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Tunneling for spatially cut-off P(¢).-Hamiltonians

Shigeki Aida
Tohoku University

This note is a short presentation of recent results for semi-classical analysis of lowlying
eigenvalues of spatially cut-off P(¢)s-Hamiltonians based on the author’s recent research
([2, 3]). We refer the readers for semi-classical analysis in finite dimensions to [17, 21, 32,
33, 19, 20] and for P(¢)2-Hamiltonians to [12, 31, 34, 7].

First, we give a definition of spatially cut-off P(¢)o-Hamiltonians. Let m > 0. Let u
be the Gaussian measure on the space of tempered distributions S’(R) such that

2 _ 2 A\—1/2
| swtoo)mdatw) = ((m? - 30,0
Let € be the Dirichlet form defined by
£ 1) = [ IVH@) Regandutu) £ €DEE),

where V f(w) is the unique element in L2(R, dx) such that
m fwt €<P) fw)

= (VF(w), ) 12w az) -

e—rO

The generator —L(> 0) of £ is one of expressions of a free Hamiltonian. Let P(z) =

2M apz®, where agpr > 0. Let g € CP(R) with g(z) > 0 for all x and define for

he H(= H\(R)),

Vit = [ P(hiz))g(a)ds

U(h) = ;; /R (W(2)? + m?h()?) dz + V()
We want to consider an operator like

—L+AV(w/VX) on L*(S'(R),dp).

The difficulty is in the definition of w(z)* because w is an element of the Schwartz distri-
bution. Instead of w(z)¥, we use Wick power : w(z)¥ : which requires renormalizations for
which we refer the readers to [12, 31, 34, 7]. For P = P(z) = Y34 az* with agp > 0,

define
/R (\/_)) 9(z) dx-Zak./ <“’(”3> : g(z)dz.
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We write

(5):m Lo (29)

VA(w)=/\:V(%>:.

Definition 1. The spatially cut-off P(¢)2-Hamiltonian —L+V), is defined to be the unique
self-adjoint extension operator of (—L + V), FC°(S'(R))).

It is known that —L + V) is bounded from below and the first eigenvalue E;(})) is
simple and the corresponding positive eigenfunction ; » exists. See {12, 31, 34]. Formally,
—L + V), is unitarily equivalent to the infinite dimensional Schrédinger operator:

~Ap2g) + AU (w/VA —ltr(m?‘—A)l/2 on L?(L%(R),dw) |
(R) 2

where dw is an infinite dimensional Lebesgue measure. The function U is a potential
function such that

Uw) = [[werds+ [ (Turs: Pu) (@) do

and Ajz2(g) denotes the “Laplacian”on L%*(R,dz). Hence, by the analogy of Schrédinger
operators in finite dimensions, it is natural to expect that asymptotic behavior of lowlying
eigenvalues of —L + V), in the semiclassical limit A — oo is related with the properties of
global minimum points of U. In view of this, we consider the following assumptions.

Assumption 2. Let U be the function on H' such that

m2
U(h) = i /R K (z)%dz + /R (—Z—h(:c)z + P(h(x))g(z)) dr  forhe H.

(A1) The function U is non-negative and the zero point set
Z:={he H' |U(h) =0} = {h1,..., hn}

is a finite set.
(A2) For all 1 < i < n, the Hessian V2U(h;) is non-degenerate. That is, there exists
6; > 0 for each i such that

m2
VU (ki) (h, h) := % /R R (z)%dx + /R (—2—h(x)2+P”(h,~(x))g(a;)h(m)2) dx

> 5i|lhl 2wy ~ for all h € H(R).
(A3) For all z, P(z) = P(—z) and Z = {ho,—ho}, where hy # 0.

Let E1()) be the lowest eigenvalue of —L + V). The first main result is as follows.



Theorem 3 ([3]). Assume that (A1) and (A2) hold. Let E1(\) = info(—L + V3). Then
lim Ey(\) = min E;,

A—00 1<i<n

where
Ei = info(—L + Qz)

and Q; is given by

Q) =5 [ (@ Phula)g(x)da.
Remark 4. In the case of finite dimensional Schrédinger operators, there exist eigen-
values near the approximate eigenvalues E; when ) is large. In Theorem 3, if B; <
m + minj<;<p E;, then the same results hold by the result of Hoegh-Krohn and Simon
[34]. However, if it is not the case, it is not clear and they may be embedded eigenvalues
in the essential spectrum. Under the assumptions in Theorem 6, Ey()\) is an eigenvalue
for large A. Simon [30] gave an example of P(¢),-Hamiltonian for which an embedded
eigenvalue exists.

Let
Ey(N) = inf {o(~L + V) \ {Es (W)}

We can prove that E3(\) — E1()) is exponentially small when U is a symmetric double
well potential function. The exponential decay rate is given by the Agmon distance which
is defined below.

Definition 5. Let 0 < T < oo and h,k € HY(R). Let ACrpx(H'(R)) be the set of all
absolutely continuous paths c : [0,T] — H'(R) satisfying c(0) = h,c(T) = k. Let U be
~ the potential function in (2). Assume U is non-negative. We define the Agmon distance
between h,k by

d?(h,k) = inf {£y(c) | c € ACTnx(H'(R))},
where T
(O = [ VORI Dlpad
The following estimate is the second main result.

Theorem 6 ([3]). Assume that U satisfies (A1),(A2),(A3). Then it holds that

lim sup log (Ea(A\) ~ E1(N))
A—00 A

< —di¥ (ho, —ho).

Remark 7. (1) Agmon distance can be extended to a continuous distance function on
H'Y/2(R). Moreover the topology defined by the Agmon distance coincides with the one
defined by the Sobolev norm of HY/2(R).

(2) We can prove the existence of minimal geodesic between hg and —hg with respect to
the Agmon metric. The uniqueness of the geodesics is not clear at the moment.

(3) The Agmon distance dég (ho, —ho) is equal to an Euclidean action integral of an in-
stanton solution. This is an infinite dimensional example corresponding to the result of
instanton in the case of Schrédinger operator which is due to Carmona and Simon [6].
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The following is an example for which our main theorem is applicable.
Example 8. Fir g € C°(R). Let n € N. For sufficiently large a > 0, the polynomial
P(z) =a(z®>-1)*"-C
satisfies (A1), (A2), (A3). Here C is a positive constant which depends on a,g.

The same theorems are valid in the case where the space is a finite interval I =
[—1/2,1/2] as in the setting in [2]. In that framework, we show a simple example for which
the Agmon distance and instanton can be calculated. Let a and z¢ be positive numbers.
We consider the case where

U(h) = % /I B (z)%dz + a /1 (h(z)? - 22)* da.

For example, setting b% = 3 %"‘5 and

P(z) = a(z? - b*)? —a {b“ - (b2 - %";)? ,

we obtain the potential function above. Note Z = {hg,—ho}, where ho(z) = z¢ is a
constant function. o are the zero points also of the potential function

Qz) =a(z® -—22)? zeR.
Let

d49

1dim("-’”07330) = inf{/_i vV Q(m(t))lx’(t)|dt ‘ z(-T) = —zo, z(T) = -730}-

Thizs is the Agmon distance which corresponds to 1-dimensional Schrédinger operator
—3%7 + Q(z) defined in L%(R,dz) and

dfdgim(—-xo,xo) = /mo \/Cde = i\/g_—xg.
—zo
We can prove the following.
Proposition 9. Assume 2ax%l2 < 2. Let ug(t) = xo tanh (2\/Ex0t). Then ug(t) is a
solution to
u"(t) = 2Q’ (u(t)) — 00 < t < 00,

Jm ) = 20, Jim ) =79

and

1 o0 , 9 o0
Iop(uo) = (7 [ wo()dt+ [ Qluo(t)dt ),
—o0 —00
d{fim(=20,20)]
= dy?(—ho, ho).
The Proposition above claims that ug is the instanton for both operators: 1-dimensional

2
Schrédinger operator —ZZE—2 +AQ(-/VA) and —L + V.
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