<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>トピック</td>
<td>PARTIAL STATIONARY REFLECTION PRINCIPLES (Forcing extensions and large cardinals)</td>
</tr>
<tr>
<td>著者</td>
<td>USUBA, TOSHIMICHI</td>
</tr>
<tr>
<td>註記</td>
<td>数理解析研究所講究録 1851: 87-98</td>
</tr>
<tr>
<td>発行日</td>
<td>2013-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195132</td>
</tr>
<tr>
<td>資料種別</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>資料バージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository

京都大学
KYOTO UNIVERSITY
PARTIAL STATIONARY REFLECTION PRINCIPLES

TOSHIMICHI USUBA

Toshimichi Usuba (薄葉 季路)
Institute for Advanced Research, Nagoya University

1. INTRODUCTION

Throughout this paper, \(\kappa \) denotes a regular uncountable cardinal and \(\lambda \) a cardinal \(\geq \kappa^+ \), unless otherwise specified.

Partial stationary reflection on \(\mathcal{P}_{\omega_1}\omega_2 \) was introduced by H. Sakai [2]. First we extend his notion to arbitrary \(\kappa \) and \(\lambda \).

Definition 1.1. Let \(S^* \) be a stationary subset of \(\mathcal{P}_\kappa \lambda \). For a stationary set \(T \subseteq \mathcal{P}_\kappa + \lambda \), we say that \(\text{RP}(S^*, T) \) holds if for every stationary subset \(S \subseteq S^* \) there exists \(X \in T \) such that \(\kappa \subseteq X \) and \(S \cap \mathcal{P}_\kappa X \) is stationary in \(\mathcal{P}_\kappa X \). \(\text{RP}(S^*) \) means \(\text{RP}(S^*, \mathcal{P}_{\kappa^+}\lambda) \).

It is known that total stationary reflection \(\text{RP}(\mathcal{P}_\kappa \lambda) \) is a large cardinal property (e.g., see Velicikovic [3]), but Sakai [2] showed that partial stationary reflection on \(\mathcal{P}_{\omega_1}\omega_2 \) is not:

Fact 1.2 ([2]). Suppose CH. If \(\square_{\omega_1} \) holds, then there are a stationary set \(S^* \subseteq \mathcal{P}_{\omega_1}\omega_2 \) and a \(\sigma \)-Baire, \(\omega_2 \)-c.c. poset \(\mathbb{P} \) such that \(\mathbb{P} \) forces \(\text{RP}(S^*) \).

In this paper, we generalize his result as follows:

Theorem 1.3. Suppose \(\kappa^{<\kappa} = \kappa \). Let \(T \subseteq \mathcal{P}_{\kappa^+}\lambda \) be a stationary set such that \(\forall X \in T (\kappa \subseteq X) \). Then there exists a \(\kappa \)-closed, \(\kappa^+ \)-c.c. poset which forces the following statements:

1. \(T \) is stationary.
2. There exists a stationary set \(S^* \subseteq \mathcal{P}_\kappa \lambda \) such that
 a. \(\forall X \in T (S^* \cap \mathcal{P}_\kappa X \) contains a club in \(\mathcal{P}_\kappa X \),
 b. \(\text{RP}(S^*, T) \) holds.
This theorem shows that, even $\kappa > \omega_1$ and $\lambda > \omega_2$, our partial stationary reflection is not a large cardinal property.

Next we consider a natural strengthening of partial stationary reflection, simultaneous partial stationary reflection.

Definition 1.4. For stationary sets $S_0^*, S_1^* \subseteq \mathcal{P}_\kappa \lambda$ and $T \subseteq \mathcal{P}_{\kappa^+} \lambda$, we say that $\text{RP}^2(S_0^*, S_1^*, T)$ holds if for every stationary subsets $S_0 \subseteq S_0^*$ and $S_1 \subseteq S_1^*$ in $\mathcal{P}_\kappa \lambda$, there exists $X \in T$ such that $\kappa \subseteq X$ and both $S_0 \cap \mathcal{P}_\kappa X$ and $S_1 \cap \mathcal{P}_\kappa X$ are stationary in $\mathcal{P}_\kappa X$. $\text{RP}^2(S_0^*, S_1^*)$ means $\text{RP}^2(S_0^*, S_1^*, \mathcal{P}_{\kappa^+} \lambda)$.

We prove that our simultaneous partial stationary reflection is a large cardinal property by showing the following:

Definition 1.5. For a regular uncountable cardinal μ, $\square(\mu)$ holds if there exists a sequence $\langle C_\xi : \xi < \mu \rangle$ satisfying the following:

1. for all $\xi < \mu$, C_ξ is club in ξ and for all $\eta \in \text{lim}(C_\xi)$, $C_\eta = C_\xi \cap \eta$,
2. for all club C in μ, there exists $\xi \in \text{lim}(C)$ such that $C \cap \xi \neq C_\xi$.

Such an sequence $\langle C_\xi : \xi < \mu \rangle$ is called a $\square(\mu)$-sequence.

Theorem 1.6. Suppose $\text{RP}^2(S_0^*, S_1^*)$ holds for some stationary $S_0^*, S_1^* \subseteq \mathcal{P}_\kappa \lambda$. Then for every regular μ with $\kappa^+ \leq \mu \leq \lambda$, $\square(\mu)$ fails.

We also prove the following:

Theorem 1.7. For every stationary $S_0^*, S_1^* \subseteq \mathcal{P}_\kappa \lambda$ and regular μ with $\kappa^+ \leq \mu \leq \lambda$, $\text{RP}^2(S_0^*, S_1^*, \{X \in \mathcal{P}_{\kappa^+} \lambda : \text{cf}(X \cap \mu) < \kappa\})$ fails, where $\text{cf}(X) = \text{cf}(\text{ot}(X))$.

Todorcevic showed that $\text{RP}(\mathcal{P}_{\omega_1} \omega_2)$ implies that $2^\omega \leq \omega_2$. However we prove the following, which shows that our partial stationary reflection does not affect the size of the continuum:

Theorem 1.8.
1. Suppose $\text{RP}(S^*)$ for some stationary $S^* \subseteq \mathcal{P}_\kappa \lambda$. Then every κ-c.c. forcing preserves $\text{RP}(S^*)$.
2. Suppose PFA^{++}. Let $\lambda \geq \omega_2$. Then every c.c.c. forcing notion forces $\text{RP}^2(\mathcal{P}_{\omega_1}^\nu \lambda, \mathcal{P}_{\omega_1}^\nu \lambda)$.

2. Preliminaries

For a set X of ordinals, let $\text{cf}(X) = \text{cf}(\text{ot}(X))$.

For regular cardinals $\nu < \mu$, let $E_\nu^\mu = \{\alpha < \mu : \text{cf}(\alpha) = \nu\}$ and $E_{<\nu}^\mu = \{\alpha < \mu : \text{cf}(\alpha) < \nu\}$.
The proofs of the following lemmata are easy:

Lemma 2.1. For a stationary $S \subseteq \mathcal{P}_\kappa \lambda$ and a κ-c.c. poset \mathbb{P}, \mathbb{P} preserves the stationarity of S.

Lemma 2.2. For $S \subseteq \mathcal{P}_\kappa \lambda$, if $\{X \in \mathcal{P}_{\kappa+} \lambda : S \cap \mathcal{P}_\kappa X$ is stationary in $\mathcal{P}_\kappa X\}$ is stationary in $\mathcal{P}_{\kappa+} \lambda$, then S is stationary in $\mathcal{P}_\kappa \lambda$.

Lemma 2.3. For stationary sets $S^* \subseteq \mathcal{P}_\kappa \lambda$ and $T \subseteq \mathcal{P}_{\kappa+} \lambda$, suppose $RP(S^*, T)$ holds. Then for every stationary $S \subseteq S^*$, $\{X \in T : S \cap \mathcal{P}_\kappa X$ is stationary in $\mathcal{P}_\kappa X\}$ is stationary in $\mathcal{P}_{\kappa+} \lambda$.

We define club shootings into $\mathcal{P}_\kappa \lambda$, which was observed in [2].

Definition 2.4. For $S \subseteq \mathcal{P}_\kappa \lambda$, let $\mathbb{C}(S)$ be the poset which consists of all functions p such that:

1. $|p| < \kappa$,
2. $p : d(p) \times d(p) \to \kappa$ for some $d(p) \in \mathcal{P}_\kappa \lambda$, and
3. $\forall x \subseteq d(p) (x \in S \Rightarrow x$ is not closed under $p)$.

For $p, q \in \mathbb{C}(S)$, $p \leq q$ \iff $q \subseteq p$.

Let $\mathbb{C} = \mathbb{C}(\emptyset)$.

Lemma 2.5.

1. $\mathbb{C}(S)$ satisfies the $(2^{<\kappa})^+\text{-}c.c.$
2. For every $x \in \mathcal{P}_\kappa \lambda$, $\{p \in \mathbb{C}(S) : x \subseteq d(p)\}$ is a dense open set in $\mathbb{C}(S)$.
3. Whenever G is $(V, \mathbb{C}(S))$-generic, $\bigcup G$ is a function from $\lambda \times \lambda$ to κ, and every $x \in S$ is not closed under the function.

Proof. For (1), take $A \subseteq \mathbb{C}(S)$ with size $(2^{<\kappa})^+$. By Δ-system lemma, we can find $B \subseteq A$ and $a \in \mathcal{P}_\kappa \lambda$ such that $|B| = (2^{<\kappa})^+$ and $d(p) \cap d(q) = a$ for every distinct $p, q \in B$. Moreover we may assume that $p|a \times a = q|a \times a$ for every $p, q \in B$. We check that B is a pairwise compatible set.

Take $p, q \in B$. Pick $\alpha < \kappa$ with $\alpha > \sup(d(p) \cap \kappa) + 1, \sup(d(q) \cap \kappa) + 1$. Then define r as $\text{dom}(r) = (d(p) \cup d(q)) \times (d(p) \cup d(q))$ and

$$r(\xi, \eta) = \begin{cases} p(\xi, \eta) & \text{if } \xi, \eta \in d(p). \\ q(\xi, \eta) & \text{if } \xi, \eta \in d(q). \\ \alpha & \text{otherwise.} \end{cases}$$

We have $r \leq p, q$. (2) follows from a similar argument, and (3) is straightforward. \qed
3. The proof of Theorem 1.3

Suppose $\kappa^{<\kappa} = \kappa$. Fix a stationary set $T \subseteq P_{\kappa^+\lambda}$ such that $\forall X \in T (\kappa \subseteq X)$.

We consider the following poset \mathbb{P}_T, which adds a new stationary subset S^* of $P_{\kappa}\lambda$.

Definition 3.1. \mathbb{P}_T is the set of all functions p satisfying the following:

1. $|p| < \kappa$ and $\text{dom}(p) \subseteq T$,
2. for every $X \in \text{dom}(p)$, $p(X)$ is a \subseteq-increasing continuous set $\{x_i : i \leq \gamma\}$ in $\mathcal{P}_\kappa X$ such that $\gamma < \kappa$ and $x_i \cap \kappa \in \kappa$ for all $i \leq \gamma$.

For $p \in \mathbb{P}_T$ and $X \in \text{dom}(p)$, $\max(p(X))$ denotes the maximum element of $p(X)$.

Let $u(p) = \bigcup \{p(X) : X \in \text{dom}(P)\}$. Note that $u(p) \subseteq P_{\kappa}\lambda$ and $|u(p)| < \kappa$. For $p, q \in \mathbb{P}_T$, define $p \leq q$ if

- (a) $\text{dom}(p) \supseteq \text{dom}(q)$,
- (b) $\forall X \in \text{dom}(q) (q(X) = \{x \in p(X) : x \subseteq \max(q(X))\})$ (hence $u(p) \supseteq u(q)$),
- (c) $\forall x \in u(p) (x \subseteq \bigcup u(q) \Rightarrow x \in u(q))$,
- (d) $\forall X \in \text{dom}(p) \setminus \text{dom}(q) (\max(p(X)) \not\subseteq \bigcup u(q))$,
- (e) $\forall X \in \text{dom}(q) \forall x \in p(X) \setminus q(X) (x \not\subseteq \bigcup u(q))$.

Lemma 3.2. (1) \mathbb{P}_T is κ-closed,
(2) \mathbb{P}_T satisfies the κ^+-c.c. (if $\kappa^{<\kappa} = \kappa$),
(3) for all $X \in T$ and $x \in \mathcal{P}_\kappa X$, $\{p \in \mathbb{P}_T : X \in \text{dom}(p) \text{ and } x \subseteq \max(p(X))\}$ is dense in \mathbb{P}_T.

Proof. (1). Let $\gamma < \kappa$ be a limit ordinal and $(p_i : i < \gamma)$ be a decreasing sequence in \mathbb{P}_T. Then define the function p^* as the following manner:

- (i) $\text{dom}(p^*) = \bigcup_{i<\gamma} \text{dom}(p_i)$,
- (ii) for $X \in \text{dom}(p^*)$, $p^*(X) = \bigcup \{p_i(X) : i < \gamma, X \in \text{dom}(p_i)\} \cup \{\max(p_i(X)) : i < \gamma, X \in \text{dom}(p_i)\}$.\]

Since the p_i's are decreasing, it is easy to show that $p^* \in \mathbb{P}_T$. For $i < \gamma$, we show $p \leq p_i$. It is easily verified that the conditions (a) and (b) in the definition of the order are satisfied.

(c). Take $x \in u(p^*)$ such that $x \subseteq \bigcup u(p_i)$. Take $X \in \text{dom}(p^*)$ such that $x \in p^*(X)$. If $x \neq \max(p^*(X))$, then $x \in p_j(X)$ for some $j > i$ with $X \in \text{dom}(p_j)$. Since $p_j \leq p_i$, we have $x \in p_i(X)$. Next suppose $x = \max(p^*(X))$. Take $k < \gamma$ such that $i < k$ and $X \in \text{dom}(p_k)$. Then $\max(p_k(X)) \subseteq \max(p^*(X)) = x \subseteq \bigcup u(p_i)$ holds. Hence $X \in \text{dom}(p_i)$ by (d). For each $j \geq i$, $\max(p_j(X)) \subseteq \max(p^*(X)) = x \subseteq$
\[\bigcup u(p_i) \] holds. Thus we have \(\max(p_j(X)) \in p_i(X) \) by (e). Therefore \{ \max(p_j(X)) : i \leq j < \gamma \} \subseteq p_i(X), and we have \(\max(p^*(X)) = \bigcup \{ \max(p_j(X)) : i \leq j < \gamma \} \in p_i(X). \)

(d). Take \(X \in \text{dom}(p^*) \setminus \text{dom}(p_i) \). Then there exists \(j > i \) such that \(X \in \text{dom}(p_j) \). We know \(\max(p_j(X)) \notin \bigcup u(p_i) \). Because \(\max(p_j(X)) \subseteq \max(p^*(X)) \), we know \(\max(p^*(X)) \notin \bigcup u(p_i) \).

(e). Take \(X \in \text{dom}(p_i) \) and \(x \in p^*(X) \setminus p_i(X) \). Then there exist \(j \geq i \) and \(y \in \text{dom}(p_j) \) such that \(y \subseteq x \) and \(y \notin p_i(X) \). Hence \(y \notin \bigcup u(p_i) \) and \(x \notin \bigcup u(p_i) \).

(2). Take an arbitrary \(A \subseteq \mathbb{P}_T \) with \(|A| \geq \kappa^+ \). We prove that \(A \) is not an antichain. By \(\Delta \)-system lemma, we can find \(r \in \mathbb{P}_T \), \(s \in \mathbb{P}_\kappa \lambda \), and \(B \subseteq A \) with \(|B| \geq \kappa^+ \) such that \(\forall p, q \in B \ (\text{dom}(p) \cap \text{dom}(q) = r \) and \(\bigcup u(p) \cap \bigcup u(q) = s) \). By our cardinal arithmetic assumption, there exists \(C \subseteq B \) with \(|C| \geq \kappa^+ \) such that \(\forall p, q \in B (\forall X \in r \ (p(X) = q(X)) \) and \(\mathcal{P}_\kappa s \cap u(p) = \mathcal{P}_\kappa s \cap u(q)) \). We check that any two elements of \(C \) are pairwise compatible. Take \(p, q \in C \). For each \(X \in \text{dom}(p) \cup \text{dom}(q) \), fix \(a_X \in \mathcal{P}_\kappa X \) such that \((\bigcup u(p) \cup \bigcup u(q)) \cap X \not\subseteq a_X \). Define the function \(r \) as the following:

(i) \(\text{dom}(r) = \text{dom}(p) \cup \text{dom}(q), \)

(ii) \(r(X) = p(X) \cup \{ a_X \} \) if \(X \in \text{dom}(p) \), and \(r(X) = q(X) \cup \{ a_X \} \) if \(X \in \text{dom}(q) \).

This is well-defined because \(p(X) = q(X) \) for all \(X \in \text{dom}(p) \cap \text{dom}(q) \). We see that \(r \) is a lower bound of \(p \) and \(q \). \(r \in \mathbb{P}_T \) is easily verified. For \(r \leq p \), the conditions (a) and (b) are clear.

(c). Take \(x \in \text{dom}(r) \) such that \(x \not\in \bigcup u(p) \). Then \(x \not\in a_X \) for all \(X \in \text{dom}(p) \cup \text{dom}(q) \). Hence \(x \in \text{dom}(p) \cup \text{dom}(q) \). If \(x \in \text{dom}(p) \) then we have done. Assume \(x \in \text{dom}(q) \). Then \(x \not\in \bigcup u(q) \). Since \(x \not\in \bigcup u(p) \), we have \(x \not\in \bigcup u(p) \cup \bigcup u(q) = s \) and \(x \in \mathcal{P}_\kappa s \).

Because \(\mathcal{P}_\kappa s \cap u(p) = \mathcal{P}_\kappa s \cap u(q) \), we have \(x \in \mathcal{P}_\kappa s \cap u(p) \) and \(x \in \text{dom}(p) \).

(d). Take \(X \in \text{dom}(r) \setminus \text{dom}(p) \). Then \(\max(r(X)) = a_X \supsetneq \bigcup u(p) \cap X \), thus \(\max(r(X)) \notin \bigcup u(p) \).

(e). Take \(X \in \text{dom}(p) \) and \(x \in r(X) \setminus p(X) \). By the definition of \(r(X) \), we have \(r(X) = p(X) \cup \{ a_X \} \). Hence \(x = a_X \notin \bigcup u(p) \).

\(r \leq q \) can be proved by the same argument.

(3). Take \(X \in T, x \in \mathcal{P}_\kappa X \) and \(q \in \mathbb{P} \). Take \(x^* \in \mathcal{P}_\kappa X \) such that \(\bigcup u(q) \cap X \not\subseteq x^* \). Define \(p \) as \(\text{dom}(p) = \text{dom}(q) \cup \{ X \} \), \(p|\text{dom}(q) = q \) and \(p(X) = \{ x^* \} \) if \(X \notin \text{dom}(q) \), and \(q(X) \cup \{ x^* \} \) if \(X \in \text{dom}(q) \). Then \(p \leq q \) can be verified. \[\square \]
Note that the following: For \(\gamma < \kappa \) and a decreasing sequence \(\langle p_i : i < \gamma \rangle \) in \(\mathbb{P}_T \), let \(p^* \) be a lower bound of the \(p_i \)'s as constructed in the proof of (1) above. Then \(p^* \) is the largest lower bound of the \(p_i \)'s and \(\bigcup u(p^*) = \bigcup_{i<\gamma}(\bigcup u(p_i)) \).

Definition 3.3. For a canonical name of \((V, \mathbb{P}_T)\)-generic filter \(\dot{G} \), let \(\dot{S}^* \) be a \(\mathbb{P}_T \)-name such that

\[
\forces_{\mathbb{P}_T} \langle \dot{S}^* \rangle = \bigcup \{ u(p) : p \in \dot{G} \}.
\]

The following are easily verified by the definition of \(\mathbb{P}_T \).

Lemma 3.4. (1) \(\forces_{\mathbb{P}_T} \langle \forall X \in T (\dot{S}^* \cap \mathcal{P}_\kappa X \text{ contains a club in } \mathcal{P}_\kappa X) \rangle \),

(2) for all \(p \in \mathbb{P}_T \), \(p \forces_{\mathbb{P}_T} \langle \{ y \in \dot{S}^* : y \subseteq \bigcup u(p) \} = u(p) \rangle \).

Now fix a name \(\dot{S} \) such that

\[
\forces_{\mathbb{P}_T} \langle \dot{S} \subseteq \dot{S}^* \rangle \text{ and } \forall X \in T (\mathcal{P}_\kappa X \cap \dot{S} \text{ is non-stationary in } \mathcal{P}_\kappa X) \rangle.
\]

We see that \(\mathbb{P}_T \ast \mathcal{C}(\dot{S}) \) has good properties.

For each \(X \in T \), fix a name \(\dot{g}_X \) such that

\[
\forces_{\mathbb{P}_T} \langle \dot{g}_X : [X]^{<\omega} \rightarrow X \text{ and } \forall x \in \mathcal{P}_\kappa X \ (x \text{ is closed under } \dot{g}_X \Rightarrow x \notin \dot{S}) \rangle.
\]

Let \(\dot{Q} \) be a name such that \(\forces \langle \dot{Q} = \mathcal{C}(\dot{S}) \rangle \). We prove that \(\mathbb{P}_T \ast \dot{Q} \) has a \(\kappa \)-closed dense subset.

Lemma 3.5. Let \(D = \{ p \in \mathbb{P}_T : \forall X \in \text{dom}(p) \ (p \forces_{\mathbb{P}_T} \langle \max(p(X)) \text{ is closed under } \dot{g}_X \rangle) \} \). Then \(D \) is dense in \(\mathbb{P}_T \).

Proof. Take \(p \in \mathbb{P}_T \). We want to find \(q \in D \) such that \(q \leq p \). We take a decreasing sequence \(p_i \ (i < \omega) \) in \(\mathbb{P}_T \) by induction on \(i < \omega \). Let \(p_0 = p \). Suppose \(p_i \) is defined. By the \(\kappa \)-closedness of \(\mathbb{P}_T \), we can choose \(p' \leq p_i \) and \(a \in \mathcal{P}_\kappa \lambda \) such that \(p' \forces_{\mathbb{P}_T} \langle [\max(p_i(X))]^{<\omega} \subseteq a \cap X \rangle \) for all \(X \in \text{dom}(p_i) \). Then choose \(p_{i+1} \leq p' \) such that \(a \cap X \subseteq \max(p_{i+1}(X)) \) for all \(X \in \text{dom}(p_i) \).

Finally let \(q \) be the greatest lower bound of the \(p_i \)'s. By our construction, it is easy to see that \(q \in D \). \(\square \)

Lemma 3.6. Let \(D \) be as in Lemma 3.5. Let \(D' = \{ \langle p, q \rangle \in \mathbb{P}_T \ast \dot{Q} : p \in D, \ q = \check{r} \text{ for some } r \in \mathcal{C} \text{ and } d(r) = \bigcup (u(p)) \} \). Then \(D' \) is a \(\kappa \)-closed dense subset in \(\mathbb{P}_T \ast \dot{Q} \).

Proof. Density: Take \(\langle p, q \rangle \in \mathbb{P}_T \ast \dot{Q} \). Take \(p' \in D \) and \(r \) such that \(p' \forces_{\mathbb{P}_T} \langle \check{r} = \check{q} \rangle \) and \(\bigcup u(p') \supseteq d(r) \). Now define \(r' \) as the following:
(1) $r': \bigcup u(p') \times \bigcup u(p') \rightarrow \kappa,$
(2) for $a \in \bigcup u(p') \times \bigcup u(p')$, if $a \in d(r) \times d(r)$ the $r'(a) = r(a)$, otherwise
$r'(a) = \sup(\bigcup(u(p') \cap \kappa)) + 1.$

It is easy to show that $p' \vDash "\gamma \in C(\dot{\mathcal{S}})" \text{ and } \langle p', \dot{p}' \rangle \leq \langle p, \dot{q} \rangle.$

Next we prove D' is κ-closed. Let $\gamma < \kappa$ and $\langle p_i, \dot{q}_i \rangle (i < \gamma)$ be a decreasing sequence in D'. We show that this sequence has a lower bound. Let $p^* \in \mathbb{P}_T$ be the greatest lower bound of the p_i's. Note that for all $X \in \text{dom}(p^*)$, $p^* \vDash \text{"max}(p^*(X)) \text{ is closed under } \dot{g}_X."$

Let $q^* = \bigcup_{i<\gamma} q_i$. q^* is a function with the domain $d(q^*) \times d(q^*)$, where $d(q^*) = \bigcup_{i<\gamma} d(q_i)$. Notice that $d(q^*) = \bigcup_{i<\gamma} d(q_i) = \bigcup_{i<\gamma} \bigcup u(p_i) = \bigcup u(p^*)$. We complete the proof by showing the following claim.

Claim 3.7. $p^* \vDash "q^* \in C(\dot{\mathcal{S}})".$

Proof. Take a (V, \mathbb{P}_T)-generic G with $p^* \in G$ and work in $V[G]$. First note that
\[
\{ x \in S^* : x \subseteq \bigcup u(p^*) \} = u(p^*).
\]
To show that $q^* \in C(S)$, take $x \subseteq d(q^*)$ with $x \in S$. We check that x is not closed under q^*. Since $x \subseteq d(q^*) = \bigcup u(p^*)$ and $x \in S \subseteq S^*$, we have $x \in u(p^*)$. Hence there exists $X \in \text{dom}(p^*)$ such that
\[
x \in p^*(X).
\]
Because $\text{max}(p^*(X))$ is closed under \dot{g}_X, we know $\text{max}(p^*(X)) \notin S$. Thus $x \neq \text{max}(p^*(X))$ and $x \in p_i(X)$ for some $i < \gamma$ with $X \in \text{dom}(p_i)$. Then $x \subseteq \bigcup u(p_i) = d(q_i)$. Since q_i is a condition, x is not closed under q_i, and not closed under q^*.

\[
\square\text{[Claim]}
\]

Note that, in fact, D' is κ-directed closed.

By an iteration of the above forcing, we can prove Theorem 1.3. Let $\langle \mathbb{P}_\xi, \dot{Q}_\eta : \xi < \zeta, \eta < \zeta \rangle$ be a κ-support iteration such that for every $\xi < \zeta$,

(1) $\dot{Q}_0 = \mathbb{P}_T$,
(2) \mathbb{P}_ξ satisfies the κ^+-c.c. and has a κ-closed dense subset,
(3) for $\xi > 0$ there exists \mathbb{P}_ξ-name \dot{S}_ξ such that
\[
\vDash \xi \text{"} \dot{S}_\xi \subseteq \dot{\mathcal{S}} \text{ and } \forall X \in T (\mathcal{P}_\kappa X \cap \dot{S}_\xi \text{ is non-stationary in } \mathcal{P}_\kappa X),"\]
(4) for every $X \in T$, \dot{g}_X^ξ is a \mathbb{P}_ξ-name such that
\[
\vDash \xi \text{"} \dot{g}_X^\xi : [X]^{<\omega} \rightarrow X \text{ and } \forall x \in \mathcal{P}_\kappa X (x \in \dot{S}_\xi \Rightarrow x \text{ is not closed under } \dot{g}_X^\xi,"\]
(5) $\vDash \xi \text{"} \dot{Q}_\xi = C(\dot{\mathcal{S}}_\xi)"$ for $\xi > 0$,
(6) let D_ξ is the set of all $p \in \mathbb{P}_\xi$ such that
(a) \(\forall \eta \in \text{supp}(p) \setminus \{0\} \ (p(\eta) = \hat{r} \) for some \(r \in C \),
(b) for all \(X \in \text{dom}(p(0)) \) and \(\eta \in \text{supp}(p) \setminus \{0\} \) (\(p|_\eta \vdash \text{"max}(p(0)(X)) \) is closed under \(\bar{g}^\eta_X \)),
(c) \(\bigcup(u(p(0))) = d(p(\eta)) \) for all \(\eta \in \text{supp}(p) \setminus \{0\} \).

Then \(D_\xi \) is a \(\kappa \)-closed dense set in \(\mathbb{P}_\xi \).

Let \(\mathbb{P}_\xi \) and \(D_\xi \) be as intended. We can check that \(D_\xi \) is a \(\kappa \)-closed dense set in \(\mathbb{P}_\xi \), and \(\mathbb{P}_\xi \) has the \(\kappa^+ \)-c.c.

By a standard book keeping method, we can destroy the stationarity of all non-reflecting subset of \(S^* \) by an iteration above. By \(\kappa^+ \)-c.c., \(T \) remains stationary in \(\mathcal{P}_\kappa \lambda \) in the generic extension. Thus \(S^* \) is stationary in \(\mathcal{P}_\kappa \lambda \), and \(\text{RP}(S^*, T) \) holds.

4. PROOF OF THEOREMS 1.6 AND 1.7

Proposition 4.1. Let \(\mu \) be a regular cardinal with \(\kappa^+ \leq \mu \leq \lambda \). Let \(T = \{X \in \mathcal{P}_\kappa \lambda : \kappa \subseteq X, \text{cf}(X \cap \mu) < \kappa \} \). Then for every stationary sets \(S_0^*, S_1^* \subseteq \mathcal{P}_\kappa \lambda \), \(\text{RP}^2(S_0^*, S_1^*, T) \) fails.

Proof. Suppose not. For each \(\xi \in E_{\kappa}^\lambda \), fix an increasing sequence \(\langle \gamma_i^\xi : i < \text{cf}(\xi) \rangle \) with limit \(\xi \). For \(n < 2, i < \kappa, \) and \(\delta < \mu \), let
\[
S_{n,i,\delta} = \{x \in S_n^* : \delta = \min(x \setminus \gamma_i^{\sup(x \cap \mu)})\}.
\]

Claim 4.2. (1) For every \(\xi < \mu \), there exist \(i < \kappa \) and \(\delta < \mu \) such that \(\delta > \xi \) and \(S_{0,i,\delta} \) is stationary.

(2) For every \(i < \kappa \) and \(\delta < \mu \), if \(S_{0,i,\delta} \) is stationary then \(S_{1,i,\delta} \) is stationary.

(3) For every \(i < \kappa \) and \(\delta_0, \delta_1 < \mu \), if \(S_{0,i,\delta_0} \) and \(S_{1,i,\delta_1} \) are stationary then \(\delta_0 = \delta_1 \).

Proof. (1). Let \(T' = \{X \in T : S_0^* \cap \mathcal{P}_\kappa X \) is stationary, \(\xi \in X \} \). \(T' \) is stationary in \(\mathcal{P}_\kappa \lambda \). Take \(X \in T' \). Then \(\text{cf}(X \cap \mu) < \kappa \subseteq X \) and \(\sup(X \cap \mu) > \xi \), hence there exists \(i \in X \) such that \(\gamma_i^{\sup(X \cap \mu)} > \xi \). By applying Fodor’s lemma to \(T' \), there exists \(i < \kappa \) such that \(T'' = \{x \in T' : \gamma_i^{\sup(X \cap \mu)} > \xi \} \) is stationary in \(\mathcal{P}_\kappa \lambda \). For \(X \in T'' \) let \(\delta_X = \min(X \setminus \gamma_i^{\sup(X \cap \mu)}) \). By Fodor’s lemma again, there is \(\delta < \mu \) such that \(T^* = \{X \in T'' : \gamma_i^{\sup(X \cap \mu)} > \xi, \delta = \min(X \setminus \gamma_i^{\sup(X \cap \mu)}) \} \) is stationary in \(\mathcal{P}_\kappa \lambda \).

Pick \(X \in T^* \). Since \(\text{cf}(X \cap \mu) < \kappa \), the set \(D_X = \{x \in \mathcal{P}_\kappa X : \sup(x \cap \mu) = \sup(X \cap \mu), \delta \in x \} \) contains a club in \(\mathcal{P}_\kappa X \). Clearly \(x \in S_{0,i,\delta} \) for each \(x \in D_X \cap S_0^* \).

This means that \(S_{0,i,\delta} \) is stationary in \(\mathcal{P}_\kappa \lambda \).

(2). By \(\text{RP}^2(S_0^*, S_1^*) \), \(T' = \{X \in T : \delta \in X, S_{0,i,\delta} \cap \mathcal{P}_\kappa X, S_1^* \cap \mathcal{P}_\kappa X \) are stationary \} \) is stationary in \(\mathcal{P}_\kappa \lambda \). Fix \(X \in T' \). Since \(S_{0,i,\delta} \cap \mathcal{P}_\kappa X \) is stationary in \(\mathcal{P}_\kappa X \) and
cf($X \cap \mu < \kappa$, we have that \(\delta = \min(X \setminus \gamma_{i}^{\sup(X \cap \mu)}) \). By the same argument as (1), we have that \(S_{1,i,\delta} \) is stationary in \(\mathcal{P}_{\kappa}\lambda \).

(3) Let \(X \in T \) be such that \(\delta_{0}, \delta_{1} \in X \) and \(S_{0,i,\delta_{0}} \cap \mathcal{P}_{\kappa}X, S_{1,i,\delta_{1}} \cap \mathcal{P}_{\kappa}X \) are stationary. Choose \(x_{0} \in S_{0,i,\delta_{0}} \cap \mathcal{P}_{\kappa}X \) and \(x_{1} \in S_{1,i,\delta_{1}} \cap \mathcal{P}_{\kappa}X \) such that \(\sup(x_{0} \cap \mu) = \sup(x_{1} \cap \mu) = \sup(X \cap \mu) \) and \(\delta_{0}, \delta_{1} \in x_{0} \cap x_{1} \). By the minimality of \(\delta_{0} \), we have \(\delta_{0} \leq \delta_{1} \). Similarly we know \(\delta_{1} \leq \delta_{0} \). Therefore \(\delta_{0} = \delta_{1} \). \[\square\text{[Claim]}\]

Hence we have that if \(S_{0,i,\delta} \) and \(S_{0,i,\delta'} \) are stationary, then \(\delta = \delta' \).

For each \(i < \kappa \), define \(\delta_{i} < \mu \) as follows: if \(S_{0,i,\delta} \) is stationary for some \(\delta < \mu \), then let \(\delta_{i} \) be a (unique) \(\delta < \mu \) such that \(S_{0,i,\delta} \) is stationary. If there is no such \(\delta \), then let \(\delta_{i} = 0 \). Since \(\mu = \cf(\mu) > \kappa \), we know \(\sup_{i<\kappa} \delta_{i} < \mu \). But this contradicts (1) of the claim. \[\square\]

Proposition 4.3. Let \(S_{0}^{\ast}, S_{1}^{\ast} \subseteq \mathcal{P}_{\kappa}\lambda \) be stationary and suppose \(\mathrm{RP}^{2}(S_{0}^{\ast}, S_{1}^{\ast}) \) holds. Then for every regular \(\mu \) with \(\kappa^{+} \leq \mu \leq \lambda \), \(\square(\mu) \) fails.

Proof. We prove only the case \(\mu = \lambda \). Other cases follow from similar arguments.

Toward the contradiction, suppose \(\square(\lambda) \) holds. Let \(\langle C_{\xi} : \xi < \lambda \rangle \) be a \(\square(\lambda) \)-sequence.

Let \(T = \{ X \in \mathcal{P}_{\kappa}X : \cf(X) = \kappa \subseteq X \} \). We assumed \(\mathrm{RP}^{2}(S_{0}^{\ast}, S_{1}^{\ast}) \), but by the previous proposition, in fact \(\mathrm{RP}^{2}(S_{0}^{\ast}, S_{1}^{\ast}, T) \) holds.

For each \(\alpha < \lambda \) and \(n < 2 \), let

\[S_{n,\alpha} = \{ x \in S_{n}^{\ast} : C_{\sup(x)} \cap \sup(x \cap \alpha) = C_{\alpha} \cap \sup(x \cap \alpha) \}. \]

Let \(A_{n} = \{ \alpha < \lambda : S_{n,\alpha} \text{ is stationary} \} \).

Claim 4.4. For each \(n < 2 \), \(A_{n} \) is unbounded in \(\lambda \).

Proof. Fix \(n < 2 \). By shrinking \(S_{n}^{\ast} \) by a club in \(\mathcal{P}_{\kappa}\lambda \), we may assume that the following:

1. For all \(x \in S_{n}^{\ast} \) and \(\alpha \in x \), if \(x \cap \alpha \) is bounded in \(\alpha \) then \(\cf(\alpha) \geq \kappa \).
2. For all \(x \in S_{n}^{\ast} \) and \(\alpha \in x \cap E_{2}^{X} \), \(\sup(x \cap \alpha) \in \lim(C_{\alpha}) \) holds.

Let \(T' = \{ X \in T : S_{n}^{\ast} \cap \mathcal{P}_{\kappa}X \text{ is stationary} \} \). Then \(T' \) is stationary in \(\mathcal{P}_{\kappa+\lambda} \).

To show that \(A_{n} \) is unbounded, take \(\xi < \lambda \). Fix \(X \in T' \) with \(\sup(X) > \xi \). Since \(\cf(X) = \kappa \), the set \(\{ \beta < \sup(X) : \beta \in \lim(C_{\sup(X)}) \} \) contains a club in \(\sup(X) \).

Note that \(C_{\sup(X)} \cap \beta = C_{\beta} \) for each \(\beta \) from the club. Hence we know \(S_{X} = \{ x \in S_{n}^{\ast} \cap \mathcal{P}_{\kappa}X : C_{\sup(x)} = C_{\sup(X)} \cap \sup(x) \} \) is stationary in \(\mathcal{P}_{\kappa}X \). Since \(\cf(\sup(X)) = \kappa \), \(\lim(X) \cap \lim(C_{\sup(X)}) \) is unbounded in \(\sup(X) \). Take \(\beta \in \lim(X) \cap \lim(C_{\sup(X)}) \).
with $\beta > \xi$ and $\text{cf}(\beta) < \kappa$. Note that $\{x \in \mathcal{P}_\kappa X : x \cap \beta \text{ is unbounded in } \beta\}$ contains a club. Since $\beta \in \text{lim}(C_{\sup(X)})$, $C_{\sup(X)} \cap \beta = C_\beta$ holds. For each $x \in S_X$ such that $x \cap \beta$ is unbounded in β and $\sup(x) > \beta$, let $\beta_x = \min(x \setminus \beta)$.

Case 1. $\beta_x = \beta$. Then $C_{\beta_x} \cap \sup(x \cap \beta_x) = C_{\beta} = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \sup(x \cap \beta_x)$.

Case 2. $\beta_x > \beta$. Then $\sup(x \cap \beta_x) = \beta$ and $\beta = \sup(x \cap \beta) \in \text{lim}(C_{\beta_x})$, hence $C_{\beta_x} \cap \beta = C_{\beta} = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \beta = C_{\sup(x)} \cap \sup(x \cap \beta_x)$.

Hence for each $x \in S_X$ such that $x \cap \beta$ is unbounded in β and $\sup(x) > \beta$, we have $C_{\sup(x)} \cap \sup(x \cap \beta_x) = C_{\beta_x} \cap \sup(x \cap \beta_x)$. By applying Fodor’s lemma to S_X, we can find $\beta_X \in X$ such that $\{x \in S_X : \beta_X = \beta_x\}$ is stationary. Thus $\{x \in S^* \cap \mathcal{P}_\kappa X : C_{\sup(x)} \cap \sup(x \cap \beta_x) = C_{\beta_X} \cap \sup(x \cap \beta_X)\}$ is stationary.

By applying Fodor’s lemma to T', we have $\beta_* < \lambda$ such that $\{x \in T' : \beta_* = \beta_X\}$ is stationary. Then S_{n, β_*} is stationary and $\beta_* > \xi$. \[\square\] [Claim]

Claim 4.5. For each $\alpha \in A_0$ and $\beta \in A_1$ with $\alpha < \beta$, $C_\alpha = C_\beta \cap \alpha$ holds.

Proof. Let $T^* = \{X \in T : S_{0, \alpha} \cap \mathcal{P}_\kappa X, S_{1, \beta} \cap \mathcal{P}_\kappa X \text{ are stationary in } \mathcal{P}_\kappa X\}$. Take $X \in T^*$. Since $D_X = \{x \in \mathcal{P}_\kappa X : C_{\sup(x)} \cap \sup(x) = C_{\sup(x)}\}$ contains a club in $\mathcal{P}_\kappa X$, $D_X \cap S_{0, \alpha}$ is stationary in $\mathcal{P}_\kappa X$. For $x \in C_X \cap S_{0, \alpha}$, $C_\alpha \cap \sup(x \cap \alpha) = C_{\sup(x)} \cap \sup(x \cap \alpha)$ holds. Since $\{x \in C_X \cap S_{0, \alpha} : \beta \in \text{lim}(C_{\sup(X)}\cap \beta) \in \text{lim}(C_{\sup(x)}\cap \beta)\}$ is unbounded in $\sup(x \cap \alpha)$, we have $C_{\sup(x)} \cap \sup(x \cap \alpha) = C_\alpha \cap \sup(x \cap \alpha)$.

Similarly, we have $C_\beta \cap \sup(X \cap \beta) = C_{\sup(x)} \cap \sup(X \cap \beta)$. Therefore we have $C_\alpha \cap \sup(X \cap \alpha) = C_\beta \cap \sup(X \cap \alpha)$.

Because $\{\sup(X \cap \alpha) : X \in T^*\}$ is unbounded in α, we have $C_\alpha = C_\beta \cap \alpha$. \[\square\] [Claim]

Now, let $C = \{C_\beta : \beta \in A_0\}$. Since A_0 is unbounded, C is unbounded. Furthermore, $C_\alpha = C_\beta \cap \alpha$ for all $\alpha < \beta \in A$; For $\alpha, \beta \in A_0$ with $\alpha < \beta$, choose $\gamma \in A_1$ with $\beta < \gamma$. Then $C_\alpha = C_\gamma \cap \alpha$ and $C_\beta = C_\gamma \cap \alpha$. Thus $C_\alpha = C_\beta \cap \alpha$. Hence C forms a club in λ. Take $\alpha \in \text{lim}(C)$. Then there exists $\beta \in A_0$ such that $C \cap \alpha = C_\beta \cap \alpha$. Since $\alpha \in \text{lim}(C)$, we know $\alpha \in \text{lim}(C_\beta)$ and $C_\alpha = C_\beta \cap \alpha = C \cap \alpha$. Thus $\forall \alpha \in \text{lim}(C) (C \cap \alpha = C_\alpha)$, this is a contradiction. \[\square\]

Baumgartner[1] showed that if a weakly compact cardinal κ is collapsed to ω_2 by Levy-collapse with countable conditions, then $\text{RP}(\mathcal{P}_{\omega_1}\omega_2)$ holds, and it is known that in fact $\text{RP}^2(\mathcal{P}_{\omega_1}\omega_2, \mathcal{P}_{\omega_1}\omega_2)$ holds in the generic extension. Conversely, Velickovic [3] showed that if $\text{RP}(\mathcal{P}_{\omega_1}\omega_2)$ holds, then ω_2 is weakly compact in L. Consequently, we have the following equiconsistency:
Corollary 4.6. The following are equiconsistent:

(1) ZFC + "there exists a weakly compact cardinal".
(2) ZFC + "RP(\mathcal{P}_{\omega_1\omega_2}) holds".
(3) ZFC + "RP^2(\mathcal{P}_{\omega_1\omega_2}, \mathcal{P}_{\omega_1\omega_2}) holds".
(4) ZFC + "RP^2(S_0^*, S_1^*) holds for some stationary sets S_0^*, S_1^* \subseteq \mathcal{P}_{\omega_1\omega_2}".

5. Proof of Theorem 1.8

Proposition 5.1. Suppose RP(S^*) for some stationary S^* \subseteq \mathcal{P}_\kappa\lambda. Then every \kappa-c.c. forcing preserves RP(S^*).

Proof. First note that every \kappa-c.c. forcing preserves the stationarity of S^*.

Let \mathbb{P} be a poset which satisfies the \kappa-c.c. Let \dot{S} be a \mathbb{P}-name such that \forces "\dot{S} \subseteq S^* is stationary". It is enough to show that there are some p \in \mathbb{P} and X \subseteq \mathcal{P}_\kappa X such that p \forces "\dot{S} \cap \mathcal{P}_\kappa X is stationary in \mathcal{P}_\kappa X".

Let S' = \{x \in S^*: \exists p \in \mathbb{P} (p \forces \text{"x \in } \dot{S}"\text{)}\}. It is easy to check that S' is a stationary subset of S^*. By RP(S'), there is X \in \mathcal{P}_\kappa X such that \|X| = \kappa \subseteq X and S' \cap \mathcal{P}_\kappa X is stationary in \mathcal{P}_\kappa X. We see that p \forces "\dot{S} \cap \mathcal{P}_\kappa X is stationary" for some p \in \mathbb{P}. Suppose to the contrary that \forces "\dot{S} \cap \mathcal{P}_\kappa X is non-stationary". Since \|X| = \kappa and \mathbb{P} satisfies the \kappa-c.c., we can find a club C \subseteq \mathcal{P}_\kappa X such that \forces "\dot{S} \cap \mathcal{P}_\kappa X = \emptyset". S' \cap \mathcal{P}_\kappa X is stationary, hence there is x \in S' \cap C. Pick p \in \mathbb{P} with p \forces "x \in \dot{S}". Then p \forces "x \in \dot{S} \cap C\text{"}, this is a contradiction.

Recall that PFA^{++} is the assertion that for every proper forcing notion \mathbb{P}, every dense subsets D_i (i < \omega_1) of \mathbb{P}, and every \mathbb{P}-names \dot{S}_i (i < \omega_1) for stationary subsets of \omega_1, there is a filter F on \mathbb{P} such that:

(1) D_i \cap F \neq \emptyset for every i < \omega_1.
(2) S_i = \{\alpha < \omega_1: \exists p \in F (p \forces \text{"}\alpha \in \dot{S}_i\"}\} is stationary in \omega_1 for i < \omega_1.

Proposition 5.2. Suppose PFA^{++}. Let \lambda \geq \omega_2. Then every c.c.c. forcing notion forces RP^2(\mathcal{P}_{\omega_1\lambda}, \mathcal{P}_{\omega_2\lambda}).

Proof. Let \mathbb{P} be a poset which satisfies the c.c.c. Let \dot{S}_0, \dot{S}_1 be \mathbb{P}-names so that \forces "\dot{S}_0, \dot{S}_1 \subseteq \mathcal{P}_{\omega_1\lambda} are stationary". We will find p \in \mathbb{P} and X \in \mathcal{P}_{\omega_2\lambda} such that p \forces "\dot{S}_0 \cap \mathcal{P}_{\omega_1} X, \dot{S}_1 \cap \mathcal{P}_{\omega_1} X are stationary".

Let \dot{\mathbb{Q}} be a \mathbb{P}-name for a \sigma-closed poset which adds a bijection from \omega_1 to \lambda. We know that \forces_{\mathbb{P} \ast \dot{\mathbb{Q}}} "\dot{S}_0, \dot{S}_1 remain stationary". Fix a \mathbb{P} \ast \dot{\mathbb{Q}}-name \pi for a bijection from \omega_1 to \lambda. Let \dot{E}_0, \dot{E}_1 be \mathbb{P} \ast \dot{\mathbb{Q}}-names such that \forces_{\mathbb{P} \ast \dot{\mathbb{Q}}} "\dot{E}_i = \{\alpha < \omega_1: \pi \text{"}\alpha \in \dot{S}_i, \pi \text{"}\alpha \cap \omega_1 = \alpha\}" for i = 0, 1. We know \forces_{\mathbb{P} \ast \dot{\mathbb{Q}}} "\dot{E}_i is stationary in \omega_1".
Now fix a sufficiently large regular cardinal θ and take $M \prec H_\theta$ such that $|M| = \omega_1 \subseteq M$ and M contains all relevant objects.

$\mathbb{P} \ast \dot{\mathbb{Q}}$ is proper, hence we can apply PFA++ to $\mathbb{P} \ast \dot{\mathbb{Q}}$ and E_i. By PFA++ we can find a filter F on $\mathbb{P} \ast \dot{\mathbb{Q}}$ such that:

1. $F \cap \mathbb{D} \neq \emptyset$ for all dense $\mathbb{D} \in \mathbb{P} \ast \dot{\mathbb{Q}}$.
2. $E_i = \{ \alpha < \omega_1 : \exists p \in F(p \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} \alpha \in \dot{E}_i)\}$ is stationary in ω_1 for $i = 0, 1$.

Let $X = \{ \beta < \lambda : \exists p \in F \exists \alpha < \omega_1 (p \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} \dot{\pi}(\alpha) = \beta)\}$. We can check that $|X| = \omega_1 \subseteq X$.

Since \dot{S}_0, \dot{S}_1 are names for subsets of $\mathcal{P}_{\omega_1}^{\omega_1} \lambda$, for each $\alpha \in E_i$, we can find $x \in \mathcal{P}_{\omega_1} \lambda$ and $p \in F$ such that $x \cap \omega_1 = \alpha$ and $p \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} \dot{\pi}(\alpha) = x$. Moreover it is easy to see that $x \in \mathcal{P}_{\omega_1} X$.

For $i < 2$ and $\alpha \in E_i$, take $x_{i,\alpha} \in \mathcal{P}_{\omega_1} X$ such that there is $p \in F$ with $p \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} \dot{\pi}(\alpha) = x_{i,\alpha}$. Let $S_i = \{ x_{i,\alpha} : \alpha \in E_i \}$. The following are easy to check for $i < 2$:

1. $x_{i,\alpha} \subseteq x_{i,\beta}$ holds for $\alpha, \beta \in E_i$ with $\alpha < \beta$.
2. If $\alpha \in \lim(E_i) \cap E_i$, then $x_{i,\alpha} = \bigcup_{\beta \in E_i \cap \alpha} x_{i,\beta}$.
3. $\bigcup S_i = X$.

Furthermore, since $E_i = \{ x_{i,\alpha} \cap \omega_1 : \alpha \in E_i \}$ is stationary in ω_1, we can check that each S_i is stationary in $\mathcal{P}_{\omega_1} X$.

Now we see that $p \Vdash_{\mathbb{P}} \dot{S}_0 \cap \mathcal{P}_{\omega_1} X, \dot{S}_1 \cap \mathcal{P}_{\omega_1} X$ are stationary” for some $p \in \mathbb{P}$. Suppose otherwise. Since \mathbb{P} satisfies the c.c.c. and $|X| = \omega_1$, we can find a club C in $\mathcal{P}_{\omega_1} X$ such that $\mathbb{P} \Vdash \dot{C} \cap \dot{S}_0 = \emptyset$ or $C \cap \dot{S}_1 = \emptyset$.

Since S_0 and S_1 are stationary in $\mathcal{P}_{\omega_1} X$, we can find $x_0 \in S_0 \cap C$ and $x_1 \in S_1 \cap C$. Then there is $q \in F$ such that $q \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} x_0 \in \dot{S}_0$ and $x_1 \in \dot{S}_1$. Thus $q \Vdash_{\mathbb{P} \ast \dot{\mathbb{Q}}} C \cap \dot{S}_0 \neq \emptyset$ and $C \cap \dot{S}_1 \neq \emptyset$, this is a contradiction.

\begin{flushright}
\square
\end{flushright}

References

(T. Usuba) INSTITUTE FOR ADVANCED RESEARCH, NAGOYA UNIVERSITY, FURO-CHO, CHIKUSAKU, NAGOYA, 464-8601, JAPAN

E-mail address: usuba@math.cm.is.nagoya-u.ac.jp