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Abstract. A new geometric flow describing the motion of a closed surface is in-
troduced. Moving surfaces evolving under the flow are shown to be a family of
quadrature surfaces. It is proved that the geometric flow possesses a unique classi-
cal solution for any smooth initial surface with positive mean curvature.

1 Introduction
One of the classical problems in potential theory is to specify a closed surface $\Gamma$ for
a prescribed electric charge density $\mu$ in such a way that the uniform electric charge
distribution on $\Gamma$ induces the same potential in a neighborhood of the infinity as $\mu$

does. To formulate the problem mathematically, let $F$ be the fundamental solution
$of-\triangle$ in $\mathbb{R}^{N}$ , i.e.,

(1.1) $F(x)$ $:=[Matrix]$
where $\omega_{N}$ is the volume of the unit ball in $\mathbb{R}^{N}$ , and let $\mathcal{H}^{N-1}\lfloor\Gamma$ denote the $(N-1)-$
dimensional Hausdorff measure restricted to $\Gamma$ . Then, the problem can be stated
as follows: For a prescribed finite positive Radon measure $\mu$ with compact support
in $\mathbb{R}^{N}$ , find $a(N-1)$-dimensional closed surface $\Gamma$ enclosing a bounded domain $\Omega$

such that $F*\mu=F*\mathcal{H}^{N-1}\lfloor\Gamma$ in $\mathbb{R}^{N}\backslash \overline{\Omega}$, i.e.,

(1.2) $\int F(x-y)d\mu(y)=\int_{\Gamma}F(x-y)d\mathcal{H}^{N-1}(y) (x\in \mathbb{R}^{N}\backslash \overline{\Omega})$ .

In fact, (1.2) can be replaced by the equivalent condition that

(1.3) $\int hd\mu=\int_{\Gamma}hd\mathcal{H}^{N-1}$
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holds for all harmonic functions $h$ defined in a neighborhood of St. Indeed, it is
obvious that (1.3) implies (1.2). Conversely, if $\Gamma$ satisfies (1.2), then by extending
each harmonic function $h$ to be smooth and have compact support in $\mathbb{R}^{N}$ , we see
that

$\int h(y)d\mu(y)=\int_{\mathbb{R}^{N}}\triangle h(x)(\int F(y-x)d\mu(y))dx$

$= \int_{\mathbb{R}^{N}}\triangle h(x)(\int_{\Gamma}F(y-x)d\mathcal{H}^{N-1}(y))dx$

$= \int_{\Gamma}h(y)d\mathcal{H}^{N-1}(y)$ .

Thus, (1.3) follows from (1.2).
The mean value property of harmonic functions implies that (1.3) holds when

$\mu=N\omega_{N}\delta_{0}$ and $\Gamma=\partial B(O, 1)$ , where $\delta_{0}$ is the Dirac measure supported at the
origin and $B(O, 1)$ is the unit ball in $\mathbb{R}^{N}$ . Thus, the identity (1.3) can be seen as a
generalization of the mean value formula for harmonic functions.

From this point of view, we also consider an analogous problem: For a prescribed
measure $\mu$ , find a domain $\Omega$ such that

(1.4) $\int hd\mu=\int_{\Omega}hdx$

holds for all harmonic functions $h$ defined in a neighborhood of St. This problem
also has a physical interpretation, and it is sometimes referred to as the “Potato
Kugel” problem, especially when the uniqueness of a domain $\Omega$ is concerned.

Definition 1.1. $A$ closed surface $\Gamma$ satisfying (1.3) is called a quadmture surface
of $\mu$ for harmonic functions. $Analogou\mathcal{S}ly$ , a domain $\Omega$ satisfying (1.4) is called a
quadmture domain of $\mu$ for harmonic functions.

The existence of a quadrature surface $\Gamma$ of a prescribed $\mu$ has been studied by
several authors with different approaches. Developing the idea of super/subsolutions
of Beurling [4], Henrot $[12]$ was able to prove that the existence of $\Gamma$ is guaranteed
when a supersolution and a subsolution are available. Gustafsson & Shahgholian
[11] followed a variational approach developed by Alt & Caffarelli [1], namely, they
consider the minimization problem for the functional

$J(u):= \int_{\mathbb{R}^{N}}(|\nabla u|^{2}-2fu+\chi_{\{u>0\}})dx,$

and proved the existence and regularity of a minimizer $u$ . Then, $u$ is shown to satisfy
the Euler-Lagrange equation

$-\Delta u=f\lfloor\Omega-\mathcal{H}^{N-1}\lfloor\partial\Omega, \Omega=\{u>0\},$
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and thus $\Gamma=\partial\Omega$ is a quadrature surface of $\mu$ with $d\mu=fdx.$
Similarly, a quadrature domain has a variational characterization and can be

obtained by solving an obstacle problem (see Sakai [18] and Gustafsson [10] for the
detail). Moreover, the uniqueness of a quadrature domain follows from an argument
based on the maximum principle. Indeed, it was shown by Sakai [17] that, if a
quadrature domain $\Omega$ satisfies

$F*(\mu-\chi_{\Omega})>0$

everywhere in $\Omega$ , then there is no quadrature domain other than $\Omega$ . The above
condition can be verified, in particular, when $\mu$ concentrates, relative to $\Omega.$

However, as pointed out by Henrot [12], the uniqueness of a quadrature surface
cannot be expected in general. He showed an example that the number of connected
quadrature surfaces of $\mu(t)$ $:=t\delta_{(1,0)}+t\delta_{(-1,0)}$ in $\mathbb{R}^{2}$ changes according to the value of
$t>0$ . The collapse of the uniqueness seems to indicate a bifurcation phenomenon of
solutions to (1.3) with a parametrized measure $\mu=\mu(t)$ . Hence, toward understand-
ing of the uniqueness issue, we need to consider the corresponding family of surfaces
$\Gamma=\Gamma(t)$ . In this respect, it is natural to ask if there is a “flow” for surfaces $\{\Gamma(t)\}_{t>0}$

such that each $\Gamma(t)$ is a quadrature surface of a given parametrized measure $\mu(t)$ .
As a matter of fact, when $\mu(t)=t\delta_{0}+\chi_{\Omega(0)}$ and $\Omega(t)$ is the corresponding quadra-
ture domain, it is known that the Hele-Shaw flow, a model of interface dynamics
in fluid mechanics, plays the desired role. This surprising connection between the
two different physical problems was discovered by Richardson [16]. From this fact,
the investigation of the evolution of quadrature domains is reduced to that of the
Hele-Shaw flow, and the latter has been successfully proceeded by complex analysis
and several methods in partial differential equations.

We are thus motivated to derive a flow having the corresponding property for
quadrature surfaces, and eventually arrive at the following geometric flow:

$v_{n}=p$ for $x\in\partial\Omega(t)$ ,

(15)
where $\{\begin{array}{ll}-\triangle p=\mu for x\in\Omega(t) ,(N-1)Hp+\frac{\partial p}{\partial n}=0 for x\in\partial\Omega(t) ,\end{array}$

where $v_{n}$ is the growing speed of $\partial\Omega(t)$ in the outer normal direction and $H$ is the
mean curvature of $\partial\Omega(t)$ . Here and in what follows, $\mu$ denotes a finite positive
Radon measure with compact support in $\Omega(0)$ . Note that, for each fixed time $t>0,$
the maximum principle applied to the elliptic boundary problem in (1.5) yields that
$p>0$ everywhere on $\partial\Omega(t)$ if $H$ is positive (see the proof of (2.2) in the next section).
In other words, $\Omega(t)$ expands monotonically as long as the mean curvature of $\partial\Omega(t)$

is positive.
The following theorem shows that, as desired, for a given $\partial\Omega(0)$ as initial surface,

the solution to (1.5) turns out to be a one-parameter family of quadrature surfaces.
Moreover, we will see that (1.5) is the only possible flow having this property. Here,
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we call $\{\partial\Omega(t)\}_{0\leq t<T}$ a $C^{3+\alpha}$ family of surfaces if each $\partial\Omega(t)$ is of $C^{3+\alpha}$ and its
time derivative is of $C^{2+\alpha}$ , namely, $\partial\Omega(t)$ can be locally represented as a graph of a
function in the H\"older space $C^{3+\alpha}$ and its time derivative is in $C^{2+\alpha}$ (see Section 3).

Theorem 1.2. Let $\{\partial\Omega(t)\}_{0\leq t<T}$ be a $C^{3+\alpha}$ family of surfaces, and assume that
each $\partial\Omega(t)$ has positive mean curvature. Then, each $\partial\Omega(t)$ is a quadmture surface
of $\mu(t):=t\mu+\mathcal{H}^{N-1}\lfloor\partial\Omega(0)$, i.e.,

(1.6) $\int_{\partial\Omega(0)}hd\mathcal{H}^{N-1}+t\int hd\mu=\int_{\partial\Omega(t)}hd\mathcal{H}^{N-1}$

holds for all harmonic functions $h$ defined in a neighborhood of $\overline{\Omega(t)}$ , if and only if
$\{\partial\Omega(t)\}_{0\leq t<T}$ is a solution to (1.5).

Remark 1.3. The exponent $3+\alpha$ naturally arises in the context of the Schauder
theory for the oblique derivative problem (see Gilbarg & rlhrudinger [9]). Indeed,
the regularity $H\in C^{1+\alpha}$ of the coefficient function $H$ in the boundary condition
is required for the existence of a solution $p\in C^{2+\alpha}(\Omega(t))$ to the elliptic equation
in (1.5). This implies that $\partial\Omega(t)$ is of $C^{3+\alpha}$ . It is worth noting that, by taking
appropriate coordinates, $v_{n}$ can be regarded as the time derivative of a local function
representation of $\partial\Omega(t)$ . Hence, it is natural to impose the same regularity as $v_{n}=$

$p\in C^{2+\alpha}$ on the time derivative of $\partial\Omega(t)$ .

At this point, we are led to a fundamental question: Does the equation (1.5) re-
ally possess a unique smooth solution? The following theorem affirmatively answers
this question. Here, $\{\partial\Omega(t)\}_{0\leq t<T}$ is called a $h^{3+\alpha}$ solution if it is a $h^{3+\alpha}$ family
of surfaces and satisfies (1.5), where $h^{3+\alpha}$ is the so-called little H\"older space and
is defined as the closure of the Schwartz space $\mathcal{S}$ of rapidly decreasing functions in
the topology of the H\"older space $C^{3+\alpha}$ . Since our argument relies on the theory
of maximal regularity of Da Prato and Grisvard [5], it is necessary to use $h^{3+\alpha},$

characterized as a continuous interpolation space, instead of $C^{3+\alpha}.$

Theorem 1.4. There exists a unique $h^{3+\alpha}$ solution $\{\partial\Omega(t)\}_{0\leq t<T}$ to (1.5) for any
$h^{3+\alpha}$ initial surface $\partial\Omega(0)$ with positive mean curvature.

Let us plot the points $(\Gamma, t)\in h^{3+\alpha}\cross \mathbb{R}$ if $\Gamma$ is a quadrature surface of $\mu(t)$ .
Theorem 1.4 shows that such points form a curve

$t\mapsto(\partial\Omega(t), t) (t\in[0, T))$

in $h^{3+\alpha}\cross \mathbb{R}$ starting from $(\partial\Omega(0), 0)$ , if $\partial\Omega(0)$ has positive mean curvature. Moreover,

as the parameter $t$ increases, the curve does not split into two curves from any point
$(\partial\Omega(t), t)$ unless $\partial\Omega(t)$ loses the positiveness of the mean curvature.

Corollary 1.5. There is no curue
$s\mapsto(\Gamma(s), t(s)) (s\in[0,\epsilon))$

of an $h^{3+\alpha}$ family of quadrature surfaces such that $(\Gamma(0), t(O))=(\partial\Omega(O), 0),$ $\Gamma(s)\neq$

$\partial\Omega(t(s))$ for $0<s<\epsilon$ , and $t’(O)\geq 0.$
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This paper is organized as follows. In Section 2 we prove Theorem 1.2, namely,
we characterize (1.5) as a flow which produces a family of quadrature surfaces.
Section 3 is devoted to proving Theorem 1.4. For this purpose, we reformulate the
problem into an evolution equation in an infinite-dimensional Banach space, and
proceed to the spectral analysis of the linearized operator. Finally, in section 4, we
prove Corollary 1.5.

2 Generation of quadrature surfaces
In this section we show that the geometric flow (1.5) generates a family of quadrature
surfaces.

We begin with a simple observation that the geometric fl$ow$ remains unchanged
by replacing the measure $\mu$ by the mollified measure $\tilde{\mu}$

$:=\eta_{\epsilon}*\mu$ , where $\eta_{\epsilon}$ is the
standard symmetric mollifier supported on $\overline{B(0,\epsilon)}$ . Note that $\tilde{\mu}$ is then a smooth
function supported in $\Omega(0)$ by taking $\epsilon>0$ small.

Lemma 2.1. Let $\{\partial\Omega(t)\}_{0\leq t<T}$ be a $C^{3+\alpha}$ solutson to (1.5), and let $\{\partial\overline{\Omega(t)}\}_{0\underline{\leq t<T}}$ be
a $C^{3+\alpha}$ solution to (1.5) with $\mu$ replaced $b\underline{y\tilde{\mu}}$with the same initial surface $\partial\Omega(0)=$

$\partial\Omega(0)$ . Assume moreover that $\partial\Omega(t)$ and $\partial\Omega(t)$ have positive mean curvature. Then,
$\partial\Omega(t)=\partial\Omega(t)$ for all $0<t<T.$

Proof. It suffices to show that the boundary value of the solution $p$ to the elliptic
boundary problem

$\{\begin{array}{ll}-\triangle p=\mu for x\in\Omega,b_{1}(x)p+b_{2}(x)\frac{\partial p}{\partial n}=0 for x\in\partial\Omega\end{array}$

coincides with that of the solution $\tilde{p}$ to

$\{\begin{array}{ll}-\triangle\tilde{p}=\tilde{\mu} for x\in\Omega,b_{1}(x)\tilde{p}+b_{2}(x)\frac{\partial\tilde{p}}{\partial n}=0 for x\in\partial\Omega,\end{array}$

where $b_{1}(x),$ $b_{2}(x)$ are positive functions on $\partial\Omega$ and $supp\mu\subset supp\tilde{\mu}\subset\Omega.$

To this end, we prove that $q$ $:=p-\tilde{p}$ vanishes outside $supp\tilde{\mu}$ . Let us decompose
$q=F*(\mu-\tilde{\mu})+h$ , where $F$ is the fundamental solution $of-\triangle$ (see (1.1)) and $h$

is a harmonic function satisfying
(2.1)

$\{\begin{array}{ll}-\triangle h=0 for x\in\Omega,b_{1}(x)h+b_{2}(x)\frac{\partial h}{\partial n}=-b_{1}(x)F*(\mu-\tilde{\mu})-b_{2}(x)\frac{\partial F*(\mu-\tilde{\mu})}{\partial n} for x\in\partial\Omega.\end{array}$

Then, it follows from the mean value property of harmonic functions that $F*(\mu-\tilde{\mu})$

vanishes outside $supp\tilde{\mu}$ . Hence, the unique solvability of the oblique derivative
problem (2.1) yields that $h\equiv 0$ , which completes the proof. $\square$

5



We now proceed to the proof of Theorem 1.2.

Pmof of Theorem 1.2. Let us first confirm that the positiveness of the mean curva-
ture implies that

(2.2) $v_{n}=p>0$

everywhere on $\partial\Omega(t)$ for all $0\leq t<T$ . To see this, suppose that $p(\zeta_{\min})=$

$\min_{\zeta\in\partial\Omega(t)}p(\zeta)\leq 0$ for some $0\leq t<T$ and $\zeta_{\min}\in\partial\Omega(t)$ , and derive a contra-
diction. By the maximum principle applied to the elliptic equation in (1.5), we see
that $p(\zeta_{\min})<p(x)$ for all $x\in\Omega(t)$ . Hence, from the Hopf boundary point lemma
it follows that

$(N-1)Hp( \zeta_{\min})+\frac{\partial p}{\partial n}(\zeta_{\min})<0,$

which violates the boundary condition. Note that (2.2) implies $\Omega(s)\subset\Omega(t)$ for
$0\leq s\leq t.$

Now recall that, by Lemma 2.1, we may replace the measure $\mu$ by $\tilde{\mu}$ in the
equation (1.5). For each harmonic function $h$ defined in a neighborhood of $\Omega(t)$ , it
follows from the well-known variational formulae for moving surfaces and domains
that

$\frac{d}{dt}[\int_{\partial\Omega(t)}hd\mathcal{H}^{N-1}]=\int_{\partial\Omega(t)}\frac{\partial h}{\partial n}v_{n}d\mathcal{H}^{N-1}+(N-1)\int_{\partial\Omega(t)}hHv_{n}d\mathcal{H}^{N-1}$

$= \int_{\partial\Omega(t)}\{\frac{\partial h}{\partial n}p+(N-1)hHp\}d\mathcal{H}^{N-1}$

$= \int_{\Omega(t)}(\triangle hp-h\triangle p)dx+\int_{\partial\Omega(t)}\{h\frac{\partial p}{\partial n}+(N-1)hHp\}d\mathcal{H}^{N-1}$

$= \int_{\Omega(t)}h\tilde{\mu}dx$

$= \int hd\mu,$

where the last equality follows from the mean value property of harmonic functions.
The integration with respect to $t$ yields the identity (1.6).

Let us prove the converse statement. Differentiating the identity (1.6) with
respect to $t$ , we obtain that

$\int hd\mu=\int_{\partial\Omega(t)}\{\frac{\partial h}{\partial n}+(N-1)hH\}v_{n}d\mathcal{H}^{N-1}$

On the other hand, denoting $p$ by a unique solution to the elliptic equation in (1.5),
we have

$\int hd\mu=\int_{\partial\Omega(t)}\{\frac{\partial h}{\partial n}+(N-1)hH\}pd\mathcal{H}^{N-1}$
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Hence,

(2.3) $\int_{\partial\Omega(t)}\{\frac{\partial h}{\partial n}+(N-1)hH\}(v_{n}-p)d\mathcal{H}^{N-1}=0$

must hold for any harmonic function $h$ defined in a neighborhood of $\overline{\Omega(t)}$ . Let us
denote by $h_{0}\in C^{2+\alpha}(\overline{\Omega(t)})$ a unique solution to

$\{\begin{array}{ll}-\triangle h_{0}=0 for x\in\Omega(t) ,(N-1)Hh_{0}+\frac{\partial h_{0}}{\partial n}=v_{n}-p for x\in\partial\Omega(t) .\end{array}$

If $h_{0}$ can be harmonically extended to a neighborhood of $\overline{\Omega(t)}$ , then substituting
$h=h_{0}$ into (2.3) deduces that $v_{n}=p$ . But it is not the case in general, so let us
take a sequence of solutions $h_{k}$ to

$\{\begin{array}{ll}-\triangle h_{k}=0 for x\in\Omega_{k},(N-1)H_{k}h_{k}+\frac{\partial h_{k}}{\partial n}=q for x\in\partial\Omega_{k},\end{array}$

where $\Omega_{k}\supset\overline{\Omega(t)}$ is a sequence of bounded domains such that $\partial\Omega_{k}$ approaches $\partial\Omega(t)$

in the $C^{3+\alpha}$ sense, $H_{k}$ is the mean curvature of $\partial\Omega_{k}$ , and $q$ is a $C^{1+\alpha}$-extension of
the function $v_{n}-p$ on $\partial\Omega(t)$ to $\mathbb{R}^{N}$ , i.e., $q\lfloor_{\partial\Omega(t)}=v_{n}-p$. Then, the elliptic estimate

(2.4) $\Vert h_{k}\Vert_{C^{2+\alpha}(\overline{\Omega_{k}})}\leq C(\Vert h_{k}\Vert_{C^{0}(\overline{\Omega_{k}})}+\Vert q\Vert_{C^{1+\alpha}(\mathbb{R}^{N})})\leq C\Vert q\Vert_{C^{1+\alpha}(R^{N})}$

holds uniformly in $k=1,2,$ $\ldots$ , where the second inequality follows from the fact
that

(2.5) $\Vert h_{k}\Vert_{C^{0}(\overline{\Omega_{k}})}\leq_{\partial}\max_{\Omega_{k}}|h_{k}|\leq\frac{\max_{\partial\Omega_{k}}|q|}{(N-1)\min_{\partial\Omega_{k}}H_{k}}.$

The proof of (2.5) is similar to that of (2.2). Now it can be shown by (2.4) together
with the mean value theorem that

$\sup_{\partial\Omega(t)}|\{(N-1)Hh_{k}+\frac{\partial h_{k}}{\partial n}\}-(v_{n}-p)|arrow 0.$

Therefore, by taking $h=h_{k}$ with large $k$ , we see that the identity (2.3) cannot hold
unless $v_{n}=p$ on $\partial\Omega(t)$ . $\square$

Remark 2.2. The identity (1.6) is still valid for subharmonic functions $h$ by re-
placing equality with inequality $\leq$ . Indeed, this follows from the positivity of $p$ in
$\Omega(t)$ .
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3 Existence of a solution to the geometric flow

In this section we describe the outline of the proof of Theorem 1.4. The complete
proof can be found in Onodera [15], where a generalized flow which includes our
flow (1.5) and the Hele-Shaw flow as special cases is studied. $A$ direct method of the
mathematical treatment of a geometric equation, which we will follow, is to refor-
mulate the problem to a fixed boundary problem by using a time-dependent diffeo-
morphism such that the moving boundary transforms to a fixed reference boundary.
Such a transformation makes clear the nonlinear nature of the original problem.
Indeed, after the transformation, we encounter the situation where the evolution
equation with fixed boundary turns out to be fully-nonlinear. The theory of max-
imal regularity of Da Prato and Grisvard [5] enables us to handle fully-nonlinear
abstract parabolic equations by taking a continuous interpolation space as phase
space. Thus, our effort will be made mainly to prove the (parabolicity” of the equa-
tion, namely, that the linearized operator is an infinitesimal generator of a strongly
continuous analytic semigroup.

3.1 Reduction to an evolution equation

As a first step, let us reformulate the problem to an evolution equation in an abstract
setting.

We fix a bounded reference domain $\Omega$ with smooth boundary $\Gamma$ , and take a
subdomain $\Omega_{sub}$ such that $supp\mu\subset\Omega_{sub}\subset\overline{\Omega_{sub}}\subset\Omega$. Let us recall that the
little H\"older space $h^{k+\alpha}(\overline{\Omega})$ is defined as the closure of the Schwartz space $S(\mathbb{R}^{N})$

(restricted to $\Omega$ ) in the topology of $C^{k+\alpha}(\overline{\Omega})$ . The little H\"older space $h^{k+\alpha}(\Gamma)$ on the
surface $\Gamma$ can also be defined in the same manner in terms of its local coordinates.
Let us define

$\mathcal{U}=\mathcal{U}_{a}:=\{\rho\in h^{3+\alpha}(\Gamma)|\Vert\rho\Vert_{C^{1}}<a\}$

with $a>0$ being sufficiently small such that $\theta(\zeta, r)$ $:=\zeta+rn_{0}(\xi)$ defines a diffeo-
morphism between $\Gamma\cross(-a, a)$ and its image though $\theta$ , where $n_{0}(\zeta)$ is the unit outer
normal vector at $\zeta\in\Gamma$ . In particular, for any $\rho\in \mathcal{U},$

(3.1) $\Gamma_{\rho}:=\{\zeta+\rho(\zeta)n_{0}(\zeta)\in \mathbb{R}^{N}|\zeta\in\Gamma\}$

defines a $h^{3+\alpha}$ surface diffeomorphic to $\Gamma$ though the diffeomorphism $\theta_{\rho}(\zeta)$ $:=$

$\theta(\zeta, \rho(\zeta))=\zeta+\rho(\zeta)n_{0}(\zeta)$ from $\Gamma$ to $\Gamma_{\rho}.$

For the precise descriptions of the outer unit normal vector field $n_{\rho}$ on $\Gamma_{\rho}$ and
a diffeomorphism from $\Omega$ to $\Omega_{\rho}$ , where $\Omega_{\rho}$ is the domain enclosed by $\Gamma_{\rho}$ , we will
use a level set representation of the surface $\Gamma_{\rho}$ . Let us denote by $\zeta_{0}$ and $r_{0}$ the
components of the inverse map $\theta^{-1}$ such that $\theta^{-1}(x)=(\zeta_{0}(x),.r_{0}(x))$ . Note that
$\zeta_{0}(x)$ is the nearest point on $\Gamma$ to the point $x$ , and $r_{0}(x)$ is the signed distance from
$\Gamma$ to $x$ . It is then easy to see that

$L_{\rho}(x):=r_{0}(x)-\rho(\zeta_{0}(x)) (x\in\theta(\Gamma\cross(-a, a)))$
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defines $\Gamma_{\rho}$ as its $0$-level set. This representation is now used to define the normal
vector field $n_{\rho}\in h^{3+\alpha}(\Gamma, \mathbb{R}^{N})$ and a diffeomorphism from $\Omega$ to $\Omega_{\rho}$ , which we denote
again by $\theta_{\rho}$ , as follows:

$n_{\rho}( \zeta):=\frac{\nabla L_{\rho}(\theta_{\rho}(\zeta))}{|\nabla L_{\rho}(\theta_{\rho}(\zeta))|},$

$\theta_{\rho}(x):=\{\begin{array}{ll}\theta(\zeta_{0}(x), r_{0}(x)+\varphi(r_{0}(x))\rho(\zeta_{0}(x))) (x\in\theta(\Gamma\cross(-a, a))) ,x (x\not\in\theta(\Gamma\cross(-a, a))) ,\end{array}$

where $\varphi$ is a smooth cut-off function satisfying

$\varphi(r)$ $:=\{01$ $((|\begin{array}{l}rr\end{array}|\geq 3a/4)\leq a/4)$

,
and $| \frac{d\varphi}{dr}(r)|<\frac{4}{a}.$

We also note that the speed $v_{n}$ of the moving boundary at $\theta_{\rho}(\zeta)\in\Gamma_{\rho}$ can be
represented by $(\partial\rho/\partial t)(\zeta)/|\nabla L_{\rho}(\theta_{\rho}(\zeta))|.$

The pull-back and push-forward operators induced by $\theta_{\rho}$ are defined by

$\theta_{\rho}^{*}u:=u\circ\theta_{\rho}, \theta_{*}^{\rho}v:=vo\theta_{\rho}^{-1}$

for $u\in h^{k+\alpha}(\overline{\Omega_{\rho}}),$ $v\in h^{k+\alpha}(\overline{\Omega})$ , respectively. Then it can be shown that $\theta_{\rho}^{*},$
$\theta_{*}^{\rho}$ are

isomorphisms between $h^{k+\alpha}(\overline{\Omega_{\rho}})$ and $h^{k+\alpha}(\overline{\Omega})$ , and $(\theta_{\rho}^{*})^{-1}=\theta_{*}^{\rho}$ . In the same fashion,
$\theta_{\rho}^{*},$

$\theta_{*}^{\rho}$ also denote isomorphisms between $h^{k+\alpha}(\Gamma_{\rho})$ and $h^{k+\alpha}(\Gamma)$ .
Given $\rho\in \mathcal{U}$ , we now define transformed operators $A(\rho),$ $B(\rho)$ and $R(\rho)$ by

$A(\rho):=\theta_{\rho}^{*}(-\triangle)\theta_{*}^{\rho},$

$B(\rho)v:=TY\theta_{\rho}^{*}\langle\nabla\theta_{*}^{\rho}v, n_{\rho}\rangle,$

$R(\rho)v:=(N-1)M_{H(\rho)}$Tr $v+B(\rho)v,$

where Tr and $M_{\psi}$ are the trace operator and the pointwise multiplication operator
defined by

Tr $v(\zeta):=v(\zeta)$ , $(M_{\varphi}\psi)(\zeta):=\varphi(\zeta)\psi(\zeta)$ $(\zeta\in\Gamma)$

for $v\in h^{k+\alpha}(\overline{\Omega})$ and $\varphi,$
$\psi\in h^{k+\alpha}(\Gamma)$ , respectively, and $H(\rho)\in h^{1+\alpha}(\Gamma)$ assigns the

mean curvature of $\Gamma_{\rho}$ at $\theta_{\rho}(\zeta)$ to the point $\zeta\in\Gamma$ . Note also that here we have
used the notation $\langle\cdot,$ $\cdot\rangle$ to denote the pointwise inner product. It can be shown (see
Escher& Simonett [7, 8] $)$ that

$A\in C^{\omega}(\mathcal{U}, \mathcal{L}(h^{2+\alpha}(\overline{\Omega}), h^{\alpha}(\overline{\Omega})))$ ,
$B\in C^{\omega}(\mathcal{U}, \mathcal{L}(h^{2+\alpha}(\overline{\Omega}), h^{1+\alpha}(\Gamma)))$ ,
$R\in C^{\omega}(\mathcal{U}, \mathcal{L}(h^{2+\alpha}(\overline{\Omega}\backslash \Omega_{sub}), h^{1+\alpha}(\Gamma)))$ .

In view of (3.1), the moving surface $\partial\Omega(t)$ can be represented by $\rho(t)=\rho(\cdot, t)$

which is a real-valued function defined on the fixed reference surface $\Gamma$ . Hence, the
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problem can be reduced to the following system of differential equations, in which
unknowns are the functions $\rho$ and $u$ :

(3.2) $\partial_{t}\rho=M_{|\theta_{\dot{\rho}}(\nabla L_{\rho})|}Tr(\theta_{\rho}^{*}E+u)$

(3.3) where $\{\begin{array}{l}A(\rho)u=0,R(\rho)u=-R(\rho)\theta_{\rho}^{*}E.\end{array}$

Here, $E$ is defined by
$E(x)=E_{\mu}(x) :=(F*\mu)(x)$ ,

and hence - $\triangle E=\mu.$

Furthermore, since $u$ is determined only by $\rho$ by virtue of the unique solvability
of the elliptic equation (3.3) $(see Gilb\arg and ]\}$udinger [$9,$ Theorem $6.31])$ , the
problem becomes a non-local evolution equation. To make it precise, let us define

$S:\mathcal{U}arrow \mathcal{L}(h^{\alpha}(\overline{\Omega}), h^{2+\alpha}(\overline{\Omega})) , S(\rho)v:=(A(\rho), R(\rho))^{-1}(v, 0)$,
$T:\mathcal{U}arrow \mathcal{L}(h^{1+\alpha}(\Gamma), h^{2+\alpha}(\overline{\Omega})), T(\rho)\varphi:=(A(\rho), R(\rho))^{-1}(0, \varphi)$.

Then, we see that $u=-T(\rho)R(\rho)\theta_{\rho}^{*}E$ . Therefore, our problem is to solve the
following evolution equation:

(3.4) $\partial_{t}\rho+\Phi(\rho)=0,$

where

$\Phi:\mathcal{U}arrow h^{1+\alpha}(\Gamma) , \Phi(\rho):=M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}Tr(T(\rho)R(\rho)-I)\theta_{\rho}^{*}E.$

Here, $I$ is the identity map.

3.2 Linearized operator and its principal part

The theory of abstract evolution equations enables us to reduce the existence of a
solution of (3.4) to the spectral properties of the linearized operator $\partial\Phi(\rho)$ of $\Phi$ at
$\rho\in \mathcal{U}$ . Indeed, once $\partial\Phi(\rho)$ is shown to be a sectorial operator, i.e., an infinitesimal
generator of an analytic semigroup, then it follows from the theory of maximal
regularity of Da Prato and Grisvard [5] that the equation (3.4) is uniquely solvable
for initial data in a certain function space characterized as a continuous interpolation
space.

By the implicit function theorem, we have the representation of the linearized
operator $\partial T(\rho)$ of $T$ at $\rho\in \mathcal{U}$ as follows.

Lemma 3.1. For $\rho\in \mathcal{U}$ and $\varphi\in h^{1+\alpha}(\Gamma)$ , let $\prime\llcorner\iota s$ set $v=v(\rho);=T(\rho)\varphi$ , i.e., $v$

satisfies
$\{\begin{array}{l}A(\rho)v=0 in\Omega,R(\rho)v=\varphi on \partial\Omega.\end{array}$
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Then, the linearized opemtor $\partial v(\rho)\in \mathcal{L}(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\overline{\Omega}))$ of $v$ at $\rho$ is given by
$\partial v(\rho)[\tilde{\rho}]=\partial(T(\rho)\varphi)[\tilde{\rho}]=-S(\rho)\partial A^{\cdot}(\rho)[\tilde{\rho}]T(\rho)\varphi-T(\rho)\partial R(\rho)[\tilde{\rho}]T(\rho)\varphi.$

Moreover, $T\in C^{\omega}(\mathcal{U}, \mathcal{L}(h^{1+\alpha}(\Gamma), h^{2+\alpha}(\overline{\Omega})))$ .

From the above lemma, we see that

$\partial\Phi(\rho)[\tilde{\rho}]=M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}TrT(\rho)\partial R(\rho)[\tilde{\rho}](I-T(\rho)R(\rho))\theta_{\rho}^{*}E+F_{1}(\rho)[\tilde{\rho}]+F_{2}(\rho)[\tilde{\rho}]+F_{3}(\rho)[\tilde{\rho}],$

where the linear operators

$F_{1}(\rho)[\tilde{\rho}] :=-M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}TrS(\rho)\partial A(\rho)[\tilde{\rho}]T(\rho)R(\rho)\theta_{\rho}^{*}E,$

$F_{2}(\rho)[\tilde{\rho}]:=\partial M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}[\tilde{\rho}]$ Tr $(T(\rho)R(\rho)-I)\theta_{\rho}^{*}E,$

$F_{3}(\rho)[\tilde{\rho}]:=M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}$ Tr $(T(\rho)R(\rho)-I)\partial(\theta_{\rho}^{*}E)[\tilde{\rho}]$

can be thought of as perturbations in the sense that
$\Vert F_{j}(\rho)[\tilde{\rho}]\Vert_{h^{2}+\alpha(\Gamma)}\leq C\Vert\tilde{\rho}\Vert_{h^{2}+\alpha(\Gamma)} (j=1,2,3)$ ,

where the constant $C$ depends on $\rho\in \mathcal{U}$ , but not on $\tilde{\rho}\in h^{3+\alpha}(\Gamma)$ .
Moreover, the operator $\partial R(\rho)$ can also be decomposed further into the principal

part and its perturbation. For this purpose, let us recall that the mean curvature
operator $H=H(\rho)$ has a useful representation as in the following lemma. Here we
take $\gamma$ such that $\alpha<\gamma<1$ and set

$\mathcal{V}=\mathcal{V}_{a}:=\{\rho\in h^{2+\gamma}(\Gamma)|\Vert\rho\Vert_{C^{1}}<a\}.$

Lemma 3.2 (Escher & Simonett [7, Lemma 3.1]). For each $\rho\in \mathcal{U}$ , the mean
curvature opemtor $H(\rho)$ can be decomposed as

$H(\rho)=P(\rho)\rho+K(\rho)$ ,

where $P\in C^{\omega}(\mathcal{V}, \mathcal{L}(h^{3+\alpha}(\Gamma), h^{1+\alpha}(\Gamma)))$ and $K\in C^{\omega}(\mathcal{V}, h^{1+\gamma}(\Gamma))$ .

Hence, for $v\in h^{2+\alpha}(\overline{\Omega}\backslash \Omega_{sub})$ , we have

$\partial(R(\rho)v)[\tilde{\rho}]=(N-1)M_{v}P(\rho)[\tilde{\rho}]+F_{4}(\rho, v)[\tilde{\rho}],$

where
$\Vert F_{4}(\rho, v)[\tilde{\rho}]\Vert_{h^{1}+\alpha(\Gamma)}\leq C\Vert v\Vert_{h^{2}+\alpha(\Gamma)}\Vert\tilde{p}\Vert_{h^{2}+\gamma(\Gamma)}$

with $C$ being a constant independent of $\tilde{\rho}$ . Therefore, the linearized operator $\partial\Phi(\rho)$

can now be represented in the following form:

$\partial\Phi(\rho)[\tilde{\rho}]=(N-1)M_{1}(\rho)$ Tr $T(\rho)M_{2}(\rho)P(\rho)[\tilde{\rho}]+F(\rho)[\tilde{\rho}],$

where

$M_{1}(\rho):=M_{|\theta_{\rho}^{*}(\nabla L_{\rho})|}\in \mathcal{L}(h^{2+\alpha}(\Gamma))$ ,
$M_{2}(\rho):=M_{(I-T(\rho)R(\rho))\theta_{\rho}^{*}E}\in \mathcal{L}(h^{1+\alpha}(\Gamma))$ ,
$F(\rho)\in \mathcal{L}(h^{2+\gamma}(\Gamma), h^{2+\alpha}(\Gamma))$ .
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3.3 The generation property of the linearized operator

Our task is now to prove that the linear operator

$W=W(\rho) :=-M_{1}(\rho)RT(\rho)M_{2}(\rho)P(\rho)\in \mathcal{L}(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma))$

is sectorial in $h^{2+\alpha}(\Gamma)$ , i.e., it generates an analytic semigroup on $h^{2+\alpha}(\Gamma)$ . Indeed,
a standard perturbation result of sectorial operators implies that, if $W$ is sectorial,
then $-\partial\Phi(\rho)$ is also sectorial. The following theorem is the main assertion in this
section.

Theorem 3.3. $W\in \mathcal{L}(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma))$ is sectonal in $h^{3+\alpha}(\Gamma)$ .

Corollary 3.4. $-\partial\Phi(\rho)\in \mathcal{L}(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma))$ is sectonal in $h^{3+\alpha}(\Gamma)$ .

To prove Theorem 3.3, it is well-known (see Amann [2]) that $W$ is sectorial if
there exist positive constants $\lambda_{*}$ and $C$ such that

(i) $\lambda_{*}I-W\in \mathcal{L}(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma))$ is bijective, i.e., $\lambda_{*}$ is in the resolvent set.

(ii) $|\lambda|\Vert\tilde{\rho}\Vert_{h^{2+\alpha}(\Gamma)}+\Vert\tilde{\rho}\Vert_{h^{3+\alpha}(\Gamma)}\leq C\Vert(\lambda I-W)\tilde{\rho}\Vert_{h^{2+\alpha}(\Gamma)}$ holds for $\tilde{\rho}\in h^{3+\alpha}(\Gamma)$ and
$\lambda\in\{z\in \mathbb{C}|{\rm Re} z\geq\lambda_{*}\}.$

Let us first confirm the condition (i) by assuming (ii). Since (ii) implies that
$\lambda_{*}I-W$ is injective, we only need to prove that it is also surjective. Note that $\mathcal{U}$

is star-shaped with respect to $0$ in $h^{3+\alpha}(\Gamma)$ and $\mathcal{K};=\{t\rho\in \mathcal{U}|0\leq t\leq 1\}$ is a
compact subset in $\mathcal{U}$ . Hence, from the continuity of the map $\rho\mapsto W=W(\rho)$ it
follows that the constant $C$ in the resolvent estimate (ii) can be chosen uniformly in
$\rho\in \mathcal{K}$ . Therefore, by the continuity method (see Gilbarg & budinger [9, Theorem
5.2] $)$ together with the uniform resolvent estimate (ii), it is sufficient to show that
$\lambda_{*}I-W$ is surjective in the case $\rho=0.$

Then, it is known that

(3.5) $P(0)=- \frac{1}{N-1}\triangle_{\pi}^{\Gamma},$

where $\triangle_{\pi}^{r}$ is the principal part of the Laplace-Beltrami operator with respect to $\Gamma.$

Moreover, we have

(3.6) $v:=(I-T(O)R(O))E>0$

everywhere on $\Gamma$ . This can be verified in the same way as (2.2), since $v$ satisfies

$\{\begin{array}{l}-\triangle v=\mu,R(0)v=0.\end{array}$

Now (3.5) and (3.6) imply that

$I+M_{2}(0)P(0)=I+M_{(I-T(0)R(0))E}P(0)\in \mathcal{L}(h^{3+\alpha}(F), h^{1+\alpha}(r))$
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is a bijective operator having bounded inverse.
Note also that

$M_{1}(0)^{r}bT(O)=M_{|\nabla L_{0}|}TrT(O)\in \mathcal{L}(h^{1+\alpha}(\Gamma),h^{2+\alpha}(\Gamma))$

is bijective. This follows from $|\nabla L_{0}|>0$ and the unique solvability of the oblique
derivative problem in the H\"older spaces (see Gilbarg& budinger [9, Theorem 6.31]).

In the expression

$\lambda_{*}I-W=M_{1}(0)TrT(O)\{I+M_{2}(0)P(0)\}+\lambda_{*}I-M_{1}(0)TrT(O)$ ,

the second and third operators in the right hand side are compact perturbations,
since the embedding $h^{3+\alpha}(\Gamma)arrow h^{2+\alpha}(\Gamma)$ is compact. Furthermore, as we have
already seen, the first one is a bijective operator from $h^{3+\alpha}(\Gamma)$ to $h^{2+\alpha}(\Gamma)$ . Therefore,
$\lambda_{*}I-W$ is a Fredholm operator of index $0.$ $Now$ the assertion follows from the fact
that $\lambda_{*}I-W$ is injective.

We will establish the remaining resolvent estimate (ii) in the following sections.

3.4 Fourier multiplier operators associated with localized
operators

Let us take an atlas $\{U_{l}, \psi_{l}\}_{1\leq l\leq m}$ of $R_{d}$ $:=\theta(\Gamma\cross(-d, 0])$ for small $0<d<a/4$ such
that diam $U_{l}<d$ and that $\psi_{l}$ maps $Q:=(-d, d)^{N-1}\cross[0, d),$ $Q_{0}:=(-d, d)^{N-1}\cross\{0\}$

ont$oU_{l},$ $U_{l}\cap\Gamma$ , respectively. Note that the number of local coordinates $m$ depends
on $d.$

Localizing the operator $W$ to each $U_{l}$ , and choosing an appropriate constant
coefficient operator on $\mathbb{R}^{N-1}$ which approximates $W$ in that localized region $U_{l}$ , we
will show that this constant coefficient operator has a representation as a Fourier
multiplier operator, and moreover that it generates an analytic semigroup in an
appropriate Banach space, namely, the little H\"older space $h^{2+\alpha}(\mathbb{R}^{N-1})$ . The latter
will be established by applying a general result due to H. Amann, which states that,
for given $\sigma\in \mathcal{E}llS_{1}^{\infty}(\gamma_{*}),$ $\gamma_{*}>0$ and $\eta_{0}>0$ , it follows that

$\Sigma_{\eta 0}:=-\mathcal{F}^{-1}\mathcal{M}_{\sigma(\cdot,\eta 0)}\mathcal{F}\in \mathcal{L}(h^{3+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}))$

is sectorial, i.e., it generates a strongly continuous analytic semigroup on $h^{2+\alpha}(\mathbb{R}^{N-1})$ .
Here, $\sigma\in \mathcal{E}ll\mathcal{S}_{1}^{\infty}(\gamma_{*})$ if $\sigma=\sigma(\xi, \eta)\in C^{\infty}(\mathbb{R}^{N-1}\cross(0, \infty))$ is positively homogeneous
of degree one and its all derivatives are bounded on the set $\{|\xi|^{2}+\eta^{2}=1\}$ and if

(3.7) ${\rm Re}\sigma(\xi_{)}\eta)\geq\gamma_{*}\sqrt{|\xi|^{2}+\eta^{2}} ((\xi, \eta)\in \mathbb{R}^{N-1}\cross(0, \infty))$

holds. The linear operator $\mathcal{M}_{\phi}$ with a given function $\phi$ on $\mathbb{R}^{N-1}$ is the localized
version of the pointwise multiplication operator induced by $\phi.$

Let us fix $\rho\in \mathcal{U}$ and $(U, \psi)=(U_{l}, \psi_{l})$ for some $l=1,$ $\ldots,$
$m$ , and define the

pull-back and push-forward operators induced by $\psi$ by

$\psi^{*}u:=u\circ\psi, \psi_{*}v:=v\circ\psi^{-1}$
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for $u\in h^{k+\alpha}(\overline{U}),$ $v\in h^{k+\alpha}(\overline{Q})$ , respectively. We then introduce local representations
$\mathcal{A},$

$\mathcal{R}$ and $\mathcal{P}$ of the operators $A(\rho),$ $R(\rho)$ and $P(\rho)$ defined by

$\mathcal{A}:=\psi^{*}A(\rho)\psi_{*}, \mathcal{R}:=\psi^{*}R(\rho)\psi_{*}, \mathcal{P}:=\psi^{*}P(\rho)\psi_{*}.$

In what follows, for simplicity, we write

$\partial_{j};=\frac{\partial}{\partial\omega_{j}} (j=1, \ldots, N-1) , \partial_{N}:=\frac{\partial}{\partial r}.$

As shown in Escher & Simonett [7, Lemma 3.2] and [8, Lemma 3.1], we have

$\mathcal{A}=-\sum_{j,k=1}^{N}a_{jk}(\rho)\partial_{j}\partial_{k}+\sum_{j=1}^{N}a_{j}(\rho)\partial_{j},$

$\mathcal{R}=b_{0}(\rho)R-\sum_{j=1}^{N}b_{j}(\rho)Tr\partial_{j},$

$\mathcal{P}=-\sum_{j,k=1}^{N-1}p_{jk}(\rho)\partial_{j}\partial_{k}$

where $a_{jk}\in C^{\omega}(\mathcal{U}, h^{2+\alpha}(Q)),$ $a_{j}\in C^{\omega}(\mathcal{U}, h^{1+\alpha}(Q)),$ $b_{j}\in C^{\omega}(\mathcal{U}, h^{2+\alpha}(Q_{0}))$ and $p_{jk}\in$

$C^{\omega}(\mathcal{U}, h^{2+\alpha}(Q_{0}))$ , and we used the same notation ‘Ihr to denote the trace operator on
$Q_{0}$ . Moreover, the matrices $(a_{jk}(\rho)(\omega, r)),$ $(p_{jk}(\rho)(\omega))$ are symmetric and uniformly
positive definite on $Q,$ $Q_{0}$ , respectively, and $b_{0}(\rho),$ $b_{N}(\rho)$ are uniformly positive on
$Q_{0}$ . Here, we may further assume that

$b_{j}(\rho)=0 (j=1, \ldots, N-1)$ .

Indeed, the validity of this assumption is guaranteed by taking the diffeomorphisms
$\psi_{l}$ so that each $\theta_{\rho}0\psi_{l}$ preserves the normal directions to the corresponding bound-
aries, namely,

$\partial_{N}(\theta_{\rho}\circ\psi_{l})=D(\theta_{\rho}\circ\psi_{l})e_{N}=-s(n_{\rho}\circ\psi_{l})$

holds with some positive number $s$ at each point on $Q_{0}$ , where $e_{N}$ $:=t(0, \ldots, 0,1)$ .
For the construction of such a diffeomorphism, we refer to Ni & Takagi [14].

We are now in a position to introduce associated constant coefficient operators.
By setting

$a_{jk}^{0}:=a_{jk}(\rho)(0,0) , b_{j}^{0}:=b_{j}(\rho)(0) , p_{jk}^{0}=p_{jk}(\rho)(0)$ ,

let us define

$\mathcal{A}_{0}:=-\sum_{j,k=1}^{N}a_{jk}^{0}\partial_{j}\partial_{k},$

$\mathcal{R}_{O}:=b_{0}^{0r}b-b_{N}^{0}Tr\partial_{N},$

$\mathcal{P}_{0}:=I-\sum_{j,k=1}^{N-1}p_{jk}^{0}\partial_{j}\partial_{k}.$
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The constant coefficient operator $\mathcal{T}_{0}$ associated with $T(\rho)$ will be defined such that,
for $\varphi\in h^{1+\alpha}(\mathbb{R}^{N-1}),$ $v:=\mathcal{T}_{0}\varphi\in h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty))$ and $v$ satisfies

(3.8) $\{\begin{array}{ll}(I+\mathcal{A}_{0})v=0 in \mathbb{R}^{N-1}\cross(0, \infty) ,\mathcal{R}_{0}v=\varphi on \mathbb{R}^{N-1}\simeq \mathbb{R}^{N-1}\cross\{0\}.\end{array}$

To derive an explicit representation of $\mathcal{T}_{0}$ , we set

$z( \xi):=\frac{i}{a_{NN}^{0}}\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j}+\frac{1}{a_{NN}^{0}}\sqrt{a_{NN}^{0}(1+\sum_{j,k=1}^{N-1}a_{jk}^{0}\xi_{j}\xi_{k})-(\sum_{j--1}^{N-1}a_{jN}^{0}\xi_{j})^{2}},$

where $i:=\sqrt{-1}$ . Then,$z=z(\xi)$ is a solution to the quadratic equation

$1+ \sum_{jk=1}^{N-1}a_{jk}^{0}\xi_{j}\xi_{k}+2i(\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j})z-a_{NN}^{0}z^{2}=0$

and satisfies ${\rm Re} z(\xi)>0$ by the ellipticity of $(a_{jk}^{0})$ . Denoting by $\mathcal{F}$ and $\mathcal{F}^{-1}$ the
(partial) Fourier transform and the inverse (partial) Fourier transform on $\mathbb{R}^{N-1},$

respectively, we have an explicit representation formula of the solution operator $\mathcal{T}_{0}$

as the following lemma shows.

Lemma 3.5. Let $\mathcal{T}_{0}$ be defined by

$\mathcal{T}_{0}\varphi(\omega, r):=[\mathcal{F}^{-1}\mathcal{M}_{\sigma_{1}(\cdot,r)}\mathcal{F}\varphi](\omega)$,

$\sigma_{1}(\xi, r):=\underline{e^{-z(\xi)r}}$

$b_{0}^{0}+b_{N}^{0}z(\xi)$
.

Then, $\mathcal{T}_{0}\in \mathcal{L}(h^{1+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)))$ and, for any $\varphi\in h^{1+\alpha}(\mathbb{R}^{N-1})$ ,
$v:=\mathcal{T}_{0}\varphi$ is the unique solution to (3.8) in $h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty))$ .

Proof. By a direct computation, it is easy to see that $v$ $:=\mathcal{T}_{0}\varphi$ satisfies (3.8) for
smooth $\varphi$ . Moreover, $\mathcal{T}_{0}\in \mathcal{L}(h^{1+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)))$ follows from the
decomposition

$\mathcal{T}_{0}\varphi(\omega, r)=[(\mathcal{F}^{-1}\mathcal{M}_{\sigma_{1,1}(\cdot,r)}\mathcal{F})(\mathcal{F}^{-1}\mathcal{M}_{\sigma_{1,2}}\mathcal{F})](\omega)$ ,

where
$\sigma_{1,1}(\xi, r):=e^{-z(\xi)r}, \sigma_{1,2}(\xi):=(b_{0}^{0}+b_{N}^{0}z(\xi))^{-1}$

Indeed, $\mathcal{F}^{-1}\mathcal{M}_{\sigma_{1,1}(\cdot,r)}\mathcal{F}\in \mathcal{L}(h^{2+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)))$ can be checked as in
Escher & Simonett [6, Lemma B.2], and also it is easy to prove that $\mathcal{F}^{-1}\mathcal{M}_{\sigma_{1,2}}\mathcal{F}\in$

$\mathcal{L}(h^{1+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}))$ in view of Escher & Simonett [6, Theorem A. 1]. For the
uniqueness of a solution, it suffices to show that any solution $v\in h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty))$

of
$\{\begin{array}{ll}(I+\mathcal{A}_{0})v=0 in \mathbb{R}^{N-1}\cross(0, \infty) ,\mathcal{R}_{0}v=0 on \mathbb{R}^{N-1}.\end{array}$
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must be identical with the trivial solution $v\equiv 0$ . By virtue of the Phragm\’en-Lindel\"of
principle, this can be reduced to showing that $v=0$ on the boundary $\mathbb{R}^{N-1}$ Let us
prove that $v\leq 0$ on $\mathbb{R}^{N-1}$ by assuming

$c:= \sup_{\omega\in \mathbb{R}^{N-1}}v(\omega, 0)>0$

and deriving a contradiction. For any $\omega\in \mathbb{R}^{N-1}$ and $r>0$ , observe that

$v( \omega, 0)+\frac{b_{0}^{0}}{b_{N}^{0}}rv(\omega, 0)-v(\omega, r)=v(\omega, 0)+r\partial_{N}v(\omega, 0)-v(\omega, r)$

$= \int_{0}^{r}(\partial_{N}v(\omega, 0)-\partial_{N}v(\omega, s))ds$

$\leq\frac{r^{2}}{2}\Vert v\Vert_{h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0,\infty))}.$

Thus, by choosing a sufficiently small $\epsilon>0$ and $\omega\in \mathbb{R}^{N-1}$ such that $v(\omega, 0)>c-\epsilon,$

we see that

$v( \omega, r)\geq v(\omega, 0)+\frac{b_{0}^{0}}{b_{N}^{0}}rv(\omega, 0)-\frac{r^{2}}{2}\Vert v\Vert_{h^{2}+\alpha(\mathbb{R}^{N-1}\cross[0,\infty))}$

$>c- \epsilon+\frac{b_{0}^{0}}{b_{N}^{0}}r(c-\epsilon)-\frac{r^{2}}{2}\Vert v\Vert_{h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0,\infty))}$

$>c,$

where the last inequality is valid for $\epsilon>0$ and $r\in(0,1)$ such that

$r( \frac{b_{0}^{0}}{b_{N}^{0}}c-\frac{r}{2}\Vert v\Vert_{h^{2+\alpha}(R^{N-1}\cross[0,\infty)))}>\epsilon(1+\frac{b_{0}^{0}}{b_{N}^{0}}r)$ .

and the existence of such a pair of $\epsilon$ and $r$ can be easily checked. However, recalling
that the Phragm\’en-Lindel\"of principle yields $v(\omega, r)<c$ for all $\omega\in \mathbb{R}^{N-1}$ and $r>0,$

we are now arriving at a contradiction and thus $v\leq 0$ is proved. The inequality
$v\geq 0$ can be proved by a similar argument. a

For later use, we also provide the solution operator $\mathcal{S}_{0}$ of the following boundary
value problem:

(3.9) $\{\begin{array}{ll}(I+\mathcal{A}_{0})v=f in \mathbb{R}^{N-1}\cross(0, \infty) ,\mathcal{R}_{0}v=0 on \mathbb{R}^{N-1}.\end{array}$

In what follows, we write $\mathcal{F}_{N}$ and $\mathcal{F}_{N}^{-1}$ for the Fourier transform and the inverse
Fourier transform on $\mathbb{R}^{N}$ , respectively, and $\mathcal{E}\in \mathcal{L}(h^{\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)), h^{\alpha}(\mathbb{R}^{N}))$ de-
notes an extension operator, i.e., $\mathcal{E}f=f$ on $\mathbb{R}^{N-1}\cross[0, \infty)$ .
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Lemma 3.6. Let $S_{0}$ be defined by

$\mathcal{S}_{0}f(\omega, r):=(I-\mathcal{T}_{0}\mathcal{R}_{0})\{\mathcal{F}_{N}^{-1}\mathcal{M}_{\sigma_{2}}\mathcal{F}_{N}\mathcal{E}f\}L_{\mathbb{R}^{N-1}\cross[0,1]},$

$\sigma_{2}(\xi);=(1+\sum_{j,k=1}^{N}a_{jk}^{0}\xi_{j}\xi_{k})^{-1}$

Then, $\mathcal{S}_{0}\in \mathcal{L}(h^{\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)), h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)))$ and, for any $f\in h^{\alpha}(\mathbb{R}^{N-1}\cross$

$[0, \infty)),$ $v:=S_{0}f$ is the unique solution to (3.9) in $h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty))$ .

Proof. $A$ direct computation shows that $v:=S_{0}f$ satisfies (3.9) for smooth $f$ . More-
over, Lemma 3.5 and the facts that

$\mathcal{R}_{0}\in \mathcal{L}(h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)),h^{1+\alpha}(\mathbb{R}^{N-1}))$ ,
$\mathcal{F}_{N}^{-1}\mathcal{M}_{\sigma_{2}}\mathcal{F}_{N}\in \mathcal{L}(h^{\alpha}(\mathbb{R}^{N}), h^{2+\alpha}(\mathbb{R}^{N}))$

yield the desired conclusion $S_{0}\in \mathcal{L}(h^{\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)), h^{2+\alpha}(\mathbb{R}^{N-1}\cross[0, \infty)))$ . The
uniqueness of a solution again follows from the Phragm\’en-Lindel\"of principle. 口

Finally, by setting

$m_{1}:=\psi^{*}|\theta_{\rho}^{*}(\nabla L_{\rho})|(0,0)>0,$

$m_{2}:=\psi^{*}\{(I-T(\rho)R(\rho))\theta_{\rho}^{*}E\}(0,0)>0,$

we define $\mathcal{W}_{0}$ by

$\mathcal{W}_{0}:=-m_{1}m_{2}Tr\mathcal{T}_{0}\mathcal{P}_{0}$

$=-\mathcal{F}^{-1}\mathcal{M}_{\sigma}\mathcal{F},$

where

$\sigma(\xi):=\frac{m_{1}m_{2}(1+\sum_{j,k--1}^{N-1}p_{jk}^{0}\xi_{j}\xi_{k})}{b_{0}^{0}+b_{N}^{0}z(\xi)}.$

Then, we have the following proposition.

Proposition 3.7. $\mathcal{W}_{0}\in \mathcal{L}(h^{3+\alpha}(\mathbb{R}^{N-1}), h^{2+\alpha}(\mathbb{R}^{N-1}))$ is sectorial.

Proof. Let us define the parametrized symbol $\tilde{\sigma}$ by

$\tilde{\sigma}(\xi, \eta):=\frac{m_{1}m_{2}(\eta^{2}+\sum_{j,k=1}^{N-1}p_{jk}^{0}\xi_{j}\xi_{k})}{b_{0}^{0}\eta+b_{N}^{0}\tilde{z}(\xi,\eta)},$

where

$\tilde{z}(\xi, \eta):=\frac{i}{a_{NN}^{0}}\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j}+\frac{1}{a_{NN}^{0}}\sqrt{a_{NN}^{0}(\eta^{2}+\sum_{j,k=1}^{N-1}a_{jk}^{0}\xi_{j}\xi_{k})-(\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j})^{2}}.$
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Note that $\tilde{z}(\xi, 1)=z(\xi\} and$ hence $\tilde{\sigma}(\xi, 1)=\sigma(\xi)$ . We show that $\tilde{\sigma}\in \mathcal{E}llS_{1}^{\infty}(\gamma_{*})$

with some positive number $\gamma_{*}$ . Indeed, it is easy to see that $\tilde{\sigma}\in C^{\infty}(\mathbb{R}^{N-1}\cross(0, \infty))$ ,
and it is positively homogeneous of degree one, and its all derivatives are bounded
on $\{|\xi|^{2}+\eta^{2}=1\}$ . To check the condition (3.7), let $a_{*},$ $p_{*}$ denote the ellipticity
constants for $A_{0},$ $\mathcal{P}_{0}$ , i.e.,

ノ$N$-l $N-1$

(3.10) $\sum a_{jk}^{0}\xi_{j}\xi_{k}+2\tilde{\eta}\sum a_{jN}^{0}\xi_{j}+a_{NN}^{0}\tilde{\eta}^{2}\geq a_{*}(|\xi|^{2}+\tilde{\eta}^{2})$ ,
$j,k=1 j=1$

$N-1$

(3.11) $\sum p_{jk}^{0}\xi_{j}\xi_{k}\geq p_{*}|\xi|^{2}.$

$j,k=1$

Then, in particular, by taking $\tilde{\eta}=-(a_{NN}^{0})^{-1}\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j}$ in (3.10), we have

$\sum_{j,k=1}^{N-1}a_{jk}^{0}\xi_{j}\xi_{k}-\frac{1}{a_{NN}^{0}}(\sum_{j=1}^{N-1}a_{jN}^{0}\xi_{j})^{2}\geq a_{*}|\xi|^{2},$

and hence

${\rm Re} \tilde{z}(\xi, \eta)\geq\frac{1}{a_{NN}^{0}}\sqrt{a_{NN}^{0}(\eta^{2}+a_{*}|\xi|^{2})}$

(3.12)
$\geq\sqrt{\frac{\min\{1,a_{*}\}}{a_{NN}^{0}}}\sqrt{|\xi|^{2}+\eta^{2}}$

We also observe that

$|b_{0}^{0}\eta+b_{N}^{0}\tilde{z}(\xi,\eta)|^{2}\leq 2b_{0}^{0}\eta^{2}+2b_{N}^{0}|\tilde{z}(\xi, \eta)|^{2}$

(3.13)
$\leq 2b_{N}^{0}(.,\sum_{=}^{N-1}a_{jk^{2}}^{0})|\xi|^{2}+2(b_{0}^{0}+b_{N}^{0})\eta^{2}$

Therefore, combining (3.11), (3.12) and (3.13), we deduce that

${\rm Re} \tilde{\sigma}(\xi, \eta)=\frac{m_{1}m_{2}(\eta^{2}+\sum_{j,k=1}^{N-1}p_{j,k}^{0}\xi_{j}\xi_{k})(b_{0}^{0}\eta+b_{N}^{0}{\rm Re}\tilde{z}(\xi,\eta))}{|b_{0}^{0}\eta+b_{N}^{0}\tilde{z}(\xi,\eta)|^{2}}$

$\geq\frac{m_{1}m_{2}(\eta^{2}+p_{*}|\xi|^{2})(b_{0}^{0}\eta+b_{N}^{0}\sqrt{\frac{\min\{1,a_{*}\}}{a_{NN}^{0}}}\sqrt{|\xi|^{2}+\eta^{2}})}{2b_{N}^{0}(\sum_{j,k=1}^{N-1}a_{jk}^{02})|\xi|^{2}+2(b_{0}^{0}+b_{N}^{0})\eta^{2}}$

$\geq\gamma_{*}\sqrt{|\xi|^{2}+\eta^{2}},$

where

$\gamma_{*}:=\frac{m_{1}m_{2}b_{N}^{0}\min\{1,p_{*}\}\sqrt{\min\{1,a_{*}\}}}{2\sqrt{a_{NN}^{0}}\max\{b_{N}^{0}(\sum_{j,k=1}^{N-1}a_{jk}^{0^{2}}),b_{0}^{0}+b_{N}^{0}\}}>0.$
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Therefore, $\tilde{\sigma}\in \mathcal{E}llS_{1}^{\infty}(\gamma_{*})$ , and hence

$\mathcal{W}_{0}=-\mathcal{F}^{-1}\mathcal{M}_{\overline{\sigma}(\cdot,1)}\mathcal{F}$

is a sectorial operator on $h^{2+\alpha}(\mathbb{R}^{N-1})$ . 口

3.5 Resolvent estimate by a perturbation argument
Proposition 3.7 implies that the operator $\mathcal{W}_{0}^{(l)}=\mathcal{W}_{0}$ , which approximates $W$ in the
$10$calized region $U_{l}$ , satisfies the resolvent estimate

(3.14) $|\lambda|\Vert\tilde{\rho}\Vert_{h^{2+\alpha}(\mathbb{R}^{N-1})}+\Vert\tilde{\rho}\Vert_{h^{3+\alpha}(\mathbb{R}^{N-1})}\leq C\Vert(\lambda I-\mathcal{W}_{0}^{(l)})\tilde{\rho}\Vert_{h^{2+\alpha}}(\mathbb{R}^{N-1})$

for any $\tilde{\rho}\in h^{3+\alpha}(\mathbb{R}^{N-1})$ and $\lambda\in\{z\in \mathbb{C}|{\rm Re} z\geq\lambda_{0}\}$ , by taking $\lambda_{0}>0$ and $C>0$
appropriately.

We will show that $\mathcal{W}_{0}^{(l)}$ indeed approximates $W$ by taking $d>0$ so small that
the atlas $\{U_{l}, \psi_{l}\}_{1\leq l\leq m}$ of $R_{d}$ becomes fine enough (see the beginning of Section 3.4)
in the sense that the desired resolvent estimate

(3.15) $|\lambda|\Vert\tilde{\rho}\Vert_{h^{2+\alpha}}(r)+\Vert\tilde{\rho}\Vert_{h^{3}+\alpha(\Gamma)}\leq C\Vert(\lambda I-W)\tilde{\rho}\Vert_{h^{2+\alpha}(\Gamma)}$

holds after patching all the local estimates together. This estimate completes the
proof of Theorem 3.3.

For this purpose, we take a partition of unity $\{\phi_{l}\}_{l=1}^{m}$ associated with $\{U_{l}\}_{l=1}^{m}$ such
that $supp\phi_{l}\subset U_{l}$ and $\bigcup_{l=1}^{m}\phi_{l}=1$ on $R_{d/2}$ . Combining the atlas and the partition
of unity, we call such a pair a localization sequence of $R_{d}$ . Note that, we can choose
a family of smooth cut-off functions $\{\chi_{l}\}_{l=1}^{m}$ as well as a localization sequence of $R_{d}$

such that $supp\chi\iota\subset U_{l},$ $\chi_{l}=1$ on $supp\phi_{l}$ and

(3.16) $\Vert\chi_{l}\Vert_{0,U_{l}}+d^{\alpha}[\chi_{l}]_{\alpha,U_{l}}\leq C$

with a positive constant $C$ which is independent of $d$ . Here and in what follows, we
use the notation

$\Vert v\Vert_{k+\alpha,U};=\Vert v\Vert_{h^{k+\alpha}(U)}, [v]_{\alpha,U}:=x,y\in U\sup_{x\neq y}\frac{|v(x)-v(y)|}{|x-y|^{\alpha}},$

$\Vert v\Vert_{k+\alpha}:=\Vert v\Vert_{k+\alpha,\mathbb{R}^{N-1}}, [v]_{\alpha}:=[v]_{\alpha,\mathbb{R}^{N-1}}.$

Now we state the following perturbation result.

Lemma 3.8. For any $\epsilon>0,0<\beta<\alpha$ and $\rho\in \mathcal{U}$ , there are $d>0$ , a localization
sequence of $R_{d_{Z}}$ and a constant $C=C(\epsilon, \beta, \rho, d)\mathcal{S}uch$ that

$\Vert\psi_{l}^{*}(\phi_{l}W\tilde{\rho})-\mathcal{W}_{0}^{(l)}\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{2+\alpha}\leq\epsilon||\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{3+\alpha}+C\Vert\tilde{\rho}\Vert_{3+\beta,\Gamma}$

holds for $\tilde{\rho}\in h^{3+\alpha}(\Gamma)$ and $1\leq l\leq m.$
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The proof is straightforward, but lengthy. The detail can be found in Onodera
[15]. Let us now complete the proof of Theorem 3.3.

Pmof of Theorem 3.3. We only need to prove the resolvent estimate (3.15). For
simplicity, we will denote $C>0$ a generic constant. Combining (3.14) and Lemma
3.8 with sufficiently small $\epsilon>0$ , we see that

$|\lambda|\Vert\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{2+\alpha}+\Vert\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{3+\alpha}\leq C\Vert(\lambda I-\mathcal{W}_{0}^{(l)})\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{2+\alpha}$

$\leq C(\Vert\psi_{l}^{*}(\phi_{l}(\lambda I-W)\tilde{\rho})\Vert_{2+\alpha}+\Vert\tilde{\rho}\Vert_{3+\beta,\Gamma})$

holds for any $\tilde{\rho}\in h^{3+\alpha}(\Gamma),$ $\lambda\in\{z\in \mathbb{C}|{\rm Re} z\geq\lambda_{0}\}$ , and $1\leq l\leq m$ . Since

$\tilde{\rho}\mapsto\max\Vert\psi_{l}^{*}(\phi_{l}\tilde{\rho})\Vert_{k+\alpha}$

$1\leq l\leq m$

defines an equivalent norm on $h^{k+\alpha}(\Gamma)(k=2,3)$ , the above inequality implies

$|\lambda|\Vert\tilde{\rho}\Vert_{2+\alpha,\Gamma}+\Vert\tilde{\rho}\Vert_{3+\alpha,\Gamma}\leq C(\Vert(\lambda I-W)\tilde{\rho}\Vert_{2+\alpha,\Gamma}+\Vert\tilde{\rho}\Vert_{3+\beta,\Gamma})$ .

Then, using the interpolation inequality

$\Vert\tilde{\rho}\Vert_{3+\beta,\Gamma}\leq\epsilon\Vert\tilde{\rho}\Vert_{3+\alpha,\Gamma}+C\Vert\tilde{\rho}\Vert_{2+\alpha,\Gamma},$

we deduce that

$|\lambda|\Vert\tilde{\rho}\Vert_{2+\alpha,\Gamma}+\Vert\tilde{\rho}\Vert_{3+\alpha,\Gamma}\leq C\Vert(\lambda I-W)\tilde{\rho}\Vert_{2+\alpha,\Gamma}$

holds for any $\tilde{\rho}\in h^{3+\alpha}(\Gamma)$ and $\lambda\in\{z\in \mathbb{C}|{\rm Re} z\geq\lambda_{*}\}$ with sufficiently large
$\lambda_{*}>\lambda_{0}$ . This is nothing but (3.15). $\square$

Theorem 1.4 now follows from Theorem 3.3 and the theory of maximal regularity
of Da Prato and Grisvard [5], since $h^{2+\alpha}(\Gamma)$ is characterized as a continuous inter-
polation space between $h^{3+\alpha’}(\Gamma)$ and $h^{2+\alpha’}(\Gamma)$ with $0<\alpha’<\alpha<1$ . For the proof
of the solvability of fully-nonlinear equations in continuous interpolation spaces, we
refer to Angenent [3, Theorem 2.7] and Lunardi [13].

4 Bifurcation criterion for quadrature surfaces
Theorems 1.2 and 1.4 immediately deduce Corollary 1.5.

Proof of Comllary 1.5. Assuming the existence of a curve $s\mapsto(\Gamma(s), t(s))$ , let us
derive a contradiction. We divide the proof into two cases: (i) $t’(O)>0$ and (ii)
$t’(0)=0.$

In the case (i), we can take the inverse function $t^{-1}$ of $t=t(s)$ at least in a
neighborhood of $s=0$ . Setting

$\tilde{\Gamma}(\tau):=\Gamma(t^{-1}(\tau))$ ,
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we see that $\{\tilde{\Gamma}(\tau)\}_{0\leq\tau<\overline{\epsilon}}$ with small $\tilde{\epsilon}$ is an $h^{3+\alpha}$ family of surfaces satisfying

$\int_{\partial\Omega(0)}hd\mathcal{H}^{N-1}+\tau\int hd\mu=\int_{\overline{\Gamma}(\tau)}hd\mathcal{H}^{N-1}$

for harmonic functions $h$ . Then, it follows from Theorem 1.2 that $\{\tilde{\Gamma}(\tau)\}_{0\leq\tau<\overline{\epsilon}}$ is
$a\sim$ solution to (1.5). However, the uniqueness assertion in Theorem 1.4 implies that
$\Gamma(\tau)=\partial\Omega(\tau)$ , or $\Gamma(s)=\partial\Omega(t(s))$ . This is a contradiction.

In the case (ii), by differentiating the identity

$\int_{\partial\Omega(0)}hd\mathcal{H}^{N-1}+t(s)\int hd\mu=\int_{\Gamma(s)}hd\mathcal{H}^{N-1}$

with respect to $\mathcal{S}$ at $s=0$ , we have a nonzero function $v_{n}\in h^{2+\alpha}(\partial\Omega(0))$ satisfying

$0= \int_{\partial\Omega(0)}\{\frac{\partial h}{\partial n}+(N-1)hH\}v_{n}d\mathcal{H}^{N-1}$

for all harmonic functions $h$ defined in a neighborhood of $\Omega(0)$ . Therefore, by an
argument similar to the last part of the proof of Theorem 1.2, we deduce that $v_{n}=0$

on $\partial\Omega(0)$ , which is again a contradiction. $\square$
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