)(xz))(zy)=0,$
4. $(xy)(x(yx)\rangle=0,$

5. $xy=yx=0\Rightarrow x=y.$
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Until now, $I$ mentioned algebras and systems with
only one binary operation. On the hand, various
algebras and systens with several binary operations
are in the literature.

I introduced a system in our researches(1967). It
is Griss-algebra. The system has two operations
$*$ and $+.$ $A$ constant $0$ is included in Griss system.
$x\leq y$ means $xy=0$ . Griss system is formulated as
follows:

1. $0x=0,$
2. $x+x=x,$
3. $x;=y+x,$
4, $(x+y)(x+z)\leq zy,$

5. $x\leq x+y,$

6. $xy=yx=0\Rightarrow x=y.$

J.MNeggers and H.S.Kim(2002) defined an alger-
bra with a constant $0$ and two binary operations sat-
isfying the following three axioms.

1. $x0=x,$
2. $(0x)+x=0,$
3. $(xy)z=x(y+z)$ .
The algebra is called $\beta$-algebra[32].

There are other important generalizations of BCK
and BCI due to Bucarest research group(under G.Georgescu).
They defined the concepts of pseudo-$MV$, pseudo-
$BL$ , pseudo-BCK, Iseki algebra, and pseudo-Iseki al-
gebras and a pseudo $t$-norm. A.Iorgulescu(2003) de-
fined many systems([12],[13]), for example, left-Iseki( $RP$ )
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algebra, $\ldots$ , left H\’ajek(R)-algebra Among them, $I$

mentione only definiton of pseudo-BCK is given. $A$

pseudo-BCK is a sytem $\mathbb{X}=(X, \leq,*,\Diamond, 0)$ , where
$\leq$ is a binary relation, $*,$ $\Diamond$ are binary operations, and
$0$ is a constant,and is given by the following axiom
sysytem:

1. $(x*y)\Diamond(x*z)\leq z*y,$ $(x\Diamond y)*(x\Diamond z)\leq z\Diamond y,$

2. $x*(x\Diamond y)\leq y,$ $x\Diamond(x*y)\leq y,$

3. $x\leq x,$

4. $0\leq x.$

5. $x\leq yy\leq x\Rightarrow x=y,$

6. $x\leq y\Leftrightarrow x*y=0\Leftrightarrow x\Diamond y=0.$
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