Picone identities for half-linear elliptic equations with p(x)-Laplacians and applications

Norio Yoshida Department of Mathematics University of Toyama

1 Introduction

Since the pioneering work of M. Picone [4], efforts have been made to establish Picone identities (or Picone-type inequalities) for differential equations of various type. Picone identities play an important role in the study of Sturmian comparison theorems (cf. [6]) and oscillation results for ordinary or partial differential equations or systems. In 1909, Picone [4] derived the so-called Picone identity

$$\begin{split} &\frac{d}{dt}\left(\frac{u}{v}(a(t)u'v - A(t)v'u)\right)\\ = &\left(a(t) - A(t)\right)(u')^2 + (C(t) - c(t))u^2 + A(t)\left[v\left(\frac{u}{v}\right)'\right]^2\\ &+ \frac{u}{v}(vq[u] - uQ[v]) \end{split}$$

to obtain Sturmian comparison theorems for ordinary differential operators q,Q defined by

$$q[u] = (a(t)u')' + c(t)u,$$

 $Q[v] = (A(t)v')' + C(t)v.$

Recently, much current interest has been focused on various mathematical problems with variable exponent growth condition (cf. [2,3]). The study of such problems arise from nonlinear elasticity theory, electrorheological fluids (see [5,12]).

The operator $\nabla \cdot (|\nabla u|^{p(x)-2}\nabla u)$ (p(x) > 1) is said to be p(x)-Laplacian, and becomes p-Laplacian $\nabla \cdot (|\nabla u|^{p-2}\nabla u)$ if p(x) = p (constant), where the dot \cdot denotes the scalar product and $\nabla = (\partial/\partial x_1, ..., \partial/\partial x_n)$.

The paper [11] by Zhang seems to be the first paper dealing with oscillations of solutions of p(t)-Laplacian equations of the form

$$(|u'|^{p(t)-2}u')' + t^{-\theta(t)}g(t,u) = 0, \quad t > 0.$$

In this work we present Picone identity, Picone-type inequality and Riccati inequality (which is reduced from Picone identity) to establish Sturmian comparison theorems and oscillation theorems for quasilinear elliptic operators with p(x)-Laplacians (cf. [1,7–10]).

2 Half-linear elliptic inequalities

We establish Picone identities for half-linear elliptic inequalities

$$uq[u] \ge 0,\tag{1}$$

$$vQ[v] \le 0,\tag{2}$$

where q and Q are defined by

$$q[u] := \nabla \cdot (a(x)|\nabla u|^{\alpha(x)-1}\nabla u) - a(x)(\log|u|)|\nabla u|^{\alpha(x)-1}\nabla\alpha(x) \cdot \nabla u + |\nabla u|^{\alpha(x)-1}b(x) \cdot \nabla u + c(x)|u|^{\alpha(x)-1}u, \tag{3}$$

$$Q[v] := \nabla \cdot (A(x)|\nabla v|^{\alpha(x)-1}\nabla v) - A(x)(\log|v|)|\nabla v|^{\alpha(x)-1}\nabla\alpha(x) \cdot \nabla v + |\nabla v|^{\alpha(x)-1}B(x) \cdot \nabla v + C(x)|v|^{\alpha(x)-1}v, \tag{4}$$

to derive Sturmian comparison theorems for q and Q. Let G be a bounded domain in \mathbb{R}^n with piecewise smooth boundary ∂G . It is assumed that $a(x), A(x) \in C(\overline{G}; (0, \infty)), b(x), B(x) \in C(\overline{G}; \mathbb{R}^n), c(x), C(x) \in C(\overline{G}; \mathbb{R}),$ and that $\alpha(x) \in C^1(\overline{G}; (0, \infty))$. The domain $\mathcal{D}_q(G)$ of q is defined to be the set of all functions u of class $C^1(\overline{G}; \mathbb{R})$ such that $a(x)|\nabla u|^{\alpha(x)-1}\nabla u \in C^1(G; \mathbb{R}^n) \cap C(\overline{G}; \mathbb{R}^n)$. The domain $\mathcal{D}_Q(G)$ of Q is defined similarly. We note that $\log |u|$ in (3) has singularities at zeros x_0 of u(x), but $u \log |u|$ in (1) is continuous at every zero x_0 if we define $u \log |u| = 0$ at $x = x_0$, in view of $\lim_{\varepsilon \to +0} \varepsilon \log \varepsilon = 0$. We make the similar remark in (4). By a solution u [resp. v] of (1) [resp. (2)] we mean a function $u \in \mathcal{D}_q(G)$ [resp. $v \in \mathcal{D}_Q(G)$] which satisfies (1) [resp. (2)] in G. We note that (1) and (2) are half-linear in the sense that a constant multiple of a solution u [resp. v] is also a solution of (1) [resp. (2)] in light of

$$(ku)q[ku] = |k|^{\alpha(x)+1}uq[u] \ (k \in \mathbb{R}),$$

 $(kv)Q[kv] = |k|^{\alpha(x)+1}vQ[v] \ (k \in \mathbb{R}).$

3 Picone identity

Lemma 1 (Picone identity for Q) If $v \in \mathcal{D}_Q(G)$ and v has no zero in G, then we obtain the following Picone identity for any $u \in C^1(G; \mathbb{R})$ which has no zero in G:

$$-\nabla \cdot \left(u\varphi(u) \frac{A(x)|\nabla v|^{\alpha(x)-1}\nabla v}{\varphi(v)} \right)$$

$$= -A(x) \left| \nabla u + \frac{u \log|u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1}$$

$$+C(x)|u|^{\alpha(x)+1}$$

$$+A(x) \left[\left| \nabla u + \frac{u \log|u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1} \right]$$

$$+\alpha(x) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)+1}$$

$$-(\alpha(x)+1) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)-1} \left(\nabla u + \frac{u \log|u|}{\alpha(x)+1} \nabla \alpha(x) \right)$$

$$-\frac{u}{(\alpha(x)+1)A(x)} B(x) \cdot \left(\frac{u}{v} \nabla v \right) \right]$$

$$-\frac{|u|^{\alpha(x)+1}}{|v|^{\alpha(x)+1}} (vQ[v]) \quad in G, \tag{5}$$

where $\varphi(u) = |u|^{\alpha(x)-1}u = |u(x)|^{\alpha(x)-1}u(x)$.

Theorem 1 (Picone identity for q and Q) Let $\alpha(x) \in C^2(G; (0, \infty))$ and $b(x)/a(x) \in C^1(G; \mathbb{R}^n)$. Assume that $u \in C^1(G; \mathbb{R})$, u has no zero in G, and that:

 (H_1) there is a function $f \in C(\overline{G}; \mathbb{R}) \cap C^1(G; \mathbb{R})$ such that

$$\nabla f = \frac{\log |u|}{\alpha(x) + 1} \nabla \alpha(x) - \frac{b(x)}{(\alpha(x) + 1)a(x)} \quad in \ G.$$

If $e^f u \in \mathcal{D}_q(G)$, $v \in \mathcal{D}_Q(G)$ and v has no zero in G, then we obtain the following Picone identity:

$$\nabla \cdot \left(e^{-(\alpha(x)+1)f} (e^f u) a(x) |\nabla(e^f u)|^{\alpha(x)-1} \nabla(e^f u) - \frac{u\varphi(u)}{\varphi(v)} A(x) |\nabla v|^{\alpha(x)-1} \nabla v \right)$$

$$= a(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)a(x)} b(x) \right|^{\alpha(x)+1}$$

$$-A(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1}$$

$$\begin{split} +(C(x)-c(x))|u|^{\alpha(x)+1} \\ +A(x) & \left[\left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1} \right. \\ & \left. + \alpha(x) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)+1} \\ & \left. - (\alpha(x)+1) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)-1} \left(\nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) \right. \right. \\ & \left. - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right) \cdot \left(\frac{u}{v} \nabla v \right) \right] \\ & \left. + e^{-(\alpha(x)+1)f} (e^f u) q[e^f u] - \frac{|u|^{\alpha(x)+1}}{|v|^{\alpha(x)+1}} (vQ[v]) \quad in \ G. \end{split}$$

Theorem 2 (Sturmian comparison theorem) Let $\alpha(x) \in C^2(G; (0, \infty))$ and $b(x)/a(x), B(x)/A(x) \in C^1(G; \mathbb{R}^n)$. Assume that there exists a function $u \in C^1(\overline{G}; \mathbb{R})$ such that u = 0 on ∂G , u has no zero in G, the hypothesis (H_1) of Theorem 1 holds and that:

(H₂) there is a function $F \in C(\overline{G}; \mathbb{R}) \cap C^1(G; \mathbb{R})$ such that

$$\nabla F = \frac{\log |u|}{\alpha(x) + 1} \nabla \alpha(x) - \frac{B(x)}{(\alpha(x) + 1)A(x)}$$
 in G.

If $e^f u \in \mathcal{D}_q(G)$, $(e^f u)q[e^f u] \geq 0$ in G, and

$$\int_{G} \left[a(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x) + 1} \nabla \alpha(x) - \frac{u}{(\alpha(x) + 1)a(x)} b(x) \right|^{\alpha(x) + 1} - A(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x) + 1} \nabla \alpha(x) - \frac{u}{(\alpha(x) + 1)A(x)} B(x) \right|^{\alpha(x) + 1} + (C(x) - c(x))|u|^{\alpha(x) + 1} \right] dx \ge 0,$$
(6)

then every solution $v \in \mathcal{D}_Q(G)$ of (2) must vanish at some point of \overline{G} .

Corollary 1 (Sturmian comparison theorem) Let $\alpha(x) \in C^2(G; (0, \infty))$, $b(x)/a(x), B(x)/A(x) \in C^1(G; \mathbb{R}^n)$. Assume that:

(i)
$$\frac{b(x)}{a(x)} = \frac{B(x)}{A(x)}$$
 in G ;

(ii)
$$a(x) \ge A(x)$$
, $C(x) \ge c(x)$ in G .

If there exists a function $u \in C^1(\overline{G}; \mathbb{R})$ such that u = 0 on ∂G , u has no zero in G, the hypotheses (H_1) and (H_2) of Theorems 1 and 2 hold, $e^f u \in \mathcal{D}_q(G)$, $(e^f u)q[e^f u] \geq 0$ in G, then every solution $v \in \mathcal{D}_Q(G)$ of (2) must vanish at some point of \overline{G} .

4 Picone-type inequality

We derive Picone-type inequality and Sturmian comparison theorem for the half-linear elliptic operator q defined by

$$q[u] := \nabla \cdot (a(x)|\nabla u|^{\alpha(x)-1}\nabla u) - a(x)(\log|u|)|\nabla u|^{\alpha(x)-1}\nabla \alpha(x) \cdot \nabla u + |\nabla u|^{\alpha(x)-1}b(x) \cdot \nabla u + c(x)|u|^{\alpha(x)-1}u,$$

and the quasilinear elliptic operator \tilde{Q} defined by

$$\begin{split} \tilde{Q}[v] &:= & \nabla \cdot (A(x)|\nabla v|^{\alpha(x)-1}\nabla v) - A(x)(\log|v|)|\nabla v|^{\alpha(x)-1}\nabla \alpha(x) \cdot \nabla v \\ & + |\nabla v|^{\alpha(x)-1}B(x) \cdot \nabla v + C(x)|v|^{\alpha(x)-1}v \\ & + D(x)|v|^{\beta(x)-1}v + E(x)|v|^{\gamma(x)-1}v, \end{split}$$

where $D(x), E(x) \in C(\overline{G}; [0, \infty))$ and $\alpha(x), \beta(x), \gamma(x) \in C(\overline{G}; (0, \infty))$ with $0 < \gamma(x) < \alpha(x) < \beta(x)$.

Theorem 3 (Picone-type inequality for q and \tilde{Q}) Assume that $\alpha(x) \in C^2(G;(0,\infty))$, $b(x)/a(x) \in C^1(G;\mathbb{R}^n)$, and that $u \in C^1(G;\mathbb{R})$, u has no zero in G, and the hypothesis (H_1) of Theorem 1 holds. If $e^f u \in \mathcal{D}_q(G)$, $v \in \mathcal{D}_{\tilde{Q}}(G)$ and v has no zero in G, then we obtain the Picone-type inequality:

$$\begin{split} \nabla \cdot \left(e^{-(\alpha(x)+1)f}(e^f u) a(x) |\nabla(e^f u)|^{\alpha(x)-1} \nabla(e^f u) - \frac{u \varphi(u)}{\varphi(v)} A(x) |\nabla v|^{\alpha(x)-1} \nabla v \right) \\ & \geq \ a(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)a(x)} b(x) \right|^{\alpha(x)+1} \\ & - A(x) \left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1} \\ & + (C(x) + \tilde{C}(x) - c(x)) |u|^{\alpha(x)+1} \\ & + A(x) \left[\left| \nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right|^{\alpha(x)+1} \right. \\ & \left. + \alpha(x) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)+1} \\ & \left. - (\alpha(x)+1) \left| \frac{u}{v} \nabla v \right|^{\alpha(x)-1} \left(\nabla u + \frac{u \log |u|}{\alpha(x)+1} \nabla \alpha(x) - \frac{u}{(\alpha(x)+1)A(x)} B(x) \right) \cdot \left(\frac{u}{v} \nabla v \right) \right] \\ & + e^{-(\alpha(x)+1)f}(e^f u) q[e^f u] - \frac{|u|^{\alpha(x)+1}}{|v|^{\alpha(x)+1}}(v \tilde{Q}[v]) \quad in \ G, \end{split}$$

where

$$\tilde{C}(x) = \left(\frac{\beta(x) - \gamma(x)}{\alpha(x) - \gamma(x)}\right) \left(\frac{\beta(x) - \alpha(x)}{\alpha(x) - \gamma(x)}\right)^{\frac{\alpha(x) - \beta(x)}{\beta(x) - \gamma(x)}} D(x)^{\frac{\alpha(x) - \gamma(x)}{\beta(x) - \gamma(x)}} E(x)^{\frac{\beta(x) - \alpha(x)}{\beta(x) - \gamma(x)}}.$$

Theorem 4 (Sturmian comparison theorem) Under the same assumptions of Theorem 2 with C(x) in (6) replaced by $C(x) + \tilde{C}(x)$, every solution $v \in \mathcal{D}_{\tilde{O}}(G)$ of $v\tilde{Q}[v] \leq 0$ must vanish at some point of \overline{G} .

Corollary 2 (Sturmian comparison theorem) Let $\alpha(x) \in C^2(G;(0,\infty))$, $b(x)/a(x), B(x)/A(x) \in C^1(G;\mathbb{R}^n)$. Assume that:

(i)
$$\frac{b(x)}{a(x)} = \frac{B(x)}{A(x)}$$
 in G ;

(ii)
$$a(x) \ge A(x)$$
, $C(x) + \tilde{C}(x) \ge c(x)$ in G .

If there exists a function $u \in C^1(\overline{G}; \mathbb{R})$ such that u = 0 on ∂G , u has no zero in G, the hypotheses (H_1) and (H_2) of Theorems 1 and 2 hold, $e^f u \in \mathcal{D}_q(G)$, $(e^f u)q[e^f u] \geq 0$ in G, then every solution $v \in \mathcal{D}_{\tilde{Q}}(G)$ of $v\tilde{Q}[v] \leq 0$ must vanish at some point of \overline{G} .

5 Riccati inequality

Let Ω be an exterior domain in \mathbb{R}^n , that is, Ω includes the domain $\{x \in \mathbb{R}^n; |x| \geq r_0\}$ for some $r_0 > 0$. It is assumed that $A(x) \in C(\Omega; (0, \infty))$, $B(x) \in C(\Omega; \mathbb{R}^n)$, $C(x) \in C(\Omega; \mathbb{R})$, and that $\alpha(x) \in C^1(\Omega; (0, \infty))$. The domain $\mathcal{D}_Q(\Omega)$ of Q is defined to be the set of all functions v of class $C^1(\Omega; \mathbb{R})$ such that $A(x)|\nabla v|^{\alpha(x)-1}\nabla v \in C^1(\Omega; \mathbb{R}^n)$.

A solution $v \in \mathcal{D}_Q(\Omega)$ of (2) is said to be *oscillatory* in Ω if it has a zero in Ω_r for any r > 0, where

$$\Omega_r = \Omega \cap \{x \in \mathbb{R}^n; |x| > r\}.$$

We use the notation $A[r, \infty) = \{x \in \mathbb{R}^n; |x| \geq r\}$, and find that $\Omega_{r_1} = A(r_1, \infty)$ for some large $r_1 \geq r_0$. Noting Picone identity (5) holds in any domain of \mathbb{R} and letting u = 1 in (5), we obtain the following lemma.

Lemma 2 If $v \in \mathcal{D}_Q(\Omega)$ and v has no zero in $A[r_2, \infty)$ for some $r_2 > r_1$, then we obtain the following:

$$-\nabla \cdot \left(\frac{A(x)|\nabla v|^{\alpha(x)-1}\nabla v}{|v|^{\alpha(x)-1}v}\right)$$

$$= C(x) + \alpha(x)A(x)\left|\frac{\nabla v}{v}\right|^{\alpha(x)+1} + B(x) \cdot \left(\frac{|\nabla v|^{\alpha(x)-1}\nabla v}{|v|^{\alpha(x)-1}v}\right)$$

$$-\frac{vQ[v]}{|v|^{\alpha(x)+1}} \quad in \ A[r_2, \infty).$$

Based on Lemma 2 we obtain the following.

Lemma 3 If $v \in \mathcal{D}_Q(\Omega)$, $vQ[v] \leq 0$ in Ω and v has no zero in $A[r_2, \infty)$ for some $r_2 > r_1$, then we derive the Riccati inequality:

$$\nabla \cdot (\psi(x)W(x)) + d(x) + \frac{\alpha(x)}{\alpha(x) + 1}e(x)|W(x)|^{1 + (1/\alpha(x))} \le 0$$

in $A[r_2, \infty)$ for any $\psi(x) \in C^1(A[r_2, \infty); (0, \infty))$, where

$$e(x) = \frac{\alpha(x) + 1}{2} \psi(x) A(x)^{-1/\alpha(x)},$$

$$d(x) = \psi(x) C(x) - \frac{1}{\alpha(x) + 1} e(x)^{-\alpha(x)} \psi(x)^{\alpha(x) + 1} \left| \frac{B(x)}{A(x)} - \frac{\nabla \psi(x)}{\psi(x)} \right|^{\alpha(x) + 1}.$$

Lemma 4 Assume that the following hypothesis holds:

(H)
$$\alpha(x) \equiv \alpha(|x|)$$
 in $A[r_0, \infty)$.

If $v \in \mathcal{D}_Q(\Omega)$, $vQ[v] \leq 0$ in Ω and v has no zero in $A[r_2, \infty)$ for some $r_2 > r_1$, then we have the Riccati inequality:

$$Y'(r) + \int_{S_r} d(x) dS + \frac{\alpha(r)}{\alpha(r) + 1} \Psi(r)^{-1/\alpha(r)} |Y(r)|^{1 + (1/\alpha(r))} \le 0$$
 (7)

for $r \geq r_2$, where

$$S_r = \{x \in \mathbb{R}^n; |x| = r\},$$

$$\Psi(r) = \int_{S_r} e(x)^{-\alpha(r)} \psi(x)^{\alpha(r)+1} dS,$$

$$Y(r) = \int_{S_r} \psi(x) \langle W(x), \nu(x) \rangle dS,$$

 $\nu(x)$ being the unit exterior normal vector x/r on S_r .

Theorem 5 Assume that the hypothesis (H) of Lemma 4 holds. If there exists a function $\psi(x) \in C^1(A[r_1, \infty); (0, \infty))$ such that the Riccati inequality (7) has no solution on $[r, \infty)$ for all large r, then every solution $v \in \mathcal{D}_Q(\Omega)$ of $vQ[v] \leq 0$ is oscillatory in Ω .

We can obtain oscillation results for $vQ[v] \leq 0$ by analyzing one-dimensional Riccati inequalities with variable exponent of the form

$$y'(r) + \frac{1}{\beta(r)} \frac{1}{p(r)} |y(r)|^{\beta(r)} \le -q(r),$$

where $\beta(r) > 1$, $p(r) \in C([r_1, \infty); (0, \infty))$ and $q(r) \in C([r_1, \infty); \mathbb{R})$.

For example, we obtain the following.

Corollary 3 Assume that the hypothesis (H) of Lemma 4 holds. Let $\mu > 1$ and ν be a real number. If there exists a function $\psi(x) \in C^1(A[r_1, \infty); (0, \infty))$ such that

$$\lim_{r \to \infty} \sup \frac{1}{r^{\mu}} \int_{r_1}^r \left[\omega_n s^{\nu + n - 1} (r - s)^{\mu} \overline{d}(s) - \frac{1}{\alpha(s) + 1} s^{\nu - \alpha(s) + 1} |\nu r - (\mu + \nu) s|^{\alpha(s) + 1} (r - s)^{\mu - \alpha(s) - 1} \Psi(s) \right] ds = \infty,$$

then every solution $v \in \mathcal{D}_Q(\Omega)$ of $vQ[v] \leq 0$ is oscillatory in Ω , where ω_n denotes the surface area of the unit sphere S_1 and $\overline{d}(r)$ denotes the spherical mean of d(x) over the sphere S_r .

6 Forced oscillations

We study oscillation criteria for $v(\tilde{Q}[v] - f(x)) \leq 0$ with a forcing term f(x). Under some hypotheses we can establish Riccati inequality which is similar to that obtained in Lemma 3. Utilizing the Riccati method as were used for $vQ[v] \leq 0$, we can obtain oscillation results for $v(\tilde{Q}[v] - f(x)) \leq 0$ (see [9]).

References

- [1] W. Allegretto, Form estimates for the p(x)-Laplacian, Proc. Amer. Math. Soc. **135** (2007), 2177–2185.
- [2] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.

- [3] P. Harjulehto, P. Hästö, Ú. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. **72** (2010), 4551–4574.
- [4] M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine, Ann. Scuola Norm. Sup. Pisa 11 (1909), 1–141.
- [5] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.
- [6] C. Sturm, Sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186.
- [7] N. Yoshida, Oscillation criteria for half-linear elliptic inequalities with p(x)-Laplacians via Riccati method, Nonlinear Anal. **74** (2011), 2563–2575.
- [8] N. Yoshida, Picone identities for half-linear elliptic operators with p(x)Laplacians and applications to Sturmian comparison theory, Nonlinear
 Anal. **74** (2011), 5631–5642.
- [9] N. Yoshida, Forced oscillation criteria for quasilinear elliptic inequalities with p(x)-Laplacian via Riccati method, Toyama Math. J. **34** (2011), 93–106.
- [10] N. Yoshida, Picone-type inequality and Sturmian comparison theorems for quasilinear elliptic operators with p(x)-Laplacians, Electron. J. Differential Equations **2012** (2012), No. 01, 1–9.
- [11] Q. H. Zhang, Oscillatory property of solutions for p(t)-Laplacian equations, J. Inequal. Appl. **2007**, Art. ID 58548, 8 pp.
- [12] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv. **29** (1987), 33–66.

Department of Mathematics University of Toyama Toyama 930-8555 JAPAN

E-mail address: nori@sci.u-toyama.ac.jp