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A geometric flow for quadrature surfaces
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Abstract. A new geometric flow describing the motion of a closed surface is in-
troduced. Moving surfaces evolving under the flow are shown to be a family of
quadrature surfaces. It is proved that the geometric flow possesses a unique classi-
cal solution for any smooth initial surface with positive mean curvature.

1 Introduction

One of the classical problems in potential theory is to specify a closed surface I" for
a prescribed electric charge density u in such a way that the uniform electric charge
distribution on I' induces the same potential in a neighborhood of the infinity as p
does. To formulate the problem mathematically, let F be the fundamental solution
of —Ain R¥, i.e.,

~—logla] (N =2,
(1.1) F(z):= Ty (N> 3)
NN = 2upfzV2 =

where wy is the volume of the unit ball in RY, and let HV~!|I" denote the (N — 1)-
dimensional Hausdorff measure restricted to I'. Then, the problem can be stated
as follows: For a prescribed finite positive Radon measure p with compact support
in RY, find a (N — 1)-dimensional closed surface T' enclosing a bounded domain 2
such that F'x p=F+« HV"1Tin RV \ Q, ie,,

12 [Pe-pdut) = [Fe-pae) (@er\a).

In fact, (1.2) can be replaced by the equivalent condition that

(1.3) /hd,uz/rhdHN“l



holds for all harmonic functions h defined in a neighborhood of €. Indeed, it is
obvious that (1.3) implies (1.2). Conversely, if I' satisfies (1.2), then by extending
each harmonic function k to be smooth and have compact support in RY, we see

that
[ ant= [ sn@) ([ Fiw- dut) ) do

= - Ah(z) (/1: F(y —x) d’HN'l(y)) dz
= [ b ari),

Thus, (1.3) follows from (1.2).

The mean value property of harmonic functions implies that (1.3) holds when
p = Nwyé and T' = 8B(0,1), where & is the Dirac measure supported at the
origin and B(0, 1) is the unit ball in RY. Thus, the identity (1.3) can be seen as a
generalization of the mean value formula for harmonic functions.

From this point of view, we also consider an analogous problem: For a prescribed
measure u, find a domain 2 such that

(1.4) /hduz/ﬂhdm

holds for all harmonic functions h defined in a neighborhood of Q. This problem
also has a physical interpretation, and it is sometimes referred to as the “Potato
Kugel” problem, especially when the uniqueness of a domain 2 is concerned.

Definition 1.1. A closed surface T satisfying (1.3) is called a quadrature surface
of u for harmonic functions. Analogously, a domain Q satisfying (1.4) is called a
quadrature domain of u for harmonic functions.

The existence of a quadrature surface I of a prescribed p has been studied by
several authors with different approaches. Developing the idea of super/subsolutions
of Beurling [4], Henrot [12] was able to prove that the existence of I' is guaranteed
when a supersolution and a subsolution are available. Gustafsson & Shahgholian
[11] followed a variational approach developed by Alt & Caffarelli [1], namely, they
consider the minimization problem for the functional

J() = /R (VP — 2fu+ xpus0) do,

and proved the existence and regularity of a minimizer u. Then, u is shown to satisfy
the Euler-Lagrange equation

_Au=flQ-H 00, Q={u>0},



and thus I' = 0Q is a quadrature surface of u with du = f dx.

Similarly, a quadrature domain has a variational characterization and can be
obtained by solving an obstacle problem (see Sakai [18] and Gustafsson [10] for the
detail). Moreover, the uniqueness of a quadrature domain follows from an argument
based on the maximum principle. Indeed, it was shown by Sakai [17] that, if a
quadrature domain 2 satisfies

Fx(p—xa)>0

everywhere in 2, then there is no quadrature domain other than Q. The above
condition can be verified, in particular, when p concentrates, relative to Q.

However, as pointed out by Henrot [12], the uniqueness of a quadrature surface
cannot be expected in general. He showed an example that the number of connected
quadrature surfaces of u(t) := td(1,0)+td(—1,0) in R? changes according to the value of
t > 0. The collapse of the uniqueness seems to indicate a bifurcation phenomenon of
solutions to (1.3) with a parametrized measure u = u(t). Hence, toward understand-
ing of the uniqueness issue, we need to consider the corresponding family of surfaces
I' =T(¢). In this respect, it is natural to ask if there is a “flow” for surfaces {I'(t)}+0
such that each I'(?) is a quadrature surface of a given parametrized measure u(t).
As a matter of fact, when u(t) = tdo + xn() and (t) is the corresponding quadra-
ture domain, it is known that the Hele-Shaw flow, a model of interface dynamics
in fluid mechanics, plays the desired role. This surprising connection between the
two different physical problems was discovered by Richardson [16]. From this fact,
the investigation of the evolution of quadrature domains is reduced to that of the
Hele-Shaw flow, and the latter has been successfully proceeded by complex analysis
and several methods in partial differential equations.

We are thus motivated to derive a flow having the corresponding property for
quadrature surfaces, and eventually arrive at the following geometric flow:

v, =p for z € 90(t),

(1.5) -Ap =4 for z € Q(t),
vhere ¢ v _)Hp+ L Z 0 forz € 0001),
on

where v, is the growing speed of 9Q(t) in the outer normal direction and H is the
mean curvature of 9€(t). Here and in what follows, p denotes a finite positive
Radon measure with compact support in ©(0). Note that, for each fixed time ¢ > 0,
the maximum principle applied to the elliptic boundary problem in (1.5) yields that
p > 0 everywhere on 0€2(t) if H is positive (see the proof of (2.2) in the next section).
In other words, 2(¢) expands monotonically as long as the mean curvature of 9Q(t)
1s positive.

The following theorem shows that, as desired, for a given 9Q(0) as initial surface,
the solution to (1.5) turns out to be a one-parameter family of quadrature surfaces.
Moreover, we will see that (1.5) is the only possible flow having this property. Here,



we call {0Q(t)}ocier a C3T family of surfaces if each 9Q(t) is of C3** and its
time derivative is of C?*®, namely, 8Q(t) can be locally represented as a graph of a
function in the Holder space C3+* and its time derivative is in C*** (see Section 3).

Theorem 1.2. Let {0Q(t)}Yo<t<r be a C3** family of surfaces, and assume that
each OSUt) has positive mean curvature. Then, each OSUt) is a quadrature surface
of u(t) :=tu + HN"100), i.e.,

(1.6) / hdHN‘1+t/hd,u=/ hdHN !
89(0) a0(t)

holds for all harmonic functions h defined in a neighborhood of (1), if and only if
{090(t) }oci<T is a solution to (1.5).

Remark 1.3. The exponent 3 + « naturally arises in the context of the Schauder
theory for the oblique derivative problem (see Gilbarg & Trudinger [9]). Indeed,
the regularity H € C'*° of the coefficient function H in the boundary condition
is required for the existence of a solution p € C***(Q(t)) to the elliptic equation
in (1.5). This implies that 8Q(t) is of C***. It is worth noting that, by taking
appropriate coordinates, v, can be regarded as the time derivative of a local function
representation of 9Q(¢). Hence, it is natural to impose the same regularity as v, =

p € C*** on the time derivative of 0€(t).

At this point, we are led to a fundamental question: Does the equation (1.5) re-
ally possess a unique smooth solution? The following theorem affirmatively answers
this question. Here, {99(t)}oci<r is called a h*** solution if it is a h*** family
of surfaces and satisfies (1.5), where h3* is the so-called little Holder space and
is defined as the closure of the Schwartz space S of rapidly decreasing functions in
the topology of the Holder space C3*. Since our argument relies on the theory
of maximal regularity of Da Prato and Grisvard [5], it is necessary to use h3te
characterized as a continuous interpolation space, instead of C3+e,

Theorem 1.4. There ezists a unique h3** solution {9(t)}o<t<r to (1.5) for any
h3*® initial surface OQ(0) with positive mean curvature.

Let us plot the points (I',t) € h3** x R if I is a quadrature surface of u(t).
Theorem 1.4 shows that such points form a curve

t— (0Q¢),t) (t€0,T))

in Rt xR starting from (82(0), 0), if 82(0) has positive mean curvature. Moreover,
as the parameter ¢ increases, the curve does not split into two curves from any point
(092(t), t) unless A(t) loses the positiveness of the mean curvature.

Corollary 1.5. There s no curve
s ([(s),t(s)) (s €[0,¢))

of an h3*® family of quadrature surfaces such that (T'(0),t(0)) = (89(0),0), I'(s) #
o0 (t(s)) for 0 < s < e, and t'(0) > 0.



This paper is organized as follows. In Section 2 we prove Theorem 1.2, namely,
we characterize (1.5) as a flow which produces a family of quadrature surfaces.
Section 3 is devoted to proving Theorem 1.4. For this purpose, we reformulate the
problem into an evolution equation in an infinite-dimensional Banach space, and
proceed to the spectral analysis of the linearized operator. Finally, in section 4, we
prove Corollary 1.5.

2 Generation of quadrature surfaces

In this section we show that the geometric flow (1.5) generates a family of quadrature
surfaces.

We begin with a simple observation that the geometric flow remains unchanged
by replacing the measure u by the mollified measure ji := 7, * u, where 7, is the
standard symmetric mollifier supported on B(0,¢). Note that f is then a smooth
function supported in £2(0) by taking € > 0 small.

—

Lemma 2.1. Let {00(t)}o<i<r be a C3t solution to (1.5), and let {0Q(t)}o<t<r be
a C*** solution to (1.5) with p replaced by ji with the same initial surface HQ(0) =
00(0). Assume moreover that OQ(t) and OQ(t) have positive mean curvature. Then,

——

o) =00(t) forall0 <t <T.

Proof. 1t suffices to show that the boundary value of the solution p to the elliptic
boundary problem

-Ap=p for x € Q,
bi(z)p + bg(i‘)—g% =0 forxz €00

coincides with that of the solution p to
—Ap=j for x € (Q,
. op
bi(x)p + bQ(x)—p =0 forxz €09,
on
where b;(z), bo() are positive functions on 9§ and supp u C supp ji C Q.
To this end, we prove that g := p— j vanishes outside supp ji. Let us decompose

q = F x (u— fi) + h, where F' is the fundamental solution of —A (see (1.1)) and h
is a harmonic function satisfying

(2.1)
—Ah=0 for z € Q,
oh ) OF * (1 — i
bu(2)h + ba(@) 5 = —by(@)F x (= i) - bQ(x)—i(%—“l for z € 99.

Then, it follows from the mean value property of harmonic functions that F'* (u— i)
vanishes outside supp i. Hence, the unique solvability of the oblique derivative
problem (2.1) yields that h = 0, which completes the proof. O



We now proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us first confirm that the positiveness of the mean curva-
ture implies that

(2.2) vtp=p>0

everywhere on 0Q(t) for all 0 < ¢t < T. To see this, suppose that p((min) =
min¢eaae) P(¢) < 0 for some 0 < ¢ < T and (min € 0Q(t), and derive a contra-
diction. By the maximum principle applied to the elliptic equation in (1.5), we see
that p(Cmin) < p(z) for all z € Q(t). Hence, from the Hopf boundary point lemma
it follows that

Op
(N - 1)Hp(<min) + a_n(gmin) <0,

which violates the boundary condition. Note that (2.2) implies Q(s) C Q(t) for
0<s<t.

Now recall that, by Lemma 2.1, we may replace the measure p by ji in the
equation (1.5). For each harmonic function h defined in a neighborhood of Q(t), it
follows from the well-known variational formulas for moving surfaces and domains
that

4 [/ hdHN‘l] =/ a—hvndHN‘l—i-(N—l)/ hHv, dHN 1
dt {Jaa aqe) On a0(2)

=/ {a—hp+(N—1)th} dHN1
a9(t) on

= / (Ahp — hAp) dx +/ {h@ + (N — l)th} dHN 1
Q) aaw | On

=/ hidz
Q)
- / hd,

where the last equality follows from the mean value property of harmonic functions.
The integration with respect to ¢ yields the identity (1.6).

Let us prove the converse statement. Differentiating the identity (1.6) with
respect to t, we obtain that

/hdu=/ {Z—h+(N—1)hH}vndHN‘l.
aa) Lon

On the other hand, denoting p by a unique solution to the elliptic equation in (1.5),

we have ok
/hd,uz/ {—+(N—1)hH}deN_1.
a0(t) Bn



Hence,

(2.3) /8 y {‘g‘f; L (N l)hH} (v — p) dHY1 =

must hold for any harmonic function A defined in a neighborhood of Q(t). Let us

denote by hy € C?*t*(Q(¢)) a unique solution to

Ohg

—Ahy =0 for z € Q(2),
(N —1)Hho + 5, = Un P for x € 0Q(2).

If hp can be harmonically extended to a neighborhood of (t), then substituting
h = hg into (2.3) deduces that v, = p. But it is not the case in general, so let us
take a sequence of solutions hy to

Oh

—Ahr, =0 for z € Q,
(N - I)Hkhk + 57';‘ =gq for x € OQ,

where € D €(¢) is a sequence of bounded domains such that 8 approaches 09(t)
in the C*** sense, Hy is the mean curvature of %, and ¢ is a C'T® extension of
the function v, —p on 9Q(t) to RY, i.e., ¢lan@y= v — p. Then, the elliptic estimate

24 lrellorragm < C (Irtllcagr + lallorse@v) < Cllalloran)
holds uniformly in £ = 1,2, ..., where the second inequality follows from the fact
that
maxag, |q|
2.5 h a < < £ .
(2:5) Irelicoqr) < Igg:(lhﬂ = (N — 1) mingg, Hy

The proof of (2.5) is similar to that of (2.2). Now it can be shown by (2.4) together
with the mean value theorem that

{(N~ 1)Hhy + %} — (vn —p)‘ — 0.

sup
o9(t)

Therefore, by taking h = hy with large k, we see that the identity (2.3) cannot hold
unless v, = p on 00(t). O

Remark 2.2. The identity (1.6) is still valid for subharmonic functions A by re-
placing equality with inequality <. Indeed, this follows from the positivity of p in
Q(t).



3 Existence of a solution to the geometric flow

In this section we describe the outline of the proof of Theorem 1.4. The complete
proof can be found in Onodera [15], where a generalized flow which includes our
flow (1.5) and the Hele-Shaw flow as special cases is studied. A direct method of the
mathematical treatment of a geometric equation, which we will follow, is to refor-
mulate the problem to a fixed boundary problem by using a time-dependent diffeo-
morphism such that the moving boundary transforms to a fixed reference boundary.
Such a transformation makes clear the nonlinear nature of the original problem.
Indeed, after the transformation, we encounter the situation where the evolution
equation with fixed boundary turns out to be fully-nonlinear. The theory of max-
imal regularity of Da Prato and Grisvard [5] enables us to handle fully-nonlinear
abstract parabolic equations by taking a continuous interpolation space as phase
space. Thus, our effort will be made mainly to prove the “parabolicity” of the equa-
tion, namely, that the linearized operator is an infinitesimal generator of a strongly
continuous analytic semigroup.

3.1 Reduction to an evolution equation

As a first step, let us reformulate the problem to an evolution equation in an abstract
setting.

We fix a bounded reference domain Q with smooth boundary I', and take a
subdomain Qg such that suppp C Qb C S_};E C Q. Let us recall that the
little Holder space h¥*(Q) is defined as the closure of the Schwartz space S(R")
(restricted to ) in the topology of C*¥+*(12). The little Holder space h***(T') on the
surface I can also be defined in the same manner in terms of its local coordinates.
Let us define

U=U:={peh®@)||pllcr <a}

with @ > 0 being sufficiently small such that 6(¢;r) := ¢ + rno(£) defines a diffeo-
morphism between I" X (—a, @) and its image though 8, where no(¢) is the unit outer
normal vector at { € I'. In particular, for any p € U,

(3.1) T,:={¢+p({)no(¢) eRY | ¢ €T}

defines a h3t* surface diffeomorphic to I' though the diffeomorphism 6,(¢) :=
8(¢, p(€)) = ¢ + p(¢)no(C) from I' to T'y.

For the precise descriptions of the outer unit normal vector field n, on I'; and
a diffeomorphism from Q to ,, where €, is the domain enclosed by I'y, we will
use a level set representation of the surface I'). Let us denote by (o and ro the
components of the inverse map 67! such that 8~!(z) = ({o(),ro(x)). Note that
Co(x) is the nearest point on I to the point z, and 7o(x) is the signed distance from
I to z. It is then easy to see that

Ly(z) =ro(z) = p(Go(z)) (z € (T x (=a,a)))



defines ', as its O-level set. This representation is now used to define the normal
vector field n, € h***(I',R"Y) and a diffeomorphism from Q to Q,, which we denote
again by 6,, as follows:

() = VLo(0p(C))
)= L@,
)

by(a) := {x( 0(),0() + ¢(ro(z))p(¢o())) (er(ng—a,a))gz

where ¢ is a smooth cut-off function satisfying

wwr={é<mﬁa“% and

dy
(Ir > 3a/4) ar ")

<4
dr '

a

We also note that the speed v, of the moving boundary at 6,({) € ', can be
represented by (9p/0t)(C)/|VL,(6,({))]-
The pull-back and push-forward operators induced by 6, are defined by

¥ e— Poy o — -1
Oou:=uob, 6lvi=vob,

for u € K*t2(Q,), v € R¥**(Q), respectively. Then it can be shown that 03, 67 are

isomorphisms between A***(Q,) and A***(Q), and (63)~! = 6. In the same fashlon

05, 62 also denote isomorphisms between h*+*(T,) and hk-!-oz(r\)

Given p € U, we now define transformed operators A(p), B(p) and R(p) by

A(p) := 05(—A)62,
B(p)v = TTH;(Vva, np>7
R(p)v := (N — 1)Mp,)Trv + B(p)v,
where Tr and My, are the trace operator and the pointwise multiplication operator

defined by _
Tro(Q) :=v(C), (Mp¥)(C) :=(Q¥(C) (CE€T)

for v € R**(Q) and ¢,y € h¥+*(I"), respectively, and H(p) € h**(T') assigns the
mean curvature of I, at §,(¢) to the point { € I'. Note also that here we have
used the notation (-, -) to denote the pointwise inner product. It can be shown (see
Escher & Simonett [7, 8]) that

AeC? U, L (@), h@))),
B € C* (U, L (h*(Q), A1*(T)))
ReC” (U, L (h*** 2\ Q) , A1(D))).

In view of (3.1), the moving surface 9§2(t) can be represented by p(t) = p(-, 1)
which is a real-valued function defined on the fixed reference surface I'. Hence, the
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problem can be reduced to the following system of differential equations, in which
unknowns are the functions p and u:

(3.2) O = Migyw,)Tx (6,E +u)
A(p)u =0,
(3.3) where { R(pJu = —R(p)BE.

Here, E is defined by
B(x) = Bu(s) i= (F » (@),

and hence —AFE = u.

Furthermore, since u is determined only by p by virtue of the unique solvability
of the elliptic equation (3.3) (see Gilbarg and Trudinger [9, Theorem 6.31]), the
problem becomes a non-local evolution equation. To make it precise, let us define

U — LE@), k@),  S(p)v = (Alp), R(p)™\(2,0),
T U — L), h2+(Q), T(p)p = (Alp), R(p)) (0, 9)-

Then, we see that u = —T(p)R(p)0;E. Therefore, our problem is to solve the
following evolution equation:

(3.4) Oip + ®(p) =0,
where
®:U — h¥(T), ®(p) := Migywr,)Tr (T(p)R(p) — I) 6 E.

Here, I is the identity map.

3.2 Linearized operator and its principal part

The theory of abstract evolution equations enables us to reduce the existence of a
solution of (3.4) to the spectral properties of the linearized operator 0®(p) of @ at
p € U. Indeed, once P(p) is shown to be a sectorial operator, i.e., an infinitesimal
generator of an analytic semigroup, then it follows from the theory of maximal
regularity of Da Prato and Grisvard [5] that the equation (3.4) is uniquely solvable
for initial data in a certain function space characterized as a continuous interpolation
space.

By the implicit function theorem, we have the representation of the linearized
operator 0T (p) of T at p € U as follows.

Lemma 3.1. For p € U and ¢ € h1*(D), let us set v = v(p) := T(p)yp, ie., v

satisfies
A(p)v=0 1inQ,
R(p)v =¢ on 0.
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Then, the linearized operator v(p) € L(K¥T*(T), h2+*(Q)) of v at p is given by
0v(p)[p] = 8 (T(p)) [5] = —S(p)OA(P)[AIT (p)¢ — T(p)OR(p) AT (p)e.
Moreover, T € C*(U, L(R1*(T), h2+*(Q2))).
From the above lemma, we see that

0% (p)[7] = Migyor,) T T())OR ()] (I - T()R(p)) 8B+ Fr(p) [+ Fa(o) 1+ Fo(o)[5),
where the linear operators

Fi(p)[] == —Mgy,) Tr S(p)OA(p)[B]T () R(p), E,

Fy(p)[p] := OMigs (v, [T (T(p)R(p) — I) 6, E,

F3(p)[p] := M]e;(VLp)lTr (T(p)R(p) — I) 3(9;E)[P~]
can be thought of as perturbations in the sense that

I1E5(0)[Alllnz+a(ry < Cllpllnaveqry (5 =1,2,3),

where the constant C' depends on p € U, but not on g € h*t*(T).

Moreover, the operator OR(p) can also be decomposed further into the principal
part and its perturbation. For this purpose, let us recall that the mean curvature
operator H = H(p) has a useful representation as in the following lemma. Here we
take v such that a < v < 1 and set

V=Vo:={p€r® ()| pllor < a}.

Lemma 3.2 (Escher & Simonett [7, Lemma 3.1]). For each p € U, the mean
curvature operator H(p) can be decomposed as

H(p) = P(p)p + K(p),
where P € C¥ (V, L (h***(T), h'**(T))) and K € C¥(V, K"+ (T)).
Hence, for v € h?+@ (ﬁ\ Qoup), We have
8 (o)) ] = (N ~ DM, P(p)[5] + Fi(p, )7

where
1E4(p, v)[A]llnt+aqry < Cllvllaz+a(ry l|Alln2+~ry

with C being a constant independent of j. Therefore, the linearized operator 9®(p)
can now be represented in the following form:

02(p)[p] = (N — 1)My(p)Tr T(p) M2 (p) P(p) (5] + F(p)[5),

where
My(p) := Migyvr,) € £ (h**(D)),
My(p) = M-r(r@ps;e € L (h7T(T)),
F(p) € L (B*7(T), B2+(T))..
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3.3 The generation property of the linearized operator

Our task is now to prove that the linear operator
W =W (p) := —Mi(p)Tr T(p) Ma2(p) P(p) € L(K***(T), h***(T))

is sectorial in A%t%(T), i.e., it generates an analytic semigroup on h***(T"). Indeed,
a standard perturbation result of sectorial operators implies that, if W is sectorial,
then —0®(p) is also sectorial. The following theorem is the main assertion in this
section.

Theorem 3.3. W € L(h**(T), h®**(T")) is sectorial in h3+*(T).
Corollary 3.4. —0®(p) € L(h*T*(T), h*t*(T")) is sectorial in h3T*(T).

To prove Theorem 3.3, it is well-known (see Amann [2]) that W is sectorial if
there exist positive constants A, and C such that

(i) AI —W € L(R3*(T), h>**(T")) is bijective, i.e., A, is in the resolvent set.

(ii) I/\I”ﬁ”h2+a(p) + “ﬁ”h3+a([‘) < C“(/\I — W)ﬁ”h2+a(p) holds for ﬁ € h3+a(F) and
Ae{z€C|Rez>\}.

Let us first confirm the condition (i) by assuming (ii). Since (ii) implies that
AJ — W is injective, we only need to prove that it is also surjective. Note that U
is star-shaped with respect to 0 in A***(I') and K .= {tp e U |0 <t < 1} isa
compact subset in ¢. Hence, from the continuity of the map p — W = W(p)'it
follows that the constant C' in the resolvent estimate (ii) can be chosen uniformly in
p € K. Therefore, by the continuity method (see Gilbarg & Trudinger [9, Theorem
5.2]) together with the uniform resolvent estimate (ii), it is sufficient to show that
A — W is surjective in the case p = 0.

Then, it is known that

1 r
(35) P(0) = - AL,
where AL is the principal part of the Laplace-Beltrami operator with respect to I.
Moreover, we have

(3.6) v:=(I-T(0)R(0))E >0
everywhere on I'. This can be verified in the same way as (2.2), since v satisfies

{ mon s

Now (3.5) and (3.6) imply that
I+ My(0)P(0) = I + Mu-r(o)royeP(0) € L(-***(T), (L))



1s a bijective operator having bounded inverse.
Note also that

Mi(0)Tr T(0) = Mig Lo Tr T(0) € £ (R**(T'), B2+%(T))

is bijective. This follows from |VLo| > 0 and the unique solvability of the oblique
derivative problem in the Hélder spaces (see Gilbarg & Trudinger [9, Theorem 6.31}).
In the expression

AT —W = My(0)Tr T(0) {I + Ma(0)P(0)} + A\ — My (0)Tr T(0),

the second and third operators in the right hand side are compact perturbations,
since the embedding A***(T") — h2+**(T) is compact. Furthermore, as we have
already seen, the first one is a bijective operator from 23+*(T") to h2+*(T"). Therefore,
Ad — W is a Fredholm operator of index 0. Now the assertion follows from the fact
that A.I — W is injective.

We will establish the remaining resolvent estimate (ii) in the following sections.

3.4 Fourier multiplier operators associated with localized
operators

Let us take an atlas {U}, Y1 }1<i<m of Rq := 8(I' X (—d, 0]) for small 0 < d < a/4 such
that diam U; < d and that v; maps Q := (—d,d)" "' x [0,d), Qo := (—d, d)¥ ! x {0}
onto U, Uy N T, respectively. Note that the number of local coordinates m depends
on d.

Localizing the operator W to each U;, and choosing an appropriate constant
coeflicient operator on RY~! which approximates W in that localized region U, we
will show that this constant coeflicient operator has a representation as a Fourier
multiplier operator, and moreover that it generates an analytic semigroup in an
appropriate Banach space, namely, the little Holder space h>T*(RN~1). The latter
will be established by applying a general result due to H. Amann, which states that,
for given o € EUS(Y.), v« > 0 and 7o > 0, it follows that

S = =F Mo F € L (B*H(RNT), 2RV )

is sectorial, i.e., it generates a strongly continuous analytic semigroup on A2t*(RV-1).

Here, 0 € EUISY° () if o = o(€,n) € C= (RN~ x (0, oo)) is positively homogeneous
of degree one and its all derivatives are bounded on the set {|£|? + 7% = 1} and if

(3.7) Rea(€,n) > /IR +1% ((§,n) € RV x (0,00))

holds. The linear operator My with a given function ¢ on R¥~! is the localized

version of the pointwise multiplication operator induced by ¢.
Let us fix p € U and (U,¢) = (U, %) for some I = 1,...,m, and define the
pull-back and push-forward operators induced by 3 by

Yui=uot, Yuv:=vo !

13
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for u € h¥**(U), v € h*¥**(Q), respectively. We then introduce local representations
A, R and P of the operators A(p), R(p) and P(p) defined by

A=y A(p)Y., R:=¢'R(p)p., P =9 "P(p)i.
In what follows, for simplicity, we write

0 : 0
(]—1,...,N—1), 81\/.—'8—;.

As shown in Escher & Simonett [7, Lemma 3.2] and [8, Lemma 3.1], we have

Bj =

O

N N
A== an(p)di0 + ) a;(0)0;,
j=1

G k=1
N
R = bo(p)Tr — > _ bj(p)Tr 3,
j=1
N-1
P==>_ pir(p)d;o
7,k=1

where ajx € C¥(U, h**(Q)), a; € C*U, hKM**(Q)), b; € C*(U, h***(Qo)) and pjx €
C* (U, h***(Qy)), and we used the same notation Tr to denote the trace operator on
Qo. Moreover, the matrices (a;x(p)(w,)), (Pjx(p)(w)) are symmetric and uniformly
positive definite on Q, Q,, respectively, and by(p), by (p) are uniformly positive on
Q. Here, we may further assume that

bi(p) =0 (=1,...,N-1).

Indeed, the validity of this assumption is guaranteed by taking the diffeomorphisms
1 so that each 6, o ¢; preserves the normal directions to the corresponding bound-
aries, namely,
BN(Op o ’(/}1) = D(Gp o ’(bl)eN = —S8 (np (o} ¢l)

holds with some positive number s at each point on Qo, where ey :=*(0,...,0,1).
For the construction of such a diffeomorphism, we refer to Ni & Takagi [14].

We are now in a position to introduce associated constant coefficient operators.
By setting

af = a;x(p)(0,0), 85 :=b;(p)(0), P = Pir()(0),

let us define

N
Ao == 030,
7,k=1
Ro := BTr — bYTr Ay,
N-1

Py :=1- Z P?kajak.

Jik=1



The constant coeficient operator 7y associated with T'(p) will be defined such that,
for p € A1T*(RN1)) v := Top € K2T*(RV! x [0,00)) and v satisfies

{ (I+Ay)v=0 in RN x (0,00),

(38) Rov = ¢ on RN-1 ~RN-1x {0}.

To derive an explicit representation of 7y, we set

; Nl 1 N-1 N-1 2
0
== D &+ 5| dh (1 + a;?kéj&c) - (Z a%@) :
NN j=1 NN 7j=1

Jk=1

where ¢ := +/—1. Then, z = 2(¢) is a solution to the quadratic equation

N-1

1+ Za]k§J§k+21, (Z aJij) —an2?=0

jk=1

and satisfies Re2(§) > 0 by the ellipticity of (a3,). Denoting by F and F~! the
(partial) Fourier transform and the inverse (partial) Fourier transform on RV~!,
respectively, we have an explicit representation formula of the solution operator 7,
as the following lemma shows.

Lemma 3.5. Let 7, be defined by
Too(w,r) = [.7’_1/\/101(.,,.).7:90] (w),
e”z(f)"'
O R

Then, Ty € L(A'F*(RN™1), h2*(RN=! x [0,00))) and, for any ¢ € h'+*(RN-1),
v := Top is the unique solution to (3.8) in A* (RN~ x [0, c0)).

Proof. By a direct computation, it is easy to see that v := Toy satisfies (3.8) for
smooth ¢. Moreover, 7, € L(h!+*(RV-1), h2+*(RN~! x [0, 00))) follows from the

decomposition
76@(&),7‘) = [(f_lMalyl(.,r)]:) (f_lMal’zf)] (w),
where _ .
o11(,r) = e 2O, 01,2(§) = (1)8 + b(z)vz(f)) .

Indeed, F~'M,, (. F € L(AZF*(RN~1), A2+*(RN-1 x [0,00))) can be checked as in
Escher & Simonett [6, Lemma B.2], and also it is easy to prove that F— M, ,F e
L(h+(RN=1), A2+*(RN-1)) in view of Escher & Simonett [6, Theorem A.1]. For the

uniqueness of a solution, it suffices to show that any solution v € A?+*(R¥N~1x[0, 00))

of
(I+A)v=0 in RN1x (0,00),
Rov =0 on RN-1,

15
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must be identical with the trivial solution v = 0. By virtue of the Phragmén-Lindelof
principle, this can be reduced to showing that v = 0 on the boundary RN-1. Let us
prove that v < 0 on R¥~! by assuming

c:= sup v(w,0)>0
weRN~—l

and deriving a contradiction. For any w € RY-1 and r > 0, observe that

v(w, 0) + b 'rv(w 0) — v(w,r) = v(w,0) + ronv(w, 0) — v(w,T)

=/ (Onv(w, 0) — Onv(w, 5)) ds

r?
—2‘“U||h2+a(mN 1x[0,00))"

Thus, by choosing a sufficiently small € > 0 and w € R¥~! such that v(w,0) > c—¢,
we see that

b3 r?
v(w,r) > v(w,0) + bTrv(w 0) — ‘2_||U”hz+a(RN-—1x[0’oo))
b3 r?
>c— €+ EO—T(C — E) - Ellv”hz"""(RN‘lx[O,oo))
N

where the last inequality is valid for € > 0 and r € (0, 1) such that

b3 L
(bo c— —“’U||h2+a(RN I1x[o, OO))) (1 * bTr)

and the existence of such a pair of € and r can be easily checked. However, recalling
that the Phragmén-Lindeldf principle yields v(w,r) < ¢ for all w € R¥~! and r > 0,
we are now arriving at a contradiction and thus v < 0 is proved. The inequality
v > 0 can be proved by a similar argument. a

For later use, we also provide the solution operator Sp of the following boundary
value problem:

(3.9) { (I+Aoyv=f in RN=1x (0,00),

Rov =0 on RN-1

In what follows, we write Fy and Fy' for the Fourier transform and the inverse
Fourier transform on R¥, respectively, and £ € L(h*(RN~! x [0, 00)), h*(RYN)) de-
notes an extension operator, i.e., £f = f on RN=1 x [0, 00).



Lemma 3.6. Let Sy be defined by
Sof (w,r) := (I = ToRo) {F' Mo, FNEf } |rr-1xpo.1)
N -1
03(€) = (1 + Z a?k§j§k> :
k=1

Then, So € L(h*(RN™!x [0,00)), A2T*(RN~1 x [0,00))) and, for any f € h*(RN1 x
[0,00)), v :=Sof is the unique solution to (3.9) in A2+ (RN x [0, 00)).

Proof. A direct computation shows that v := Sy f satisfies (3.9) for smooth f. More-
over, Lemma 3.5 and the facts that

Ro € L(R**(RY! x [0, 00)), A+ (RY™Y)),
FtMo, Fy € LIR(RN), h2+*(RY))

yield the desired conclusion Sy € L(R*(RN™! x [0, 00)), h2F*(RN~! x [0,00))). The
uniqueness of a solution again follows from the Phragmén-Lindelof principle. O

Finally, by setting
my = $*|65,(VL,)|(0,0) > 0,
mg := " {(I = T(p)R(p)) §;E} (0,0) > 0,
we define W, by

Wo = mlmQTr %Po
=—FIM,F,
where
© mimg (1 + Z;Vk—:ll p?kfjgk)
7= 05 + by ()
Then, we have the following proposition.

Proposition 3.7. W, € L (R***(RN=1), A2F*(RN~1)) is sectorial.

Proof. Let us define the parametrized symbol & by

mymy (772 + 3 P?kfj&c)
bon + bR (€, m) ’

G(&n) =

; Nl 1 N-1 N-1 2
Z(&n) = 0 Z ajnEj + o ayn (772 + “?kfjfk> - (Z a?zv@') :
=1

NN j=1 NN 4, k=1

17
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Note that 2(£,1) = z(€) and hence 6(£,1) = o(§). We show that & € EUST ()
with some positive number 7,. Indeed, it is easy to see that & € C®°(RN~! x (0, c0)),
and it is positively homogeneous of degree one, and its all derivatives are bounded
on {|£|* + n? = 1}. To check the condition (3.7), let a., p. denote the ellipticity
constants for Ag, Po, i.e.,

N-1 N-1
(3.10) Y ah&ile + 21 ) alnEs + a2 au (€7 +7),
jrk=l j=1
N-1
(3.11) > phite = palél.
dk=1

Then, in particular, by taking 7 = —(a%x)~ Z;V S a9y&; in (3.10), we have

Z a5e8i€k — (Z "'JNfJ) > a.|¢f?,
7j=1

J)k_

and hence

1
Re3(6,m) 2 2o —/obw (17 + aléf?)

min{l, a,
> [mntha} e

anN

(3.12)

We also observe that

1637 + 0% 2(¢,m)|” <2b8n2+2bN|z(f, n)|?

3.13
(3.13) < 20 Za )|£|2+2b°+b°)

Therefore, combining (3.11), (3.12) and (3.13), we deduce that

myma (1 + Sl PuEste ) (60 + ByRe 5(6,1))
88 + B 2(E, )P
mama (02 + pal€]?) (6n + b/ 2okt \ /€2 + 72
™ i 1(" Ve V)
28 (Lhich ol ) 6 +2 TR

> 1V + 7%

mymab% min{1, p, }/min{1, a.}
N-
2\/a?VNmax{b‘1{, ( ke ~ af a% ) b3 + b3 }

Red(§,n) =

where

> 0.

Ve 1=



Therefore, & € £115°(.), and hence
Wo = —F Mg F

is a sectorial operator on h2F*(RN™1). O

3.5 Resolvent estimate by a perturbation argument

Proposition 3.7 implies that the operator Wél) = W, which approximates W in the
localized region Uj, satisfies the resolvent estimate

~ ~ Dy ~
(3.14) Ml e =1y + 1 llassaqen-1) < CIAL = W) llszsa@or-1)

for any § € R***(RM~!) and A € {z € C | Rez > Ao}, by taking Ao > 0 and C > 0
appropriately.

We will show that Wél) indeed approximates W by taking d > 0 so small that
the atlas {Uj, ¥1}1<i<m of Ra becomes fine enough (see the beginning of Section 3.4)
in the sense that the desired resolvent estimate

(3.15) A2ty + IBllnseary < CHL = W)llasary

holds after patching all the local estimates together. This estimate completes the
proof of Theorem 3.3.

For this purpose, we take a partition of unity {¢;}/2, associated with {U;}, such
that supp ¢y, C Up and |J;2, ¢ = 1 on Rg/5. Combining the atlas and the partition
of unity, we call such a pair a localization sequence of Ry. Note that, we can choose
a family of smooth cut-off functions {x;}1, as well as a localization sequence of Ry
such that supp x; C U, x; = 1 on supp ¢; and

(3.16) Ixallo,v, + d°[xt]ay, < C

with a positive constant C' which is independent of d. Here and in what follows, we
use the notation

lellkaw = ollray  Wlag = sup LEZUO

::,cgfyU ‘.T - y|a

[vllera = olleramn-1,  [t]a = []ora-i.
Now we state the following perturbation result.

Lemma 3.8. For anye >0, 0< 8 < a and p € U, there are d > 0, a localization
sequence of Rq, and a constant C = C(g, 3, p,d) such that

i (6w5) - Wi (65)|, < el (@llgya + Clillssar

2+

holds for p € K3**(T") and 1 <1 < m.
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The proof is straightforward, but lengthy. The detail can be found in Onodera
[15]. Let us now complete the proof of Theorem 3.3.

Proof of Theorem 8.3. We only need to prove the resolvent estimate (3.15). For
simplicity, we will denote C > 0 a generic constant. Combining (3.14) and Lemma
3.8 with sufficiently small € > 0, we see that

M%7 (1) Nzt + 165 (6108) llaae < CINOT = WEB; ($45) lla-+a
< C (I} (B1(M = W)B) ll24a + [|ll345,r)

holds for any p € h¥**(I'), A € {z € C|Rez > A}, and 1 < < m. Since

p+— max Y] (¢1P) llk+a

1<i<m
defines an equivalent norm on A***(T") (k = 2, 3), the above inequality implies

IAMNAll24a,r + 18l13+0,r < C (|(M — W)pll24a,r + |16ll3+5,r) -

Then, using the interpolation inequality

IAlls+s.r < €llbllstar + Cllpll2+a,r,

we deduce that

IANIAll2+a,r + |All3+a, < CIN(A = W)pll24ar

holds for any 5 € h3**(T') and A € {z € C | Rez > \.} with sufficiently large
A« > Xo. This is nothing but (3.15). a

Theorem 1.4 now follows from Theorem 3.3 and the theory of maximal regularity
of Da Prato and Grisvard [5], since h2t*(T") is characterized as a continuous inter-
polation space between A3+ (I') and h***(T") with 0 < o’ < a < 1. For the proof
of the solvability of fully-nonlinear equations in continuous interpolation spaces, we
refer to Angenent [3, Theorem 2.7] and Lunardi [13].

4 Bifurcation criterion for quadrature surfaces

Theorems 1.2 and 1.4 immediately deduce Corollary 1.5.

Proof of Corollary 1.5. Assuming the existence of a curve s — (I'(s), t(s)), let us
derive a contradiction. We divide the proof into two cases: (i) ¢'(0) > 0 and (ii)
t'(0) =0.

In the case (i), we can take the inverse function ¢t~ of ¢t = t(s) at least in a
neighborhood of s = 0. Setting



we see that {T'(7)}ocr<z with small & is an A3+ family of surfaces satisfying

/ hdHN‘1+T/hd,u=/ hdHN!
8(0) I(r)

for harmonic functions h. Then, it follows from Theorem 1.2 that {I'(7)}e<r<s is
a solution to (1.5). However, the uniqueness assertion in Theorem 1.4 implies that
(1) = 09Q(7), or I'(s) = 8Q(¢(s)). This is a contradiction.

In the case (ii), by differentiating the identity

/ hd’HN—1+t('s)/hdu=/ hdHN1
89(0) I'(s)

with respect to s at s = 0, we have a nonzero function v, € R?**(9Q(0)) satisfying

o=/ {3—h+(N— l)hH} v dHN !
89(0) on

for all harmonic functions k defined in a neighborhood of Q(0). Therefore, by an
argument similar to the last part of the proof of Theorem 1.2, we deduce that v, = 0
on 0Q(0), which is again a contradiction. (]
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