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1 Introduction

In this article, we discuss the following Lotka-Volterra prey-predator system:

(u = A[(1+ kp(z)v)u] + w(Axg, + Vxa\g, — ¢ — b(z)v) in Q x (0, 00),
v = Av+ v(p + cu — v) in Q\ 2 x (0, 00),
(P) ! Opu =0 on 0§ x Q,oo),
Opv =0 on 0(2\ Q) x (0,00),
u(z,0) = up(z) >0 in Q,
L v(z,0) = vo(z) >0 in O\ Q,

where () and Q are bounded domains in RV (N > 1) with smooth boundaries 2 and
08 respectively, and satisfy the following condition: if N > 2, then Qy € Q;if N = 1
and € = (a1, ay) for a; < a,, then Qy = (a,a,) for some a € (a1, az). Moreover, n
is the outward unit normal vector on the boundary and 8, = 8/0n; k > 0, A > 0,
pt>0,v >0and c> 0 are all constants; Xg, and Xo\q, are characteristic functions;
p(z) is a smooth function in Q with 8,p = 0 on 09 and b(x) is a Holder continuous
function in . We assume that p(z) = b(z) = 0 in Jp since v is not defined in €.
On the other hand, we assume that p(z) > 0 and b(z) > 0 in  \ y and that both
p(z)/b(x) and b(z)/p(z) are bounded in 0 \ Q.

In (P), u(z,t) and v(z, t) are unknown functions representing population densities
of prey and predator respectively; A and v denote the intrinsic growth rates of the
prey species in g and 0\ Q0 respectively and p denotes the intrinsic growth rate of
the predator species; b(x) and c represent the coefficients of prey-predator interaction;
the homogeneous Neumann boundary condition means that no individual can cross
the boundary.
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In the first equation of (P), the nonlinear diffusion term kA[p(x)vu] means that
the movements of individuals of the prey species in 0\ € are affected by population
pressure from the predator species. Such a nonlinear diffusion term is usually called
a cross-diffusion term, which was first introduced in Shigesada et al. [10].

In (P), only the prey species can go into the subregion Qy of the habitat Q. This
means that the prey species is protected from predation in §2y. We call the subregion
0y a protection zone. The effect of a protection zone on population models was
first studied mathematically by Du and Shi [4]. Since their work was published,
several mathematicians have studied population models with a protection zone for
an endangered species under the assumption that the intrinsic growth rate of the
endangered species is the same in the two regions Q and Q \ Q (see [2], [3], [7],
[11]). On the other hand, the author (8] has studied the stationary problem of (P),
where the intrinsic growth rates of the prey species are given separately in the two
regions )y and Q \ Q.

The stationary problem of (P) is

A[(1 + kp(z)v)u] + u(Axg, + vxag, — v —b(z)v) =0 inQ,

A —v) = i 9]
(SP) vt+ov(p+cu—v)=0 in Q\ Q,

Opu =0 on OS2,

Opv =0 on 8(2\ Q).

The main purpose of this article is to make a resume of recent results obtained by
the author [8]. Define

U= (1+ kp(z)v)u. (1.1)
Then (SP) is rewritten in the following form:
rAU%——U——— (x\x-ﬁ + VXang ——i———b(:n)v> =0in Q
1+ kp(z)v 0 Vo 1+ kp(z)v ’
(EP)<AU+U(M+H%§(;)—U—U)=O in Q\ Q,
0,U =0 on 012,
[ Onv =0 on (2 Q).
For p > N, we define
X1 = W2P(Q) x W2P(Q\ D), (1.2)

where W2?(0) = {w € W*?(0) : 8,w = 0 on 0}. It is said that (U, v) is a positive
solution of (EP) if (U,v) € X;, U >01in Q, v > 0in O\ Qq and (U, v) satisfies (EP).
We call (u,v) a positive solution of (SP) if (U,v) is a positive solution of (EP) and
u is defined by (1.1). From a biological point of view, a positive solution of (SP)
means a coexistence state of prey and predator.



For ¢ € L*(Q), we denote by A\¥(g, ) the first eigenvalue of —A + ¢ over ) with
the homogeneous Neumann boundary condition. Moreover, we define

1 b
 [verars [ Mg
(k) = 4 mg N P if k>0,
o) = %€ $*dz
S0
A?K%) if k=0,
where S = {¢ € H'(Q) : [, #°dz > 0} and AP(Q) is the first eigenvalue of

—A over )y with the homogeneous Dirichlet boundary condition (when N = 1,
the homogeneous Dirichlet boundary condition ¢(a) = ¢(az) = 0 is replaced by
¢(a) = ¢'(az) = 0, but we use the same symbol AP (€))). We are now in a position
to state the main results of this article.

Theorem 1.1. The following results hold true:

(1) Suppose that X > X (k). For any p > 0 and v > 0, (SP) has at least one
positive solution.

(ii) Suppose that 0 < A < N (k). For any v > 0, there exists a positive number
p* such that (SP) has at least one positive solution if 0 < p < p* and has no
positive solution if u > p*. Furthermore, u* satisfies

W (b(:c)u* — AXm, — YXa\T Q) _o.
1+ kp(z)p*

Theorem 1.2. X (k) is continuous and strictly decreasing with respect to k > 0
and satisfies

‘ 1 b(z)
hm kX (k) = oy . p(x)dm

Theorem 1.3. Suppose that A > Ai (k). Let (u,,v,) be any positive solution of
(SP) for each u > 0.

(i) Ifk >0, then
lim w, = Uy, in CH(Qy),

100

lim u, =0 uniformly in any compact subset of 0\ Qy,
H—00

lim v, = 0o uniformly in O\ Qo,
1—00

where Uy i, is the unique positive solution of

AU+U{X§0()\—U) kp(z”))xg\%}zo in 2, 0,U=0 onof.
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(i) If k=0, then

lim u, = Wy uniformly in Q@ and lim (v, — ) = 0 uniformly in Q\ Q.
[—3$00 U—>00

Here, W, is defined by Wy, =0 in Q\ Qy and W) = wy, in Qy, where wy, is the
unique positive solution of

Aw 4+ w(A—w) =0 in Qy,
w=0 ondQy if N>2, wa)=w(a)=0 if N=1.

We remark that Theorems 1.1-1.3 were obtained in [8]. We refer to [8] for the
proof of Theorems 1.2 and 1.3.

Theorem 1.1 implies that the environments inside the protection zone are more
important for the prey species than those outside it. Moreover, Theorems 1.1 and
1.2 assert that even if X is very small, the existence of a positive solution of (SP) is
guaranteed for any u > 0 and v > 0 if the cross-diffusion effect is sufficiently large.
Theorem 1.3 implies that as 4 — o0, the prey species concentrates inside the pro-
tection zone and the two species become spatially segregated under the assumption
A > A (k).

When N = 1, we can obtain the following theorem on the profiles of U, » and w
in Qo.

Theorem 1.4. Suppose that A > A\ (k), N =1, Q = (a1, a2) and Qy = (a, az) with
a1 < a < az. Then both Uy, and wy are convex upwards and strictly increasing in
(a, (12).

This article is organized as follows. In Section 2, we will give an outline of the
proof of Theorem 1.1. In Section 3, we will prove Theorem 1.4.

2 Proof of Theorem 1.1

2.1 Local bifurcation

The following change of variables in (EP) is convenient for obtaining positive solu-
tions by using the bifurcation theory:

=5 (2.1)

Then (EP) is rewritten in the following form:

AU + f,(\,U,v) =0 in Q,

Av+ f(U,v) =0 in O\ Q,
19, U=0 on 09,

Opv =0 on (2 \ Q),

(EP)



where
U U
cU
f(Uyv)=wv (u-*—m —U) .

We will use X as a bifurcation parameter to obtain positive solutions which bifurcate
from the constant solution curve

Ly ={(XU,v) = (A0,u): A >0}

For any 7 > 0, we define

b(z)u — Mxa, + TXE\G,) | Q) _ 0} , (2.2)

5, = {(/\,u) € [0,00)%: Ay ( 1+ kp(z)p

Then the following lemma holds true.

Lemma 2.1. For any 7 > 0, the set X, forms an unbounded curve and can be
ezpressed as L, = {(A*(u, ), ) : p > 0}, where \*(u,7) is continuous and strictly
increasing with respect to pu > 0 and satisfies A*(0,7) = 0 and lim, o0 A*(p,7) =
AL (k).

Let A* = A*(u, 7) be the positive number defined in Lemma 2.1 and let ¢* be a
positive solution of
. b@)p = N xg, + Txann,)

—A¢* + ¥ ko) ¢*=0in Q, 0,0 =0 on ON.

Moreover, we define

Y = (=A+pl)gly [H—I:SWQS*J ’

Q\lﬁo
over 2\ Q subject to the homogeneous Neumann boundary condition. Then we
can prove the following local bifurcation property by applying the local bifurcation
theorem of Crandall and Rabinowitz [1] to (EP)

Lemma 2.2. Positive solutions of (EP)_ bifurcate from T, if and only if X\ = \*.
Precisely, all positive solutions of (EP)_ near (A\*,0,u) € R x X; can be expressed as

Is = {(AU,v) = (A(s),5(8" + U(s)), 1 + s(v" + v(s))) : s € (0,0)}

for some 6§ > 0, where X is the Sobolev space defined by (1.2). Here (A(s), U(s),v(s))
is a smooth function with respect to s and satisfies (A(0), U(0),v(0)) = (A*,0,0) and
JoU(s)¢*dz = 0.

where [ is the identity mapping and (—A+ul) is the inverse operator of —A+ul

T
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2.2 A priori estimates and non-existence result of positive
solutions

By virtue of the maximum principle due to Lou and Ni [6], we can derive the following
a priori estimates of positive solutions of (EP)._.

Lemma 2.3. Let 0 € (0,1). Then there exist two positive constants C; and Cy such
that any positive solution (U,v) of (EP)_ satisfies

V> U mn _ﬁ\ Qo, ”U“Cu)(ﬁ) S Cl and ”’0”01,0(5\90) S Cg.
Here, if k > 0, then C} can be chosen independently of u > 0.

Furthermore, we can prove the following non-existence result of positive solutions.

- Lemma 2.4. If A < X*(u, ), then (EP)_ has no positive solution.

2.3 Completion of the proof of Theorem 1.1

Firstly, we will prove the following proposition.
Proposition 2.5. (EP)_ has at least one positive solution if and only if A > A*(u, 7).
Proof of Proposition 2.5. Define

E = C,(Q) x Cr(2\ Q),

where C1(0) = {w € C*(O) : 8,w = 0 on 80}. For the local bifurcation branch I'
which was obtained in Lemma 2.2, let I' C R x F denote the maximal connected set
satisfying

FscT c{(\Uwv)e R xE)\{(A",0,u)}: (U,v) is a solution of (EP)_}.
By virtue of the strong maximum principle, we can verify that
I'CR x Po x Pyg, (2.3)

holds, where Po = {w € C:(O) : w > 0 in O}. Define

Y = {(qﬁ,w) eE:/Q¢¢*dx=o}, (2.4)

that is, Y is the supplement of span {(¢*,%*)} in E. It follows from the global bi-
furcation theory of Rabinowitz [9] that one of the following non-excluding properties
holds (see Rabinowitz [9] and Theorem 6.4.3 in Lépez-Gémez [5]):

(1) I is unbounded in R x E.
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(2) There exists a constant A # \* such that (X,0,u) € I,
(3) There exists (A, ,4) € R x (Y \ {(0, )}) such that (\ ¢,9) €T

Case (2) is impossible because of (2.3). Due to (2.3), (2.4) and ¢* > 0, case (3) is
also impossible. Thus, case (1) must hold. Therefore, we see from (2.3) and Lemmas
2.3 and 2.4 that (EP)_ has at least one positive solution if and only if A > \*. Hence
the proof of Proposition 2.5 is complete. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. On account of (2.1) and Proposition 2.5, we notice that (SP)
has at least one positive solution if and only if A > A*(u,v/)). We first prove part
(i) for any fixed A > A% (k). Lemma 2.1 yields

v 124

* = . * Z) — v <
) < im (n5) -0 <2

for any p > 0 and v > 0. Therefore, (SP) has at least one positive solution for any
@ >0and v > 0.

We next prove part (ii) for any fixed A € (0, \%,(k)) and v > 0. By Lemma 2.1,
we see that A*(u,v/)) is continuous and strictly increasing with respect to u > 0
and satisfies

«(n VY _ gk YN
A (O,X) =0< and lim X (1,3 ) =ML (k) > A
Thus, we can find a positive number u* such that A > A\*(y, v/A) holds if 0 < p < p*
and A < A*(u,v/A) holds if u > p*, and moreover, u* satisfies

b(x)u* — AMxs. — VYero
/\{v( (z)u X% XQ\QO,Q) —0

1+ kp(z)p*
because of (2.2) and Lemma 2.1. This means that (SP) has at least one positive
solution if 0 < u < p* and has no positive solution if y > p*. O

3 Proof of Theorem 1.4

Proof of Theorem 1.4. We recall that U, is the unique positive solution of

b(x) _
Uiy + Usie {X[a,ag)(k —Urp) — To(z) X(al,a)} =0 in (a1, az),

Usi(ar) = Uj x(az) = 0
and w) is the unique positive solution of

wy + wa(A —wy) =0 in (a,ay),
wi(a) = w)(az) = 0.
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Then we can easily see that 0 < Uy, < A and 0 < wy < A in (a, az). Thus
e =—Ure(A=Usk) <0 and w) = —wy(A —wy) <0 in (a,az).

Hence we obtain U}, > 0 and w) > 0 in (a,az) because of Uj ,(az) = wh(ag) = 0.
Therefore, we get the conclusion. O
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