A geometric flow for quadrature surfaces

九州大学 マス・フォア・インダストリ研究所 小野寺 有紹
Michiaki Onodera
Institute of mathematics for industry， Kyushu University

Abstract

A new geometric flow describing the motion of a closed surface is in－ troduced．Moving surfaces evolving under the flow are shown to be a family of quadrature surfaces．It is proved that the geometric flow possesses a unique classi－ cal solution for any smooth initial surface with positive mean curvature．

1 Introduction

One of the classical problems in potential theory is to specify a closed surface Γ for a prescribed electric charge density μ in such a way that the uniform electric charge distribution on Γ induces the same potential in a neighborhood of the infinity as μ does．To formulate the problem mathematically，let F be the fundamental solution of $-\Delta$ in \mathbb{R}^{N} ，i．e．，

$$
F(x):= \begin{cases}-\frac{1}{2 \pi} \log |x| & (N=2) \tag{1.1}\\ \frac{1}{N(N-2) \omega_{N}|x|^{N-2}} & (N \geq 3)\end{cases}
$$

where ω_{N} is the volume of the unit ball in \mathbb{R}^{N} ，and let $\mathcal{H}^{N-1}\lfloor\Gamma$ denote the $(N-1)$－ dimensional Hausdorff measure restricted to Γ ．Then，the problem can be stated as follows：For a prescribed finite positive Radon measure μ with compact support in \mathbb{R}^{N} ，find a $(N-1)$－dimensional closed surface Γ enclosing a bounded domain Ω such that $F * \mu=F * \mathcal{H}^{N-1}\left\lfloor\Gamma\right.$ in $\mathbb{R}^{N} \backslash \bar{\Omega}$ ，i．e．，

$$
\begin{equation*}
\int F(x-y) d \mu(y)=\int_{\Gamma} F(x-y) d \mathcal{H}^{N-1}(y) \quad\left(x \in \mathbb{R}^{N} \backslash \bar{\Omega}\right) \tag{1.2}
\end{equation*}
$$

In fact，（1．2）can be replaced by the equivalent condition that

$$
\begin{equation*}
\int h d \mu=\int_{\Gamma} h d \mathcal{H}^{N-1} \tag{1.3}
\end{equation*}
$$

holds for all harmonic functions h defined in a neighborhood of $\bar{\Omega}$. Indeed, it is obvious that (1.3) implies (1.2). Conversely, if Γ satisfies (1.2), then by extending each harmonic function h to be smooth and have compact support in \mathbb{R}^{N}, we see that

$$
\begin{aligned}
\int h(y) d \mu(y) & =\int_{\mathbb{R}^{N}} \Delta h(x)\left(\int F(y-x) d \mu(y)\right) d x \\
& =\int_{\mathbf{R}^{N}} \Delta h(x)\left(\int_{\Gamma} F(y-x) d \mathcal{H}^{N-1}(y)\right) d x \\
& =\int_{\Gamma} h(y) d \mathcal{H}^{N-1}(y)
\end{aligned}
$$

Thus, (1.3) follows from (1.2).
The mean value property of harmonic functions implies that (1.3) holds when $\mu=N \omega_{N} \delta_{0}$ and $\Gamma=\partial B(0,1)$, where δ_{0} is the Dirac measure supported at the origin and $B(0,1)$ is the unit ball in \mathbb{R}^{N}. Thus, the identity (1.3) can be seen as a generalization of the mean value formula for harmonic functions.

From this point of view, we also consider an analogous problem: For a prescribed measure μ, find a domain Ω such that

$$
\begin{equation*}
\int h d \mu=\int_{\Omega} h d x \tag{1.4}
\end{equation*}
$$

holds for all harmonic functions h defined in a neighborhood of $\bar{\Omega}$. This problem also has a physical interpretation, and it is sometimes referred to as the "Potato Kugel" problem, especially when the uniqueness of a domain Ω is concerned.

Definition 1.1. A closed surface Γ satisfying (1.3) is called a quadrature surface of μ for harmonic functions. Analogously, a domain Ω satisfying (1.4) is called a quadrature domain of μ for harmonic functions.

The existence of a quadrature surface Γ of a prescribed μ has been studied by several authors with different approaches. Developing the idea of super/subsolutions of Beurling [4], Henrot [12] was able to prove that the existence of Γ is guaranteed when a supersolution and a subsolution are available. Gustafsson \& Shahgholian [11] followed a variational approach developed by Alt \& Caffarelli [1], namely, they consider the minimization problem for the functional

$$
J(u):=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}-2 f u+\chi_{\{u>0\}}\right) d x
$$

and proved the existence and regularity of a minimizer u. Then, u is shown to satisfy the Euler-Lagrange equation

$$
-\Delta u=f\left\lfloor\Omega-\mathcal{H}^{N-1}\lfloor\partial \Omega, \quad \Omega=\{u>0\}\right.
$$

and thus $\Gamma=\partial \Omega$ is a quadrature surface of μ with $d \mu=f d x$.
Similarly, a quadrature domain has a variational characterization and can be obtained by solving an obstacle problem (see Sakai [18] and Gustafsson [10] for the detail). Moreover, the uniqueness of a quadrature domain follows from an argument based on the maximum principle. Indeed, it was shown by Sakai [17] that, if a quadrature domain Ω satisfies

$$
F *\left(\mu-\chi_{\Omega}\right)>0
$$

everywhere in Ω, then there is no quadrature domain other than Ω. The above condition can be verified, in particular, when μ concentrates, relative to Ω.

However, as pointed out by Henrot [12], the uniqueness of a quadrature surface cannot be expected in general. He showed an example that the number of connected quadrature surfaces of $\mu(t):=t \delta_{(1,0)}+t \delta_{(-1,0)}$ in \mathbb{R}^{2} changes according to the value of $t>0$. The collapse of the uniqueness seems to indicate a bifurcation phenomenon of solutions to (1.3) with a parametrized measure $\mu=\mu(t)$. Hence, toward understanding of the uniqueness issue, we need to consider the corresponding family of surfaces $\Gamma=\Gamma(t)$. In this respect, it is natural to ask if there is a "flow" for surfaces $\{\Gamma(t)\}_{t>0}$ such that each $\Gamma(t)$ is a quadrature surface of a given parametrized measure $\mu(t)$. As a matter of fact, when $\mu(t)=t \delta_{0}+\chi_{\Omega(0)}$ and $\Omega(t)$ is the corresponding quadrature domain, it is known that the Hele-Shaw flow, a model of interface dynamics in fluid mechanics, plays the desired role. This surprising connection between the two different physical problems was discovered by Richardson [16]. From this fact, the investigation of the evolution of quadrature domains is reduced to that of the Hele-Shaw flow, and the latter has been successfully proceeded by complex analysis and several methods in partial differential equations.

We are thus motivated to derive a flow having the corresponding property for quadrature surfaces, and eventually arrive at the following geometric flow:

$$
\begin{align*}
& v_{n}=p \text { for } x \in \partial \Omega(t) \\
& \text { where } \begin{cases}-\Delta p=\mu & \text { for } x \in \Omega(t) \\
(N-1) H p+\frac{\partial p}{\partial n}=0 & \text { for } x \in \partial \Omega(t)\end{cases} \tag{1.5}
\end{align*}
$$

where v_{n} is the growing speed of $\partial \Omega(t)$ in the outer normal direction and H is the mean curvature of $\partial \Omega(t)$. Here and in what follows, μ denotes a finite positive Radon measure with compact support in $\Omega(0)$. Note that, for each fixed time $t>0$, the maximum principle applied to the elliptic boundary problem in (1.5) yields that $p>0$ everywhere on $\partial \Omega(t)$ if H is positive (see the proof of (2.2) in the next section). In other words, $\Omega(t)$ expands monotonically as long as the mean curvature of $\partial \Omega(t)$ is positive.

The following theorem shows that, as desired, for a given $\partial \Omega(0)$ as initial surface, the solution to (1.5) turns out to be a one-parameter family of quadrature surfaces. Moreover, we will see that (1.5) is the only possible flow having this property. Here,
we call $\{\partial \Omega(t)\}_{0 \leq t<T}$ a $C^{3+\alpha}$ family of surfaces if each $\partial \Omega(t)$ is of $C^{3+\alpha}$ and its time derivative is of $C^{2+\alpha}$, namely, $\partial \Omega(t)$ can be locally represented as a graph of a function in the Hölder space $C^{3+\alpha}$ and its time derivative is in $C^{2+\alpha}$ (see Section 3).
Theorem 1.2. Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces, and assume that each $\partial \Omega(t)$ has positive mean curvature. Then, each $\partial \Omega(t)$ is a quadrature surface of $\mu(t):=t \mu+\mathcal{H}^{N-1}\lfloor\partial \Omega(0)$, i.e.,

$$
\begin{equation*}
\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t \int h d \mu=\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1} \tag{1.6}
\end{equation*}
$$

holds for all harmonic functions h defined in a neighborhood of $\overline{\Omega(t)}$, if and only if $\{\partial \Omega(t)\}_{0 \leq t<T}$ is a solution to (1.5).
Remark 1.3. The exponent $3+\alpha$ naturally arises in the context of the Schauder theory for the oblique derivative problem (see Gilbarg \& Trudinger [9]). Indeed, the regularity $H \in C^{1+\alpha}$ of the coefficient function H in the boundary condition is required for the existence of a solution $p \in C^{2+\alpha}(\overline{\Omega(t)})$ to the elliptic equation in (1.5). This implies that $\partial \Omega(t)$ is of $C^{3+\alpha}$. It is worth noting that, by taking appropriate coordinates, v_{n} can be regarded as the time derivative of a local function representation of $\partial \Omega(t)$. Hence, it is natural to impose the same regularity as $v_{n}=$ $p \in C^{2+\alpha}$ on the time derivative of $\partial \Omega(t)$.

At this point, we are led to a fundamental question: Does the equation (1.5) really possess a unique smooth solution? The following theorem affirmatively answers this question. Here, $\{\partial \Omega(t)\}_{0 \leq t<T}$ is called a $h^{3+\alpha}$ solution if it is a $h^{3+\alpha}$ family of surfaces and satisfies (1.5), where $h^{3+\alpha}$ is the so-called little Hölder space and is defined as the closure of the Schwartz space \mathcal{S} of rapidly decreasing functions in the topology of the Hölder space $C^{3+\alpha}$. Since our argument relies on the theory of maximal regularity of Da Prato and Grisvard [5], it is necessary to use $h^{3+\alpha}$, characterized as a continuous interpolation space, instead of $C^{3+\alpha}$.
Theorem 1.4. There exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \leq t<T}$ to (1.5) for any $h^{3+\alpha}$ initial surface $\partial \Omega(0)$ with positive mean curvature.

Let us plot the points $(\Gamma, t) \in h^{3+\alpha} \times \mathbb{R}$ if Γ is a quadrature surface of $\mu(t)$. Theorem 1.4 shows that such points form a curve

$$
t \mapsto(\partial \Omega(t), t) \quad(t \in[0, T))
$$

in $h^{3+\alpha} \times \mathbb{R}$ starting from $(\partial \Omega(0), 0)$, if $\partial \Omega(0)$ has positive mean curvature. Moreover, as the parameter t increases, the curve does not split into two curves from any point $(\partial \Omega(t), t)$ unless $\partial \Omega(t)$ loses the positiveness of the mean curvature.
Corollary 1.5. There is no curve

$$
s \mapsto(\Gamma(s), t(s)) \quad(s \in[0, \varepsilon))
$$

of an $h^{3+\alpha}$ family of quadrature surfaces such that $(\Gamma(0), t(0))=(\partial \Omega(0), 0), \Gamma(s) \neq$ $\partial \Omega(t(s))$ for $0<s<\varepsilon$, and $t^{\prime}(0) \geq 0$.

This paper is organized as follows. In Section 2 we prove Theorem 1.2, namely, we characterize (1.5) as a flow which produces a family of quadrature surfaces. Section 3 is devoted to proving Theorem 1.4. For this purpose, we reformulate the problem into an evolution equation in an infinite-dimensional Banach space, and proceed to the spectral analysis of the linearized operator. Finally, in section 4, we prove Corollary 1.5.

2 Generation of quadrature surfaces

In this section we show that the geometric flow (1.5) generates a family of quadrature surfaces.

We begin with a simple observation that the geometric flow remains unchanged by replacing the measure μ by the mollified measure $\tilde{\mu}:=\eta_{\varepsilon} * \mu$, where η_{ε} is the standard symmetric mollifier supported on $\overline{B(0, \varepsilon)}$. Note that $\tilde{\mu}$ is then a smooth function supported in $\Omega(0)$ by taking $\varepsilon>0$ small.

Lemma 2.1. Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ solution to (1.5), and let $\{\partial \widetilde{\Omega(t)}\}_{0 \leq t<T}$ be $a C^{3+\alpha}$ solution to (1.5) with μ replaced by $\tilde{\mu}$ with the same initial surface $\partial \widetilde{\Omega(0)}=$ $\partial \Omega(0)$. Assume moreover that $\partial \Omega(t)$ and $\partial \widetilde{\Omega(t)}$ have positive mean curvature. Then, $\partial \Omega(t)=\partial \widetilde{\Omega(t)}$ for all $0<t<T$.

Proof. It suffices to show that the boundary value of the solution p to the elliptic boundary problem

$$
\begin{cases}-\Delta p=\mu & \text { for } x \in \Omega \\ b_{1}(x) p+b_{2}(x) \frac{\partial p}{\partial n}=0 & \text { for } x \in \partial \Omega\end{cases}
$$

coincides with that of the solution \tilde{p} to

$$
\begin{cases}-\Delta \tilde{p}=\tilde{\mu} & \text { for } x \in \Omega \\ b_{1}(x) \tilde{p}+b_{2}(x) \frac{\partial \tilde{p}}{\partial n}=0 & \text { for } x \in \partial \Omega\end{cases}
$$

where $b_{1}(x), b_{2}(x)$ are positive functions on $\partial \Omega$ and $\operatorname{supp} \mu \subset \operatorname{supp} \tilde{\mu} \subset \Omega$.
To this end, we prove that $q:=p-\tilde{p}$ vanishes outside supp $\tilde{\mu}$. Let us decompose $q=F *(\mu-\tilde{\mu})+h$, where F is the fundamental solution of $-\Delta$ (see (1.1)) and h is a harmonic function satisfying

$$
\begin{cases}-\Delta h=0 & \text { for } x \in \Omega \tag{2.1}\\ b_{1}(x) h+b_{2}(x) \frac{\partial h}{\partial n}=-b_{1}(x) F *(\mu-\tilde{\mu})-b_{2}(x) \frac{\partial F *(\mu-\tilde{\mu})}{\partial n} & \text { for } x \in \partial \Omega\end{cases}
$$

Then, it follows from the mean value property of harmonic functions that $F *(\mu-\tilde{\mu})$ vanishes outside $\operatorname{supp} \tilde{\mu}$. Hence, the unique solvability of the oblique derivative problem (2.1) yields that $h \equiv 0$, which completes the proof.

We now proceed to the proof of Theorem 1.2.
Proof of Theorem 1.2. Let us first confirm that the positiveness of the mean curvature implies that

$$
\begin{equation*}
v_{n}=p>0 \tag{2.2}
\end{equation*}
$$

everywhere on $\partial \Omega(t)$ for all $0 \leq t<T$. To see this, suppose that $p\left(\zeta_{\min }\right)=$ $\min _{\zeta \in \partial \Omega(t)} p(\zeta) \leq 0$ for some $0 \leq t<T$ and $\zeta_{\min } \in \partial \Omega(t)$, and derive a contradiction. By the maximum principle applied to the elliptic equation in (1.5), we see that $p\left(\zeta_{\min }\right)<p(x)$ for all $x \in \Omega(t)$. Hence, from the Hopf boundary point lemma it follows that

$$
(N-1) H p\left(\zeta_{\min }\right)+\frac{\partial p}{\partial n}\left(\zeta_{\min }\right)<0
$$

which violates the boundary condition. Note that (2.2) implies $\Omega(s) \subset \Omega(t)$ for $0 \leq s \leq t$.

Now recall that, by Lemma 2.1, we may replace the measure μ by $\tilde{\mu}$ in the equation (1.5). For each harmonic function h defined in a neighborhood of $\Omega(t)$, it follows from the well-known variational formulas for moving surfaces and domains that

$$
\begin{aligned}
\frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1}\right] & =\int_{\partial \Omega(t)} \frac{\partial h}{\partial n} v_{n} d \mathcal{H}^{N-1}+(N-1) \int_{\partial \Omega(t)} h H v_{n} d \mathcal{H}^{N-1} \\
& =\int_{\partial \Omega(t)}\left\{\frac{\partial h}{\partial n} p+(N-1) h H p\right\} d \mathcal{H}^{N-1} \\
& =\int_{\Omega(t)}(\Delta h p-h \Delta p) d x+\int_{\partial \Omega(t)}\left\{h \frac{\partial p}{\partial n}+(N-1) h H p\right\} d \mathcal{H}^{N-1} \\
& =\int_{\Omega(t)} h \tilde{\mu} d x \\
& =\int h d \mu
\end{aligned}
$$

where the last equality follows from the mean value property of harmonic functions. The integration with respect to t yields the identity (1.6).

Let us prove the converse statement. Differentiating the identity (1.6) with respect to t, we obtain that

$$
\int h d \mu=\int_{\partial \Omega(t)}\left\{\frac{\partial h}{\partial n}+(N-1) h H\right\} v_{n} d \mathcal{H}^{N-1}
$$

On the other hand, denoting p by a unique solution to the elliptic equation in (1.5), we have

$$
\int h d \mu=\int_{\partial \Omega(t)}\left\{\frac{\partial h}{\partial n}+(N-1) h H\right\} p d \mathcal{H}^{N-1}
$$

Hence,

$$
\begin{equation*}
\int_{\partial \Omega(t)}\left\{\frac{\partial h}{\partial n}+(N-1) h H\right\}\left(v_{n}-p\right) d \mathcal{H}^{N-1}=0 \tag{2.3}
\end{equation*}
$$

must hold for any harmonic function h defined in a neighborhood of $\overline{\Omega(t)}$. Let us denote by $h_{0} \in C^{2+\dot{\alpha}}(\overline{\Omega(t)})$ a unique solution to

$$
\begin{cases}-\Delta h_{0}=0 & \text { for } x \in \Omega(t) \\ (N-1) H h_{0}+\frac{\partial h_{0}}{\partial n}=v_{n}-p & \text { for } x \in \partial \Omega(t)\end{cases}
$$

If h_{0} can be harmonically extended to a neighborhood of $\overline{\Omega(t)}$, then substituting $h=h_{0}$ into (2.3) deduces that $v_{n}=p$. But it is not the case in general, so let us take a sequence of solutions h_{k} to

$$
\begin{cases}-\Delta h_{k}=0 & \text { for } x \in \Omega_{k} \\ (N-1) H_{k} h_{k}+\frac{\partial h_{k}}{\partial n}=q & \text { for } x \in \partial \Omega_{k}\end{cases}
$$

where $\Omega_{k} \supset \overline{\Omega(t)}$ is a sequence of bounded domains such that $\partial \Omega_{k}$ approaches $\partial \Omega(t)$ in the $C^{3+\alpha}$ sense, H_{k} is the mean curvature of $\partial \Omega_{k}$, and q is a $C^{1+\alpha}$-extension of the function $v_{n}-p$ on $\partial \Omega(t)$ to \mathbb{R}^{N}, i.e., $q L_{\partial \Omega(t)}=v_{n}-p$. Then, the elliptic estimate

$$
\begin{equation*}
\left\|h_{k}\right\|_{C^{2+\alpha}\left(\overline{\Omega_{k}}\right)} \leq C\left(\left\|h_{k}\right\|_{C^{0}\left(\overline{\Omega_{k}}\right)}+\|q\|_{C^{1+\alpha}\left(\mathbb{R}^{N}\right)}\right) \leq C\|q\|_{C^{1+\alpha}\left(\mathbb{R}^{N}\right)} \tag{2.4}
\end{equation*}
$$

holds uniformly in $k=1,2, \ldots$, where the second inequality follows from the fact that

$$
\begin{equation*}
\left\|h_{k}\right\|_{C^{0}\left(\overline{\Omega_{k}}\right)} \leq \max _{\partial \Omega_{k}}\left|h_{k}\right| \leq \frac{\max _{\partial \Omega_{k}}|q|}{(N-1) \min _{\partial \Omega_{k}} H_{k}} . \tag{2.5}
\end{equation*}
$$

The proof of (2.5) is similar to that of (2.2). Now it can be shown by (2.4) together with the mean value theorem that

$$
\sup _{\partial \Omega(t)}\left|\left\{(N-1) H h_{k}+\frac{\partial h_{k}}{\partial n}\right\}-\left(v_{n}-p\right)\right| \rightarrow 0
$$

Therefore, by taking $h=h_{k}$ with large k, we see that the identity (2.3) cannot hold unless $v_{n}=p$ on $\partial \Omega(t)$.

Remark 2.2. The identity (1.6) is still valid for subharmonic functions h by replacing equality with inequality \leq. Indeed, this follows from the positivity of p in $\Omega(t)$.

3 Existence of a solution to the geometric flow

In this section we describe the outline of the proof of Theorem 1.4. The complete proof can be found in Onodera [15], where a generalized flow which includes our flow (1.5) and the Hele-Shaw flow as special cases is studied. A direct method of the mathematical treatment of a geometric equation, which we will follow, is to reformulate the problem to a fixed boundary problem by using a time-dependent diffeomorphism such that the moving boundary transforms to a fixed reference boundary. Such a transformation makes clear the nonlinear nature of the original problem. Indeed, after the transformation, we encounter the situation where the evolution equation with fixed boundary turns out to be fully-nonlinear. The theory of maximal regularity of Da Prato and Grisvard [5] enables us to handle fully-nonlinear abstract parabolic equations by taking a continuous interpolation space as phase space. Thus, our effort will be made mainly to prove the "parabolicity" of the equation, namely, that the linearized operator is an infinitesimal generator of a strongly continuous analytic semigroup.

3.1 Reduction to an evolution equation

As a first step, let us reformulate the problem to an evolution equation in an abstract setting.

We fix a bounded reference domain Ω with smooth boundary Γ, and take a subdomain $\Omega_{\text {sub }}$ such that $\operatorname{supp} \mu \subset \Omega_{\text {sub }} \subset \overline{\Omega_{\text {sub }}} \subset \Omega$. Let us recall that the little Hölder space $h^{k+\alpha}(\bar{\Omega})$ is defined as the closure of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{N}\right)$ (restricted to Ω) in the topology of $C^{k+\alpha}(\bar{\Omega})$. The little Hölder space $h^{k+\alpha}(\Gamma)$ on the surface Γ can also be defined in the same manner in terms of its local coordinates. Let us define

$$
\mathcal{U}=\mathcal{U}_{a}:=\left\{\rho \in h^{3+\alpha}(\Gamma) \mid\|\rho\|_{C^{1}}<a\right\}
$$

with $a>0$ being sufficiently small such that $\theta(\zeta, r):=\zeta+r n_{0}(\xi)$ defines a diffeomorphism between $\Gamma \times(-a, a)$ and its image though θ, where $n_{0}(\zeta)$ is the unit outer normal vector at $\zeta \in \Gamma$. In particular, for any $\rho \in \mathcal{U}$,

$$
\begin{equation*}
\Gamma_{\rho}:=\left\{\zeta+\rho(\zeta) n_{0}(\zeta) \in \mathbb{R}^{N} \mid \zeta \in \Gamma\right\} \tag{3.1}
\end{equation*}
$$

defines a $h^{3+\alpha}$ surface diffeomorphic to Γ though the diffeomorphism $\theta_{\rho}(\zeta):=$ $\theta(\zeta, \rho(\zeta))=\zeta+\rho(\zeta) n_{0}(\zeta)$ from Γ to Γ_{ρ}.

For the precise descriptions of the outer unit normal vector field n_{ρ} on Γ_{ρ} and a diffeomorphism from Ω to Ω_{ρ}, where Ω_{ρ} is the domain enclosed by Γ_{ρ}, we will use a level set representation of the surface Γ_{ρ}. Let us denote by ζ_{0} and r_{0} the components of the inverse map θ^{-1} such that $\theta^{-1}(x)=\left(\zeta_{0}(x), r_{0}(x)\right)$. Note that $\zeta_{0}(x)$ is the nearest point on Γ to the point x, and $r_{0}(x)$ is the signed distance from Γ to x. It is then easy to see that

$$
L_{\rho}(x):=r_{0}(x)-\rho\left(\zeta_{0}(x)\right) \quad(x \in \theta(\Gamma \times(-a, a)))
$$

defines Γ_{ρ} as its 0 -level set. This representation is now used to define the normal vector field $n_{\rho} \in h^{3+\alpha}\left(\Gamma, \mathbb{R}^{N}\right)$ and a diffeomorphism from Ω to Ω_{ρ}, which we denote again by θ_{ρ}, as follows:

$$
\begin{aligned}
& n_{\rho}(\zeta):=\frac{\nabla L_{\rho}\left(\theta_{\rho}(\zeta)\right)}{\left|\nabla L_{\rho}\left(\theta_{\rho}(\zeta)\right)\right|}, \\
& \theta_{\rho}(x):= \begin{cases}\theta\left(\zeta_{0}(x), r_{0}(x)+\varphi\left(r_{0}(x)\right) \rho\left(\zeta_{0}(x)\right)\right) & (x \in \theta(\Gamma \times(-a, a))), \\
x & (x \notin \theta(\Gamma \times(-a, a)))\end{cases}
\end{aligned}
$$

where φ is a smooth cut-off function satisfying

$$
\varphi(r):=\left\{\begin{array}{ll}
1 & (|r| \leq a / 4), \\
0 & (|r| \geq 3 a / 4)
\end{array} \quad \text { and } \quad\left|\frac{d \varphi}{d r}(r)\right|<\frac{4}{a} .\right.
$$

We also note that the speed v_{n} of the moving boundary at $\theta_{\rho}(\zeta) \in \Gamma_{\rho}$ can be represented by $(\partial \rho / \partial t)(\zeta) /\left|\nabla L_{\rho}\left(\theta_{\rho}(\zeta)\right)\right|$.

The pull-back and push-forward operators induced by θ_{ρ} are defined by

$$
\theta_{\rho}^{*} u:=u \circ \theta_{\rho}, \quad \theta_{*}^{\rho} v:=v \circ \theta_{\rho}^{-1}
$$

for $u \in h^{k+\alpha}\left(\overline{\Omega_{\rho}}\right), v \in h^{k+\alpha}(\bar{\Omega})$, respectively. Then it can be shown that $\theta_{\rho}^{*}, \theta_{*}^{\rho}$ are isomorphisms between $h^{k+\alpha}\left(\overline{\Omega_{\rho}}\right)$ and $h^{k+\alpha}(\bar{\Omega})$, and $\left(\theta_{\rho}^{*}\right)^{-1}=\theta_{*}^{\rho}$. In the same fashion, $\theta_{\rho}^{*}, \theta_{*}^{\rho}$ also denote isomorphisms between $h^{k+\alpha}\left(\Gamma_{\rho}\right)$ and $h^{k+\alpha}(\Gamma)$.

Given $\rho \in \mathcal{U}$, we now define transformed operators $A(\rho), B(\rho)$ and $R(\rho)$ by

$$
\begin{aligned}
& A(\rho):=\theta_{\rho}^{*}(-\Delta) \theta_{*}^{\rho} \\
& B(\rho) v:=\operatorname{Tr} \theta_{\rho}^{*}\left\langle\nabla \theta_{*}^{\rho} v, n_{\rho}\right\rangle \\
& R(\rho) v:=(N-1) M_{H(\rho)} \operatorname{Tr} v+B(\rho) v,
\end{aligned}
$$

where Tr and M_{ψ} are the trace operator and the pointwise multiplication operator defined by

$$
\operatorname{Tr} v(\zeta):=v(\zeta), \quad\left(M_{\varphi} \psi\right)(\zeta):=\varphi(\zeta) \psi(\zeta) \quad(\zeta \in \Gamma)
$$

for $v \in h^{k+\alpha}(\bar{\Omega})$ and $\varphi, \psi \in h^{k+\alpha}(\Gamma)$, respectively, and $H(\rho) \in h^{1+\alpha}(\Gamma)$ assigns the mean curvature of Γ_{ρ} at $\theta_{\rho}(\zeta)$ to the point $\zeta \in \Gamma$. Note also that here we have used the notation $\langle\cdot, \cdot\rangle$ to denote the pointwise inner product. It can be shown (see Escher \& Simonett [7, 8]) that

$$
\begin{aligned}
& A \in C^{\omega}\left(\mathcal{U}, \mathcal{L}\left(h^{2+\alpha}(\bar{\Omega}), h^{\alpha}(\bar{\Omega})\right)\right), \\
& B \in C^{\omega}\left(\mathcal{U}, \mathcal{L}\left(h^{2+\alpha}(\bar{\Omega}), h^{1+\alpha}(\Gamma)\right)\right) \\
& R \in C^{\omega}\left(\mathcal{U}, \mathcal{L}\left(h^{2+\alpha}\left(\bar{\Omega} \backslash \Omega_{\text {sub }}\right), h^{1+\alpha}(\Gamma)\right)\right) .
\end{aligned}
$$

In view of (3.1), the moving surface $\partial \Omega(t)$ can be represented by $\rho(t)=\rho(\cdot, t)$ which is a real-valued function defined on the fixed reference surface Γ. Hence, the
problem can be reduced to the following system of differential equations, in which unknowns are the functions ρ and u :

$$
\begin{align*}
& \partial_{t} \rho=M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \operatorname{Tr}\left(\theta_{\rho}^{*} E+u\right) \tag{3.2}\\
& \quad \text { where }\left\{\begin{array}{l}
A(\rho) u=0, \\
R(\rho) u=-R(\rho) \theta_{\rho}^{*} E .
\end{array}\right. \tag{3.3}
\end{align*}
$$

Here, E is defined by

$$
E(x)=E_{\mu}(x):=(F * \mu)(x),
$$

and hence $-\Delta E=\mu$.
Furthermore, since u is determined only by ρ by virtue of the unique solvability of the elliptic equation (3.3) (see Gilbarg and Trudinger [9, Theorem 6.31]), the problem becomes a non-local evolution equation. To make it precise, let us define

$$
\begin{array}{ll}
S: \mathcal{U} \rightarrow \mathcal{L}\left(h^{\alpha}(\bar{\Omega}), h^{2+\alpha}(\bar{\Omega})\right), & S(\rho) v:=(A(\rho), R(\rho))^{-1}(v, 0), \\
T: \mathcal{U} \rightarrow \mathcal{L}\left(h^{1+\alpha}(\Gamma), h^{2+\alpha}(\bar{\Omega})\right), & T(\rho) \varphi:=(A(\rho), R(\rho))^{-1}(0, \varphi) .
\end{array}
$$

Then, we see that $u=-T(\rho) R(\rho) \theta_{\rho}^{*} E$. Therefore, our problem is to solve the following evolution equation:

$$
\begin{equation*}
\partial_{t} \rho+\Phi(\rho)=0 \tag{3.4}
\end{equation*}
$$

where

$$
\Phi: \mathcal{U} \rightarrow h^{1+\alpha}(\Gamma), \quad \Phi(\rho):=M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \operatorname{Tr}(T(\rho) R(\rho)-I) \theta_{\rho}^{*} E .
$$

Here, I is the identity map.

3.2 Linearized operator and its principal part

The theory of abstract evolution equations enables us to reduce the existence of a solution of (3.4) to the spectral properties of the linearized operator $\partial \Phi(\rho)$ of Φ at $\rho \in \mathcal{U}$. Indeed, once $\partial \Phi(\rho)$ is shown to be a sectorial operator, i.e., an infinitesimal generator of an analytic semigroup, then it follows from the theory of maximal regularity of Da Prato and Grisvard [5] that the equation (3.4) is uniquely solvable for initial data in a certain function space characterized as a continuous interpolation space.

By the implicit function theorem, we have the representation of the linearized operator $\partial T(\rho)$ of T at $\rho \in \mathcal{U}$ as follows.

Lemma 3.1. For $\rho \in \mathcal{U}$ and $\varphi \in h^{1+\alpha}(\Gamma)$, let us set $v=v(\rho):=T(\rho) \varphi$, i.e., v satisfies

$$
\begin{cases}A(\rho) v=0 & \text { in } \Omega \\ R(\rho) v=\varphi & \text { on } \partial \Omega\end{cases}
$$

Then, the linearized operator $\partial v(\rho) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\bar{\Omega})\right)$ of v at ρ is given by

$$
\partial v(\rho)[\tilde{\rho}]=\partial(T(\rho) \varphi)[\tilde{\rho}]=-S(\rho) \partial A(\rho)[\tilde{\rho}] T(\rho) \varphi-T(\rho) \partial R(\rho)[\tilde{\rho}] T(\rho) \varphi .
$$

Moreover, $T \in C^{\omega}\left(\mathcal{U}, \mathcal{L}\left(h^{1+\alpha}(\Gamma), h^{2+\alpha}(\bar{\Omega})\right)\right)$.
From the above lemma, we see that
$\partial \Phi(\rho)[\tilde{\rho}]=M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \operatorname{Tr} T(\rho) \partial R(\rho)[\tilde{\rho}](I-T(\rho) R(\rho)) \theta_{\rho}^{*} E+F_{1}(\rho)[\tilde{\rho}]+F_{2}(\rho)[\tilde{\rho}]+F_{3}(\rho)[\tilde{\rho}]$, where the linear operators

$$
\begin{aligned}
& F_{1}(\rho)[\tilde{\rho}]:=-M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \operatorname{Tr} S(\rho) \partial A(\rho)[\tilde{\rho}] T(\rho) R(\rho) \theta_{\rho}^{*} E, \\
& F_{2}(\rho)[\tilde{\rho}]:=\partial M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|}[\tilde{\rho}] \operatorname{Tr}(T(\rho) R(\rho)-I) \theta_{\rho}^{*} E, \\
& F_{3}(\rho)[\tilde{\rho}]:=M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \operatorname{Tr}(T(\rho) R(\rho)-I) \partial\left(\theta_{\rho}^{*} E\right)[\tilde{\rho}]
\end{aligned}
$$

can be thought of as perturbations in the sense that

$$
\left\|F_{j}(\rho)[\tilde{\rho}]\right\|_{h^{2+\alpha}(\Gamma)} \leq C\|\tilde{\rho}\|_{h^{2+\alpha}(\Gamma)} \quad(j=1,2,3)
$$

where the constant C depends on $\rho \in \mathcal{U}$, but not on $\tilde{\rho} \in h^{3+\alpha}(\Gamma)$.
Moreover, the operator $\partial R(\rho)$ can also be decomposed further into the principal part and its perturbation. For this purpose, let us recall that the mean curvature operator $H=H(\rho)$ has a useful representation as in the following lemma. Here we take γ such that $\alpha<\gamma<1$ and set

$$
\mathcal{V}=\mathcal{V}_{a}:=\left\{\rho \in h^{2+\gamma}(\Gamma) \mid\|\rho\|_{C^{1}}<a\right\}
$$

Lemma 3.2 (Escher \& Simonett [7, Lemma 3.1]). For each $\rho \in \mathcal{U}$, the mean curvature operator $H(\rho)$ can be decomposed as

$$
H(\rho)=P(\rho) \rho+K(\rho)
$$

where $P \in C^{\omega}\left(\mathcal{V}, \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{1+\alpha}(\Gamma)\right)\right)$ and $K \in C^{\omega}\left(\mathcal{V}, h^{1+\gamma}(\Gamma)\right)$.
Hence, for $v \in h^{2+\alpha}\left(\bar{\Omega} \backslash \Omega_{\text {sub }}\right)$, we have

$$
\partial(R(\rho) v)[\tilde{\rho}]=(N-1) M_{v} P(\rho)[\tilde{\rho}]+F_{4}(\rho, v)[\tilde{\rho}]
$$

where

$$
\left\|F_{4}(\rho, v)[\tilde{\rho}]\right\|_{h^{1+\alpha}(\Gamma)} \leq C\|v\|_{h^{2+\alpha}(\Gamma)}\|\tilde{\rho}\|_{h^{2+\gamma}(\Gamma)}
$$

with C being a constant independent of $\tilde{\rho}$. Therefore, the linearized operator $\partial \Phi(\rho)$ can now be represented in the following form:

$$
\partial \Phi(\rho)[\tilde{\rho}]=(N-1) M_{1}(\rho) \operatorname{Tr} T(\rho) M_{2}(\rho) P(\rho)[\tilde{\rho}]+F(\rho)[\tilde{\rho}],
$$

where

$$
\begin{aligned}
& M_{1}(\rho):=M_{\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|} \in \mathcal{L}\left(h^{2+\alpha}(\Gamma)\right), \\
& M_{2}(\rho):=M_{(I-T(\rho) R(\rho)) \theta_{\rho}^{*} E} \in \mathcal{L}\left(h^{1+\alpha}(\Gamma)\right), \\
& F(\rho) \in \mathcal{L}\left(h^{2+\gamma}(\Gamma), h^{2+\alpha}(\Gamma)\right)
\end{aligned}
$$

3.3 The generation property of the linearized operator

Our task is now to prove that the linear operator

$$
W=W(\rho):=-M_{1}(\rho) \operatorname{Tr} T(\rho) M_{2}(\rho) P(\rho) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)
$$

is sectorial in $h^{2+\alpha}(\Gamma)$, i.e., it generates an analytic semigroup on $h^{2+\alpha}(\Gamma)$. Indeed, a standard perturbation result of sectorial operators implies that, if W is sectorial, then $-\partial \Phi(\rho)$ is also sectorial. The following theorem is the main assertion in this section.

Theorem 3.3. $W \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)$ is sectorial in $h^{3+\alpha}(\Gamma)$.
Corollary 3.4. $-\partial \Phi(\rho) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)$ is sectorial in $h^{3+\alpha}(\Gamma)$.
To prove Theorem 3.3, it is well-known (see Amann [2]) that W is sectorial if there exist positive constants λ_{*} and C such that
(i) $\lambda_{*} I-W \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)$ is bijective, i.e., λ_{*} is in the resolvent set.
(ii) $|\lambda|\|\tilde{\rho}\|_{h^{2+\alpha}(\Gamma)}+\|\tilde{\rho}\|_{h^{3+\alpha}(\Gamma)} \leq C\|(\lambda I-W) \tilde{\rho}\|_{h^{2+\alpha}(\Gamma)}$ holds for $\tilde{\rho} \in h^{3+\alpha}(\Gamma)$ and $\lambda \in\left\{z \in \mathbb{C} \mid \operatorname{Re} z \geq \lambda_{*}\right\}$.

Let us first confirm the condition (i) by assuming (ii). Since (ii) implies that $\lambda_{*} I-W$ is injective, we only need to prove that it is also surjective. Note that \mathcal{U} is star-shaped with respect to 0 in $h^{3+\alpha}(\Gamma)$ and $\mathcal{K}:=\{t \rho \in \mathcal{U} \mid 0 \leq t \leq 1\}$ is a compact subset in \mathcal{U}. Hence, from the continuity of the map $\rho \mapsto W=W(\rho)$ it follows that the constant C in the resolvent estimate (ii) can be chosen uniformly in $\rho \in \mathcal{K}$. Therefore, by the continuity method (see Gilbarg \& Trudinger [9 , Theorem 5.2]) together with the uniform resolvent estimate (ii), it is sufficient to show that $\lambda_{*} I-W$ is surjective in the case $\rho=0$.

Then, it is known that

$$
\begin{equation*}
P(0)=-\frac{1}{N-1} \Delta_{\pi}^{\Gamma} \tag{3.5}
\end{equation*}
$$

where Δ_{π}^{Γ} is the principal part of the Laplace-Beltrami operator with respect to Γ. Moreover, we have

$$
\begin{equation*}
v:=(I-T(0) R(0)) E>0 \tag{3.6}
\end{equation*}
$$

everywhere on Γ. This can be verified in the same way as (2.2), since v satisfies

$$
\left\{\begin{array}{l}
-\Delta v=\mu \\
R(0) v=0
\end{array}\right.
$$

Now (3.5) and (3.6) imply that

$$
I+M_{2}(0) P(0)=I+M_{(I-T(0) R(0)) E} P(0) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{1+\alpha}(\Gamma)\right)
$$

is a bijective operator having bounded inverse.
Note also that

$$
M_{1}(0) \operatorname{Tr} T(0)=M_{\left|\nabla L_{0}\right|} \operatorname{Tr} T(0) \in \mathcal{L}\left(h^{1+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)
$$

is bijective. This follows from $\left|\nabla L_{0}\right|>0$ and the unique solvability of the oblique derivative problem in the Hölder spaces (see Gilbarg \& Trudinger [9, Theorem 6.31]).

In the expression

$$
\lambda_{*} I-W=M_{1}(0) \operatorname{Tr} T(0)\left\{I+M_{2}(0) P(0)\right\}+\lambda_{*} I-M_{1}(0) \operatorname{Tr} T(0),
$$

the second and third operators in the right hand side are compact perturbations, since the embedding $h^{3+\alpha}(\Gamma) \hookrightarrow h^{2+\alpha}(\Gamma)$ is compact. Furthermore, as we have already seen, the first one is a bijective operator from $h^{3+\alpha}(\Gamma)$ to $h^{2+\alpha}(\Gamma)$. Therefore, $\lambda_{*} I-W$ is a Fredholm operator of index 0 . Now the assertion follows from the fact that $\lambda_{*} I-W$ is injective.

We will establish the remaining resolvent estimate (ii) in the following sections.

3.4 Fourier multiplier operators associated with localized operators

Let us take an atlas $\left\{U_{l}, \psi_{l}\right\}_{1 \leq l \leq m}$ of $R_{d}:=\theta(\Gamma \times(-d, 0])$ for small $0<d<a / 4$ such that $\operatorname{diam} U_{l}<d$ and that ψ_{l} maps $Q:=(-d, d)^{N-1} \times[0, d), Q_{0}:=(-d, d)^{N-1} \times\{0\}$ onto $U_{l}, U_{l} \cap \Gamma$, respectively. Note that the number of local coordinates m depends on d.

Localizing the operator W to each U_{l}, and choosing an appropriate constant coefficient operator on \mathbb{R}^{N-1} which approximates W in that localized region U_{l}, we will show that this constant coefficient operator has a representation as a Fourier multiplier operator, and moreover that it generates an analytic semigroup in an appropriate Banach space, namely, the little Hölder space $h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)$. The latter will be established by applying a general result due to H . Amann, which states that, for given $\sigma \in \mathcal{E} l l \mathcal{S}_{1}^{\infty}\left(\gamma_{*}\right), \gamma_{*}>0$ and $\eta_{0}>0$, it follows that

$$
\Sigma_{\eta_{0}}:=-\mathcal{F}^{-1} \mathcal{M}_{\sigma\left(\cdot, \eta_{0}\right)} \mathcal{F} \in \mathcal{L}\left(h^{3+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)\right)
$$

is sectorial, i.e., it generates a strongly continuous analytic semigroup on $h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)$. Here, $\sigma \in \mathcal{E} l l \mathcal{S}_{1}^{\infty}\left(\gamma_{*}\right)$ if $\sigma=\sigma(\xi, \eta) \in C^{\infty}\left(\mathbb{R}^{N-1} \times(0, \infty)\right)$ is positively homogeneous of degree one and its all derivatives are bounded on the set $\left\{|\xi|^{2}+\eta^{2}=1\right\}$ and if

$$
\begin{equation*}
\operatorname{Re} \sigma(\xi, \eta) \geq \gamma_{*} \sqrt{|\xi|^{2}+\eta^{2}} \quad\left((\xi, \eta) \in \mathbb{R}^{N-1} \times(0, \infty)\right) \tag{3.7}
\end{equation*}
$$

holds. The linear operator \mathcal{M}_{ϕ} with a given function ϕ on \mathbb{R}^{N-1} is the localized version of the pointwise multiplication operator induced by ϕ.

Let us fix $\rho \in \mathcal{U}$ and $(U, \psi)=\left(U_{l}, \psi_{l}\right)$ for some $l=1, \ldots, m$, and define the pull-back and push-forward operators induced by ψ by

$$
\psi^{*} u:=u \circ \psi, \quad \psi_{*} v:=v \circ \psi^{-1}
$$

for $u \in h^{k+\alpha}(\bar{U}), v \in h^{k+\alpha}(\bar{Q})$, respectively. We then introduce local representations \mathcal{A}, \mathcal{R} and \mathcal{P} of the operators $A(\rho), R(\rho)$ and $P(\rho)$ defined by

$$
\mathcal{A}:=\psi^{*} A(\rho) \psi_{*}, \quad \mathcal{R}:=\psi^{*} R(\rho) \psi_{*}, \quad \mathcal{P}:=\psi^{*} P(\rho) \psi_{*} .
$$

In what follows, for simplicity, we write

$$
\partial_{j}:=\frac{\partial}{\partial \omega_{j}} \quad(j=1, \ldots, N-1), \quad \partial_{N}:=\frac{\partial}{\partial r} .
$$

As shown in Escher \& Simonett [7, Lemma 3.2] and [8, Lemma 3.1], we have

$$
\begin{aligned}
& \mathcal{A}=-\sum_{j, k=1}^{N} a_{j k}(\rho) \partial_{j} \partial_{k}+\sum_{j=1}^{N} a_{j}(\rho) \partial_{j}, \\
& \mathcal{R}=b_{0}(\rho) \operatorname{Tr}-\sum_{j=1}^{N} b_{j}(\rho) \operatorname{Tr} \partial_{j}, \\
& \mathcal{P}=-\sum_{j, k=1}^{N-1} p_{j k}(\rho) \partial_{j} \partial_{k}
\end{aligned}
$$

where $a_{j k} \in C^{\omega}\left(\mathcal{U}, h^{2+\alpha}(Q)\right), a_{j} \in C^{\omega}\left(\mathcal{U}, h^{1+\alpha}(Q)\right), b_{j} \in C^{\omega}\left(\mathcal{U}, h^{2+\alpha}\left(Q_{0}\right)\right)$ and $p_{j k} \in$ $C^{\omega}\left(\mathcal{U}, h^{2+\alpha}\left(Q_{0}\right)\right)$, and we used the same notation Tr to denote the trace operator on Q_{0}. Moreover, the matrices $\left(a_{j k}(\rho)(\omega, r)\right),\left(p_{j k}(\rho)(\omega)\right)$ are symmetric and uniformly positive definite on Q, Q_{0}, respectively, and $b_{0}(\rho), b_{N}(\rho)$ are uniformly positive on Q_{0}. Here, we may further assume that

$$
b_{j}(\rho)=0 \quad(j=1, \ldots, N-1)
$$

Indeed, the validity of this assumption is guaranteed by taking the diffeomorphisms ψ_{l} so that each $\theta_{\rho} \circ \psi_{l}$ preserves the normal directions to the corresponding boundaries, namely,

$$
\partial_{N}\left(\theta_{\rho} \circ \psi_{l}\right)=D\left(\theta_{\rho} \circ \psi_{l}\right) e_{N}=-s\left(n_{\rho} \circ \psi_{l}\right)
$$

holds with some positive number s at each point on Q_{0}, where $e_{N}:={ }^{t}(0, \ldots, 0,1)$. For the construction of such a diffeomorphism, we refer to Ni \& Takagi [14].

We are now in a position to introduce associated constant coefficient operators. By setting

$$
a_{j k}^{0}:=a_{j k}(\rho)(0,0), \quad b_{j}^{0}:=b_{j}(\rho)(0), \quad p_{j k}^{0}=p_{j k}(\rho)(0),
$$

let us define

$$
\begin{aligned}
& \mathcal{A}_{0}:=-\sum_{j, k=1}^{N} a_{j k}^{0} \partial_{j} \partial_{k} \\
& \mathcal{R}_{0}:=b_{0}^{0} \operatorname{Tr}-b_{N}^{0} \operatorname{Tr} \partial_{N} \\
& \mathcal{P}_{0}:=I-\sum_{j, k=1}^{N-1} p_{j k}^{0} \partial_{j} \partial_{k}
\end{aligned}
$$

The constant coefficient operator \mathcal{T}_{0} associated with $T(\rho)$ will be defined such that, for $\varphi \in h^{1+\alpha}\left(\mathbb{R}^{N-1}\right), v:=\mathcal{T}_{0} \varphi \in h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)$ and v satisfies

$$
\begin{cases}\left(I+\mathcal{A}_{0}\right) v=0 & \text { in } \quad \mathbb{R}^{N-1} \times(0, \infty), \tag{3.8}\\ \mathcal{R}_{0} v=\varphi & \text { on } \mathbb{R}^{N-1} \simeq \mathbb{R}^{N-1} \times\{0\}\end{cases}
$$

To derive an explicit representation of \mathcal{T}_{0}, we set

$$
z(\xi):=\frac{i}{a_{N N}^{0}} \sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}+\frac{1}{a_{N N}^{0}} \sqrt{a_{N N}^{0}\left(1+\sum_{j, k=1}^{N-1} a_{j k}^{0} \xi_{j} \xi_{k}\right)-\left(\sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}\right)^{2}}
$$

where $i:=\sqrt{-1}$. Then, $z=z(\xi)$ is a solution to the quadratic equation

$$
1+\sum_{j k=1}^{N-1} a_{j k}^{0} \xi_{j} \xi_{k}+2 i\left(\sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}\right) z-a_{N N}^{0} z^{2}=0
$$

and satisfies $\operatorname{Re} z(\xi)>0$ by the ellipticity of $\left(a_{j k}^{0}\right)$. Denoting by \mathcal{F} and \mathcal{F}^{-1} the (partial) Fourier transform and the inverse (partial) Fourier transform on \mathbb{R}^{N-1}, respectively, we have an explicit representation formula of the solution operator \mathcal{T}_{0} as the following lemma shows.

Lemma 3.5. Let \mathcal{T}_{0} be defined by

$$
\begin{aligned}
& \mathcal{T}_{0} \varphi(\omega, r):=\left[\mathcal{F}^{-1} \mathcal{M}_{\sigma_{1}(\cdot, r)} \mathcal{F} \varphi\right](\omega), \\
& \sigma_{1}(\xi, r):=\frac{e^{-z(\xi) r}}{b_{0}^{0}+b_{N}^{0} z(\xi)}
\end{aligned}
$$

Then, $\mathcal{T}_{0} \in \mathcal{L}\left(h^{1+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)\right)$ and, for any $\varphi \in h^{1+\alpha}\left(\mathbb{R}^{N-1}\right)$, $v:=\mathcal{T}_{0} \varphi$ is the unique solution to (3.8) in $h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)$.
Proof. By a direct computation, it is easy to see that $v:=\mathcal{T}_{0} \varphi$ satisfies (3.8) for smooth φ. Moreover, $\mathcal{T}_{0} \in \mathcal{L}\left(h^{1+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)\right.$) follows from the decomposition

$$
\mathcal{T}_{0} \varphi(\omega, r)=\left[\left(\mathcal{F}^{-1} \mathcal{M}_{\sigma_{1,1}(\cdot, r)} \mathcal{F}\right)\left(\mathcal{F}^{-1} \mathcal{M}_{\sigma_{1,2}} \mathcal{F}\right)\right](\omega)
$$

where

$$
\sigma_{1,1}(\xi, r):=e^{-z(\xi) r}, \quad \sigma_{1,2}(\xi):=\left(b_{0}^{0}+b_{N}^{0} z(\xi)\right)^{-1}
$$

Indeed, $\mathcal{F}^{-1} \mathcal{M}_{\sigma_{1,1}(, r)} \mathcal{F} \in \mathcal{L}\left(h^{2+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)\right)$ can be checked as in Escher \& Simonett [6, Lemma B.2], and also it is easy to prove that $\mathcal{F}^{-1} \mathcal{M}_{\sigma_{1,2}} \mathcal{F} \in$ $\mathcal{L}\left(h^{1+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)\right)$ in view of Escher \& Simonett [6, Theorem A.1]. For the uniqueness of a solution, it suffices to show that any solution $v \in h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)$. of

$$
\left\{\begin{array}{lll}
\left(I+\mathcal{A}_{0}\right) v=0 & \text { in } & \mathbb{R}^{N-1} \times(0, \infty) \\
\mathcal{R}_{0} v=0 & \text { on } & \mathbb{R}^{N-1}
\end{array}\right.
$$

must be identical with the trivial solution $v \equiv 0$. By virtue of the Phragmén-Lindelöf principle, this can be reduced to showing that $v=0$ on the boundary \mathbb{R}^{N-1}. Let us prove that $v \leq 0$ on \mathbb{R}^{N-1} by assuming

$$
c:=\sup _{\omega \in \mathbb{R}^{N-1}} v(\omega, 0)>0
$$

and deriving a contradiction. For any $\omega \in \mathbb{R}^{N-1}$ and $r>0$, observe that

$$
\begin{aligned}
v(\omega, 0)+\frac{b_{0}^{0}}{b_{N}^{0}} r v(\omega, 0)-v(\omega, r) & =v(\omega, 0)+r \partial_{N} v(\omega, 0)-v(\omega, r) \\
& =\int_{0}^{r}\left(\partial_{N} v(\omega, 0)-\partial_{N} v(\omega, s)\right) d s \\
& \leq \frac{r^{2}}{2}\|v\|_{h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)} .
\end{aligned}
$$

Thus, by choosing a sufficiently small $\varepsilon>0$ and $\omega \in \mathbb{R}^{N-1}$ such that $v(\omega, 0)>c-\varepsilon$, we see that

$$
\begin{aligned}
v(\omega, r) & \geq v(\omega, 0)+\frac{b_{0}^{0}}{b_{N}^{0}} r v(\omega, 0)-\frac{r^{2}}{2}\|v\|_{h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)} \\
& >c-\varepsilon+\frac{b_{0}^{0}}{b_{N}^{0}} r(c-\varepsilon)-\frac{r^{2}}{2}\|v\|_{h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)} \\
& >c,
\end{aligned}
$$

where the last inequality is valid for $\varepsilon>0$ and $r \in(0,1)$ such that

$$
r\left(\frac{b_{0}^{0}}{b_{N}^{0}} c-\frac{r}{2}\|v\|_{h^{2+\alpha}\left(\mathbf{R}^{N-1} \times[0, \infty)\right)}\right)>\varepsilon\left(1+\frac{b_{0}^{0}}{b_{N}^{0}} r\right) .
$$

and the existence of such a pair of ε and r can be easily checked. However, recalling that the Phragmén-Lindelöf principle yields $v(\omega, r)<c$ for all $\omega \in \mathbb{R}^{N-1}$ and $r>0$, we are now arriving at a contradiction and thus $v \leq 0$ is proved. The inequality $v \geq 0$ can be proved by a similar argument.

For later use, we also provide the solution operator \mathcal{S}_{0} of the following boundary value problem:

$$
\begin{cases}\left(I+\mathcal{A}_{0}\right) v=f & \text { in } \mathbb{R}^{N-1} \times(0, \infty) \tag{3.9}\\ \mathcal{R}_{0} v=0 & \text { on } \mathbb{R}^{N-1}\end{cases}
$$

In what follows, we write \mathcal{F}_{N} and \mathcal{F}_{N}^{-1} for the Fourier transform and the inverse Fourier transform on \mathbb{R}^{N}, respectively, and $\mathcal{E} \in \mathcal{L}\left(h^{\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right), h^{\alpha}\left(\mathbb{R}^{N}\right)\right)$ denotes an extension operator, i.e., $\mathcal{E} f=f$ on $\mathbb{R}^{N-1} \times[0, \infty)$.

Lemma 3.6. Let \mathcal{S}_{0} be defined by

$$
\begin{aligned}
& \mathcal{S}_{0} f(\omega, r):=\left(I-\mathcal{T}_{0} \mathcal{R}_{0}\right)\left\{\mathcal{F}_{N}^{-1} \mathcal{M}_{\sigma_{2}} \mathcal{F}_{N} \mathcal{E} f\right\}\left\lfloor_{\mathbb{R}^{N-1} \times[0,1]}\right. \\
& \sigma_{2}(\xi):=\left(1+\sum_{j, k=1}^{N} a_{j k}^{0} \xi_{j} \xi_{k}\right)^{-1}
\end{aligned}
$$

Then, $\mathcal{S}_{0} \in \mathcal{L}\left(h^{\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right), h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)\right.$ and, for any $f \in h^{\alpha}\left(\mathbb{R}^{N-1} \times\right.$ $[0, \infty)), v:=\mathcal{S}_{0} f$ is the unique solution to (3.9) in $h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)$.
Proof. A direct computation shows that $v:=\mathcal{S}_{0} f$ satisfies (3.9) for smooth f. Moreover, Lemma 3.5 and the facts that

$$
\begin{aligned}
& \mathcal{R}_{0} \in \mathcal{L}\left(h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right), h^{1+\alpha}\left(\mathbb{R}^{N-1}\right)\right), \\
& \mathcal{F}_{N}^{-1} \mathcal{M}_{\sigma_{2}} \mathcal{F}_{N} \in \mathcal{L}\left(h^{\alpha}\left(\mathbb{R}^{N}\right), h^{2+\alpha}\left(\mathbb{R}^{N}\right)\right)
\end{aligned}
$$

yield the desired conclusion $\mathcal{S}_{0} \in \mathcal{L}\left(h^{\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right), h^{2+\alpha}\left(\mathbb{R}^{N-1} \times[0, \infty)\right)\right)$. The uniqueness of a solution again follows from the Phragmén-Lindelöf principle.

Finally, by setting

$$
\begin{aligned}
& m_{1}:=\psi^{*}\left|\theta_{\rho}^{*}\left(\nabla L_{\rho}\right)\right|(0,0)>0 \\
& m_{2}:=\psi^{*}\left\{(I-T(\rho) R(\rho)) \theta_{\rho}^{*} E\right\}(0,0)>0
\end{aligned}
$$

we define \mathcal{W}_{0} by

$$
\begin{aligned}
\mathcal{W}_{0} & :=-m_{1} m_{2} \operatorname{Tr} \mathcal{T}_{0} \mathcal{P}_{0} \\
& =-\mathcal{F}^{-1} \mathcal{M}_{\sigma} \mathcal{F}
\end{aligned}
$$

where

$$
\sigma(\xi):=\frac{m_{1} m_{2}\left(1+\sum_{j, k=1}^{N-1} p_{j k}^{0} \xi_{j} \xi_{k}\right)}{b_{0}^{0}+b_{N}^{0} z(\xi)}
$$

Then, we have the following proposition.
Proposition 3.7. $\mathcal{W}_{0} \in \mathcal{L}\left(h^{3+\alpha}\left(\mathbb{R}^{N-1}\right), h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)\right)$ is sectorial.
Proof. Let us define the parametrized symbol $\tilde{\sigma}$ by

$$
\tilde{\sigma}(\xi, \eta):=\frac{m_{1} m_{2}\left(\eta^{2}+\sum_{j, k=1}^{N-1} p_{j k}^{0} \xi_{j} \xi_{k}\right)}{b_{0}^{0} \eta+b_{N}^{0} \tilde{z}(\xi, \eta)}
$$

where

$$
\tilde{z}(\xi, \eta):=\frac{i}{a_{N N}^{0}} \sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}+\frac{1}{a_{N N}^{0}} \sqrt{a_{N N}^{0}\left(\eta^{2}+\sum_{j, k=1}^{N-1} a_{j k}^{0} \xi_{j} \xi_{k}\right)-\left(\sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}\right)^{2}} .
$$

Note that $\tilde{z}(\xi, 1)=z(\xi)$ and hence $\tilde{\sigma}(\xi, 1)=\sigma(\xi)$. We show that $\tilde{\sigma} \in \mathcal{E} l l \mathcal{S}_{1}^{\infty}\left(\gamma_{*}\right)$ with some positive number γ_{*}. Indeed, it is easy to see that $\tilde{\sigma} \in C^{\infty}\left(\mathbb{R}^{N-1} \times(0, \infty)\right)$, and it is positively homogeneous of degree one, and its all derivatives are bounded on $\left\{|\xi|^{2}+\eta^{2}=1\right\}$. To check the condition (3.7), let a_{*}, p_{*} denote the ellipticity constants for $\mathcal{A}_{0}, \mathcal{P}_{0}$, i.e.,

$$
\begin{align*}
\sum_{j, k=1}^{N-1} a_{j k}^{0} \xi_{j} \xi_{k}+2 \tilde{\eta} \sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}+a_{N N}^{0} \tilde{\eta}^{2} & \geq a_{*}\left(|\xi|^{2}+\tilde{\eta}^{2}\right) \tag{3.10}\\
\sum_{j, k=1}^{N-1} p_{j k}^{0} \xi_{j} \xi_{k} & \geq p_{*}|\xi|^{2} \tag{3.11}
\end{align*}
$$

Then, in particular, by taking $\tilde{\eta}=-\left(a_{N N}^{0}\right)^{-1} \sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}$ in (3.10), we have

$$
\sum_{j, k=1}^{N-1} a_{j k}^{0} \xi_{j} \xi_{k}-\frac{1}{a_{N N}^{0}}\left(\sum_{j=1}^{N-1} a_{j N}^{0} \xi_{j}\right)^{2} \geq a_{*}|\xi|^{2}
$$

and hence

$$
\begin{align*}
\operatorname{Re} \tilde{z}(\xi, \eta) & \geq \frac{1}{a_{N N}^{0}} \sqrt{a_{N N}^{0}\left(\eta^{2}+a_{*}|\xi|^{2}\right)} \\
& \geq \sqrt{\frac{\min \left\{1, a_{*}\right\}}{a_{N N}^{0}}} \sqrt{|\xi|^{2}+\eta^{2}} \tag{3.12}
\end{align*}
$$

We also observe that

$$
\begin{align*}
\left|b_{0}^{0} \eta+b_{N}^{0} \tilde{z}(\xi, \eta)\right|^{2} & \leq 2 b_{0}^{0} \eta^{2}+2 b_{N}^{0}|\tilde{z}(\xi, \eta)|^{2} \\
& \leq 2 b_{N}^{0}\left(\sum_{j, k=1}^{N-1} a_{j k}^{0}{ }^{2}\right)|\xi|^{2}+2\left(b_{0}^{0}+b_{N}^{0}\right) \eta^{2} \tag{3.13}
\end{align*}
$$

Therefore, combining (3.11), (3.12) and (3.13), we deduce that

$$
\begin{aligned}
\operatorname{Re} \tilde{\sigma}(\xi, \eta) & =\frac{m_{1} m_{2}\left(\eta^{2}+\sum_{j, k=1}^{N-1} p_{j, k}^{0} \xi_{j} \xi_{k}\right)\left(b_{0}^{0} \eta+b_{N}^{0} \operatorname{Re} \tilde{z}(\xi, \eta)\right)}{\left|b_{0}^{0} \eta+b_{N}^{0} \tilde{z}(\xi, \eta)\right|^{2}} \\
& \geq \frac{m_{1} m_{2}\left(\eta^{2}+p_{*}|\xi|^{2}\right)\left(b_{0}^{0} \eta+b_{N}^{0} \sqrt{\frac{\min \left\{1, a_{*}\right\}}{a_{N N}^{0}}} \sqrt{|\xi|^{2}+\eta^{2}}\right)}{2 b_{N}^{0}\left(\sum_{j, k=1}^{N-1} a_{j k}^{0}{ }^{2}\right)|\xi|^{2}+2\left(b_{0}^{0}+b_{N}^{0}\right) \eta^{2}} \\
& \geq \gamma_{*} \sqrt{|\xi|^{2}+\eta^{2}},
\end{aligned}
$$

where

$$
\gamma_{*}:=\frac{m_{1} m_{2} b_{N}^{0} \min \left\{1, p_{*}\right\} \sqrt{\min \left\{1, a_{*}\right\}}}{2 \sqrt{a_{N N}^{0}} \max \left\{b_{N}^{0}\left(\sum_{j, k=1}^{N-1}{a_{j k}^{0}}^{2}\right), b_{0}^{0}+b_{N}^{0}\right\}}>0 .
$$

Therefore, $\tilde{\sigma} \in \mathcal{E} l l \mathcal{S}_{1}^{\infty}\left(\gamma_{*}\right)$, and hence

$$
\mathcal{W}_{0}=-\mathcal{F}^{-1} \mathcal{M}_{\tilde{\sigma}(\cdot, 1)} \mathcal{F}
$$

is a sectorial operator on $h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)$.

3.5 Resolvent estimate by a perturbation argument

Proposition 3.7 implies that the operator $\mathcal{W}_{0}^{(l)}=\mathcal{W}_{0}$, which approximates W in the localized region U_{l}, satisfies the resolvent estimate

$$
\begin{equation*}
|\lambda|\|\tilde{\rho}\|_{h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)}+\|\tilde{\rho}\|_{h^{3+\alpha}\left(\mathbb{R}^{N-1}\right)} \leq C\left\|\left(\lambda I-\mathcal{W}_{0}^{(l)}\right) \tilde{\rho}\right\|_{h^{2+\alpha}\left(\mathbb{R}^{N-1}\right)} \tag{3.14}
\end{equation*}
$$

for any $\tilde{\rho} \in h^{3+\alpha}\left(\mathbb{R}^{N-1}\right)$ and $\lambda \in\left\{z \in \mathbb{C} \mid \operatorname{Re} z \geq \lambda_{0}\right\}$, by taking $\lambda_{0}>0$ and $C>0$ appropriately.

We will show that $\mathcal{W}_{0}^{(l)}$ indeed approximates W by taking $d>0$ so small that the atlas $\left\{U_{l}, \psi_{l}\right\}_{1 \leq l \leq m}$ of R_{d} becomes fine enough (see the beginning of Section 3.4) in the sense that the desired resolvent estimate

$$
\begin{equation*}
|\lambda|\|\tilde{\rho}\|_{h^{2+\alpha}(\Gamma)}+\|\tilde{\rho}\|_{h^{3+\alpha}(\Gamma)} \leq C\|(\lambda I-W) \tilde{\rho}\|_{h^{2+\alpha}(\Gamma)} \tag{3.15}
\end{equation*}
$$

holds after patching all the local estimates together. This estimate completes the proof of Theorem 3.3.

For this purpose, we take a partition of unity $\left\{\phi_{l}\right\}_{l=1}^{m}$ associated with $\left\{U_{l}\right\}_{l=1}^{m}$ such that $\operatorname{supp} \phi_{l} \subset U_{l}$ and $\bigcup_{l=1}^{m} \phi_{l}=1$ on $R_{d / 2}$. Combining the atlas and the partition of unity, we call such a pair a localization sequence of R_{d}. Note that, we can choose a family of smooth cut-off functions $\left\{\chi_{l}\right\}_{l=1}^{m}$ as well as a localization sequence of R_{d} such that $\operatorname{supp} \chi_{l} \subset U_{l}, \chi_{l}=1$ on $\operatorname{supp} \phi_{l}$ and

$$
\begin{equation*}
\left\|\chi_{l}\right\|_{0, U_{l}}+d^{\alpha}\left[\chi_{l}\right]_{\alpha, U_{l}} \leq C \tag{3.16}
\end{equation*}
$$

with a positive constant C which is independent of d. Here and in what follows, we use the notation

$$
\begin{aligned}
& \|v\|_{k+\alpha, U}:=\|v\|_{h^{k+\alpha}(U)}, \quad[v]_{\alpha, U}:=\sup _{\substack{x, y \in U \\
x \neq y}} \frac{|v(x)-v(y)|}{|x-y|^{\alpha}}, \\
& \|v\|_{k+\alpha}:=\|v\|_{k+\alpha, \mathbb{R}^{N-1}}, \quad[v]_{\alpha}:=[v]_{\alpha, \mathbb{R}^{N-1}}
\end{aligned}
$$

Now we state the following perturbation result.
Lemma 3.8. For any $\varepsilon>0,0<\beta<\alpha$ and $\rho \in \mathcal{U}$, there are $d>0$, a localization sequence of R_{d}, and a constant $C=C(\varepsilon, \beta, \rho, d)$ such that

$$
\left\|\psi_{l}^{*}\left(\phi_{l} W \tilde{\rho}\right)-\mathcal{W}_{0}^{(l)} \psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{2+\alpha} \leq \varepsilon\left\|\psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{3+\alpha}+C\|\tilde{\rho}\|_{3+\beta, \Gamma}
$$

holds for $\tilde{\rho} \in h^{3+\alpha}(\Gamma)$ and $1 \leq l \leq m$.

The proof is straightforward, but lengthy. The detail can be found in Onodera [15]. Let us now complete the proof of Theorem 3.3.

Proof of Theorem 3.3. We only need to prove the resolvent estimate (3.15). For simplicity, we will denote $C>0$ a generic constant. Combining (3.14) and Lemma 3.8 with sufficiently small $\varepsilon>0$, we see that

$$
\begin{aligned}
|\lambda|\left\|\psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{2+\alpha}+\left\|\psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{3+\alpha} & \leq C\left\|\left(\lambda I-\mathcal{W}_{0}^{(l)}\right) \psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{2+\alpha} \\
& \leq C\left(\left\|\psi_{l}^{*}\left(\phi_{l}(\lambda I-W) \tilde{\rho}\right)\right\|_{2+\alpha}+\|\tilde{\rho}\|_{3+\beta, \Gamma}\right)
\end{aligned}
$$

holds for any $\tilde{\rho} \in h^{3+\alpha}(\Gamma), \lambda \in\left\{z \in \mathbb{C} \mid \operatorname{Re} z \geq \lambda_{0}\right\}$, and $1 \leq l \leq m$. Since

$$
\tilde{\rho} \mapsto \max _{1 \leq l \leq m}\left\|\psi_{l}^{*}\left(\phi_{l} \tilde{\rho}\right)\right\|_{k+\alpha}
$$

defines an equivalent norm on $h^{k+\alpha}(\Gamma)(k=2,3)$, the above inequality implies

$$
|\lambda|\|\tilde{\rho}\|_{2+\alpha, \Gamma}+\|\tilde{\rho}\|_{3+\alpha, \Gamma} \leq C\left(\|(\lambda I-W) \tilde{\rho}\|_{2+\alpha, \Gamma}+\|\tilde{\rho}\|_{3+\beta, \Gamma}\right) .
$$

Then, using the interpolation inequality

$$
\|\tilde{\rho}\|_{3+\beta, \Gamma} \leq \varepsilon\|\tilde{\rho}\|_{3+\alpha, \Gamma}+C\|\tilde{\rho}\|_{2+\alpha, \Gamma},
$$

we deduce that

$$
|\lambda|\|\tilde{\rho}\|_{2+\alpha, \Gamma}+\|\tilde{\rho}\|_{3+\alpha, \Gamma} \leq C\|(\lambda I-W) \tilde{\rho}\|_{2+\alpha, \Gamma}
$$

holds for any $\tilde{\rho} \in h^{3+\alpha}(\Gamma)$ and $\lambda \in\left\{z \in \mathbb{C} \mid \operatorname{Re} z \geq \lambda_{*}\right\}$ with sufficiently large $\lambda_{*}>\lambda_{0}$. This is nothing but (3.15).

Theorem 1.4 now follows from Theorem 3.3 and the theory of maximal regularity of Da Prato and Grisvard [5], since $h^{2+\alpha}(\Gamma)$ is characterized as a continuous interpolation space between $h^{3+\alpha^{\prime}}(\Gamma)$ and $h^{2+\alpha^{\prime}}(\Gamma)$ with $0<\alpha^{\prime}<\alpha<1$. For the proof of the solvability of fully-nonlinear equations in continuous interpolation spaces, we refer to Angenent [3, Theorem 2.7] and Lunardi [13].

4 Bifurcation criterion for quadrature surfaces

Theorems 1.2 and 1.4 immediately deduce Corollary 1.5.
Proof of Corollary 1.5. Assuming the existence of a curve $s \mapsto(\Gamma(s), t(s))$, let us derive a contradiction. We divide the proof into two cases: (i) $t^{\prime}(0)>0$ and (ii) $t^{\prime}(0)=0$.

In the case (i), we can take the inverse function t^{-1} of $t=t(s)$ at least in a neighborhood of $s=0$. Setting

$$
\tilde{\Gamma}(\tau):=\Gamma\left(t^{-1}(\tau)\right)
$$

we see that $\{\tilde{\Gamma}(\tau)\}_{0 \leq \tau<\tilde{\varepsilon}}$ with small $\tilde{\varepsilon}$ is an $h^{3+\alpha}$ family of surfaces satisfying

$$
\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+\tau \int h d \mu=\int_{\tilde{\Gamma}(\tau)} h d \mathcal{H}^{N-1}
$$

for harmonic functions h. Then, it follows from Theorem 1.2 that $\{\tilde{\Gamma}(\tau)\}_{0 \leq \tau<\tilde{\varepsilon}}$ is $\underset{\tilde{\Gamma}}{ }$ a solution to (1.5). However, the uniqueness assertion in Theorem 1.4 implies that $\tilde{\Gamma}(\tau)=\partial \Omega(\tau)$, or $\Gamma(s)=\partial \Omega(t(s))$. This is a contradiction.

In the case (ii), by differentiating the identity

$$
\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t(s) \int h d \mu=\int_{\Gamma(s)} h d \mathcal{H}^{N-1}
$$

with respect to s at $s=0$, we have a nonzero function $v_{n} \in h^{2+\alpha}(\partial \Omega(0))$ satisfying

$$
0=\int_{\partial \Omega(0)}\left\{\frac{\partial h}{\partial n}+(N-1) h H\right\} v_{n} d \mathcal{H}^{N-1}
$$

for all harmonic functions h defined in a neighborhood of $\overline{\Omega(0)}$. Therefore, by an argument similar to the last part of the proof of Theorem 1.2, we deduce that $v_{n}=0$ on $\partial \Omega(0)$, which is again a contradiction.

References

[1] Alt, H. W.; Caffarelli, L. A., Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981), 105-144.
[2] Amann, H., Linear and quasilinear parabolic problems. Vol. I. Abstract linear theory. Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.
[3] Angenent, S. B., Nonlinear analytic semiflows. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91-107.
[4] Beurling, A., On free-boundary problems for the Laplace equation. Sem. on Analytic Funcitons 1, Inst: for Advanced Study Princeton (1957), 248-263.
[5] Da Prato, G.; Grisvard, P., Equations d'évolution abstraites non linéaires de type parabolique. Ann. Mat. Pura Appl. (4) 120 (1979), 329-396.
[6] Escher, J.; Simonett, G., Maximal regularity for a free boundary problem. NoDEA 2 (1995), 463-510.
[7] Escher, J.; Simonett, G., Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations 2 (1997), no. 4, 619-642.
[8] Escher, J.; Simonett, G., Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28 (1997), no. 5, 1028-1047.
[9] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[10] Gustafsson, B., Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows. SIAM J. Math. Anal., 16 (1985), no. 2, 279-300.
[11] Gustafsson, B.; Shahgholian, H., Existence and geometric properties of solutions of a free boundary problem in potential theory. J. Reine Angew. Math. 473 (1996), 137-179.
[12] Henrot, A., Subsolutions and supersolutions in free boundary problems. Ark. Mat. 32 (1994), 79-98.
[13] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995.
[14] Ni, Wei-Ming; Takagi, Izumi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44 (1991), 819-851.
[15] Onodera, M., Geometric flows for quadrature identities. preprint.
[16] Richardson, S., Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech. 56 (1972), 609-618.
[17] Sakai, M., Quadrature Domains. Lecture Notes in Mathematics, 934. SpringerVerlag, Berlin-New York, 1982.
[18] Sakai, M., Application of variational inequalities to the existence theorem on quadrature domains. Trans. Amer. Math. Soc. 276 (1983), 267-279.

