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Heat equation with absorption and non-decaying initial data
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1 Introduction

This paper is a joint work with Professor Kazuhiro Ishige and a part of [10]. In this paper
we are concerned with the large time behavior of the solution of the Cauchy problem for the
heat equation with absorption,

(1.1)

Ou = Au — uf in RN x (0,00),
u(z,0) =up(z) >0 in RN,

where N > 1, 0y = 0/0t, and § > 1. The large time behavior of the solution of (1.1) depends
on 3 and the behavior of the initial function ug at the space infinity, and has been studied
intensively by many mathematicians (see for example [1]-[9], [11], [13]-[16]). If the initial
function ug decays slowly at the space infinity, then the solution u of (1.1) behaves like the

function 1
1 \#1 -
-1

as t — 00, which is the solution of the ordinary differential equation

¢ =P (1.2)
More precisely, if
ug € LP(RY) for some p € [1, 00), l’irlness leﬁi_luo(a:) = 00, (1.3)
T|—00
then
lim 71 i L 14
Jim 07 1ua,t) = (515 ) (1.9

uniformly on the set E, := {z € RN : |z| < ct!/?} for any ¢ > 0 (see [3, Theorem 2.1]). We
remark that the behavior of the solution u at the space infinity depends on the behavior of
the initial function ug at the space infinity (see [6, Theorem 1]).

In this paper we consider problem (1.1) with the non-decaying initial data

uo(z) = A+ p(x) > 0, (1.5)
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where A > 0 and ¢ is a bounded continuous function in RY such that ¢ € L? (RY) for some
1 < p < 00, and study the large time behavior of the solution u of (1.1). Let () be the
solution of (1.2) with ¢{(0) = A, that is,

o) = (6D 4 (8 — 1)) (1.6)

Then
1
1 B-1 I -1
Cﬂﬂ=(§jj) tA1(1+0(t77)) as t— oo, (1.7)
and it follows from the local L®- estimates for parabolic equations and the comparison
principle that

u(z, 1) = (5—1—1) TR oY) as tooo (1.8)
uniformly on R (see Proposition 3.1). Here we put
_ Mlu(z, t) = ()]
v(z,t) = AOL . (1.9)

Then, by (1.7) and (1.9) we see that
lo(®)llzmqr) = O) 8 ¢ 0.

In this paper we are especially interested in the precise description of the large time behavior
of the function v, and prove that the function v behaves like a solution of the heat equa-
tion. Furthermore, we give decay estimates on the difference between the function v and its
asymptotic profile (see Theorems 1.1 and 1.2), and prove that the solution u behaves like

((,\ +h(z, )" 4+ (8- 1)t) N

as t — oo uniformly on R¥, where h is a solution of the heat equation (see Corollary 1.1). As
far as we know, there are no results giving the precise descriptions of the large time behavior
of the solution of (1.1) with non-decaying initial data.

We introduce some notation. Let B(z,R) := {y € RN : |y — z| < R} for z € R" and
R > 0. For any k € R, let [k] be an integer such that k—1 < [k] < k. Let M := (N U {0O})V.
For any v = (v1,...,vN) € M, we put

o 14 15§ VN v 6|U|
lv| == E vi, V=t ayy, vii=1!-- Nl am:=—————a TRy
i=1 1 TN

Jw):={u=(u1,--,un) EM : pi <y (i=1,...,N), p#v}

Let BC(RN) := C(RM) N L>°(RN). For any r € [1,00], we denote by || - || the usual norm
of L"(R™). For any k > 0, we denote by ||| - |||x the norm of L'(R¥, (1 + |z|¥)dz), that is,

Al = [ F@I0+lelYde for  f € LRY,(1+[al¥)do).



Let G be the fundamental solution of the heat equation on R¥, that is,

N 2
G(z,t) := (47mt) "2 exp (—%) , (1.10)

and put

—1)l
gu(z,t) = ( i‘) (07G)(z,t + 1) for any v e M.

In particular, we write g(z,t) := go(x,t) for simplicity. For any ¢ € L®(RY), let e!®¢ be a
unique bounded solution of the heat equation 8;z = Az in R¥ x (0, 00) with 2(0) = ¢, that
is,

€28)a) = | Gle-ut)o)d (111)
For any sets A and X, let f = f(\,0) and h = h()\, ) be maps from A x ¥ to (0,00). Then

we say
f(A o) =2h(X o) forall AeA

if, for any o € X, there exists a positive constant C such that f()\,0) < Ch(\, o) for all
A € A. In addition, we say

f(A o) <h(\ o) forall AeA
if f(A,0) 2 h(A,0) and f(A,0) = h(\, o) for all A € A.

We are ready to state the main results of this paper. In Theorems 1.1 and 1.2 we give
the large time behavior of the functions v by using the heat equation. Furthermore, we give
decay estimates of the difference between the functions v and its asymptotic profile. See also
[10, Theorem 1.1, Theorem 1.2].

Theorem 1.1 Assume (1.5) and
¢ € BC(RY) n LP(RV) (1.12)

for some p € [1,00). Let u be a solution of (1.1). Then, for any q € [p, ],

sup ¢2 G |u(t)||, < co. (1.13)
t>0
Furthermore, if p > 1, then
(56D lu(t) - ol = 0 5) + 0207 (114

as t — oo, for any q € [p, o0].
Theorem 1.2 Assume (1.5) and
¢ € BCRY)NLIRY, (1 + |z)¥)dx) (1.15)

for some K > 0 with
K< N+2. (1.16)
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Let u be a solution of (1.1). Then the following hold:
(i) For anyl € [0, K],
{
sup (1 +¢)72||v(¢)||l: < oo;
¢>0

(ii) For any v € M with |v| < K, put

M,(t) := / N ’v(z, t)dx if |v| <1,
- (1.17)
M,(t) = /RN z¥v(z,t)dx — Z M,(t) /RN z¥gu(z,t)dz if |v| > 2.

peJ(v)
Then there exists a constant M, such that
M, = lim M, (t);
t—o0

(iii) Put
W(z,t) := Z M,g,(z,1).
lv|<K
Then N . X
70" |u(t) - W(t)|lq = ot~ 7)

as t — oo, for any g € [1,00].

As a corollary of Theorems 1.1 and 1.2 with ¢ = 0o, we have the following result. See also
[10, Corollary 1.1].

Corollary 1.1 Let u be a solution of (1.1) and assume (1.5). Then the following hold:
(i) Assume p € BC(RN)N LP(RYN) for some 1 < p < co. Then

w(z, ) = (1) + A PGP e) (@) + OV ()P

- [(emuo)(x)-w-“ (8- 1)t]

P
8- N
P

1 -—_
+O0(t7 (1))
in L°(RM) as t — 0o, where p’ = max{p, 2};

(ii) Assume ¢ € BC(RN)NLY(RY, (1 +|z|X)dz) for some K > 0 with (1.16). Let W be the
function given in assertion (iii) of Theorem 1.2. Then

K
2

u(z,t) = (&) + APOE)PW (=, ) + ot 7~ F)
= [(etA(/\ + W(O)))(m)‘(ﬁ“l) + (8- l)t] +o(t™

in L°(RN) as t — co.



Corollary 1.1 gives more precise description of the large time behavior of u than that of
(1.8) and shows that the heat equation plays an important role of determining the large time
behavior of the solution u of nonlinear parabolic problem (1.1).

Our analysis in this paper is based on the arguments in [8] and [9], where Ishige and
Kawakami studied the large time behavior of the solutions of nonlinear parabolic equations
and obtained higher order asymptotic expansions of the solutions behaving like the heat
kernel. In order to prove Theorems 1.1 and 1.2, we first prove that the function v is a
solution of the Cauchy problem,

Ow=Av+ F(z,t) in RV x (0, 00), (118)
v(z,0) = p(z) in RN '
(see (3.3) and Proposition 3.1). Here the inhomogeneous term F' satisfies
|F(z,t)] = (1+¢)7%|o(, 1) (1.19)

for all (z,t) € RY x (0,00). Then, under the condition that ¢ € BC(RN)nLP(RN } for some
1 < p < 0o, we can give

lo()lg + /2 Vu)lly <2670, t>0, (1.20)

for any p < ¢ < oo (see (3.14)). Since it follows from (1.18) that
t
v(t) = etPyp + / et)AF(s5)ds, t>0, (1.21)
0

we apply (1.19) and (1.20) to (1.21), and prove Theorem 1.1. Furthermore, under the condi-
tions (1.15) and (1.16), we apply the results in [9, Section 4] with the aid of (1.19) and (1.20),
and prove Theorem 1.2.

The rest of this paper is organized as follows. In Section 2 we recall some properties of
e!2p, and give some results on the large time behavior of solutions of nonlinear parabolic
equations. In Section 3 we give some decay estimates of v, and prove Theorems 1.1 and 1.2
and Corollary 1.1.

2 Preliminaries

In this section we recall some fundamental properties of e/, and give some results on the
large time behavior of solutions of nonlinear parabolic equations.

Let G be the fundamental solution of the heat equation on R”" (see (1.10)). Then, for
any v€ M and j =0,1,2,..., there exists a constant C; such that

. |v|+25 2
i v _ N+jv
|0]07G(z,t)| < Cit g [1 + (t—'l%) ] exp (—IZ—It) (2.1)
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for all (x,t) € RN x (0, 00). This inequality yields the inequalities
_N_Ly_l4 —|v
lgu(®)llg = (1 +1)" 30777, / lallgu(@, Dde < (L+8) 7, £>0, (2.2)
RN

for any q € [1,00] and I > 0. Furthermore, by (1.11) and (2.1) we have:

(@) For any v € M and 1 < p < ¢ < 0o, there exists a constant c},|, independent of p and
g, such that

N1 1y v
s pllg < cuit™2 7T lgllp, > 0.
In particular, there holds ||et®pllq < ||¢llq for all £ > 0.

Let 2 be a solution of the Cauchy problem for the nonlinear parabolic equation,

8z = Az + H(z,t,2,Vz) in RN x (0,00), 23)
2(z,0) = ¢(z) in RV, '
where H € C(RN x (0,00) x R x R"). Assume that
|H(z,t, 2(z,t), Va(z,1))] 2 (1+1)"4(|2(2, )| + (1 + t)3|Vz(z, 1)) (24)

holds in RY x (0, 00) for some A € R. Then, by the same argument as in the proof of [9,
Lemma 3.1], we have

ﬂ(l_l) 1 .
sup t2'r 4 [||z(t)||q+t2||Vz(t)||q] < 00 (2.5)
0<t<T

for any T > 0 and q € [p, 00]. Furthermore, we have the following lemma.

Lemma 2.1 Let z be a solution of (2.3) and assume (2.4) for some A > 1. Then the following
hold:

() If € BC(RN) N LP(RN) for some 1 < p < oo, then

supt 263 [l + A 193(0)le] < o
t>0

for any g € [p,o0];
(i) If ¢ € BC(RV) N LY(RN, (1 + |z|*)dz) for some k >0, then

sup(1-+8)7% [Jllz(®)lll: + 11| V2(B)]1l] < o0
t>0

for any 1 € [0, k].

Proof. Assertion (ii) is given in [9, Theorem 3.1]. Assertion (i) is also proved by the
modification of the proof of [9, Theorem 3.1]. See {10, Lenma 2.1]. O
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Next we assume that ¢ € BC(RY) N LY(RY, (1 + |z|*)dz) for some k > 0, and recall
some results on the asymptotics of the solution z of (2.3). By assertion (ii) of Lemma 2.1,
for any v € M with |v| < k, we can define

my (2(2),8) = / a(n, e i v| <1,
RN

my (2(2),£) = / ¥ 2(s, t)dz (2.6)
RN
~ my(2(t),t) z’gu(z, t)dr if |v|>2,
u§") /RN ’

inductively. Put

[Pe(t)2(1)]() := 2(x,t) — Y mu(2(2), t)gu (2, ).

|v|<k
Then we have:
(Z1) Let v € M with |v| < k. If A > 1+ |v|/2, then there exists a constant m,, such that
I (2(t),t) —my| < (1+48)~A-DHM/2 45 0,
Furthermore, there holds
O(t=(A-D+M/2) if A <1+ |v|/2,
my(2(t), 1) = .
O(logt) if A=1+1v|/2,
as t — 00;

(Z2) For any p € M with |u| <k,
/ AP (2)dz =0,  t>0;
RN
(Z3) The function Py(t)2(t) satisfies

Pe(t)z(t) = et~ D2 P (1) (1) + / t et="AP(s)H(s)ds

T

forallt > 7> 0.

(See [7, Section 2], [8], and [9, Section 4].) Furthermore, by properties (Z;)—(Z3) we have the
following lemma. (See [9, Theorem 4.1].)

Lemma 2.2 Assume the same conditions as in Lemma 2.1. Let
¢ € BCRM)NnL*RY, (1 + |z|*)dx)
Jor some k > 0. Then, for any q € [1, 00],
ot~y 4f 24-1) <k,
t2 D P@)z)lg = { O Flogt) if 2A-1)=k,
o(t™%) if 2(A—1)>k,

ast — 0o.
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3 Proof of Theorems 1.1 and 1.2

Let u be a solution of Cauchy problem (1.1), and assume the same conditions as in Theo-
rem 1.1. By the comparison principle and the maximum principle we have

0 < u(z,t) < uojeo®),  (z,t) € RY x (0,00). (3.1)
By (1.9) we have
LA P00 =220 S0 (24) e RN x (0,00), (3.2)
¢a()

and see that v is a solution of the Cauchy problem,

{ O = Av+ F(z,t) in RV x (0,00),
. (3.3)
v(z,0) = ¢(z) in R,
where F(z,t) := —a(z,t)v and
alz, ) o= ATAPGE )7 X - pG(0) Ty (3.4)

v
We first prove that the function v is bounded in RY x (0, 00).

Proposition 3.1 Assume (1.5) and ¢ € BC(R"Y) N LP(RY) for some p € [1,00). Then

sup |[v(t)]|oo < 00.
<t<oo

Proof. By (1.9) and (3.1) we have only to prove
lv(®)lleo = O(1) (3.5)
as t — o0o. Let T' > 1. By (3.1)—(3.4) we apply (2.5) to obtain

sup ¢35 [[lo(®)llg + ¢ (IVo(t) ] < o0 (3:6)
0<t<T

for any q € [p, 00]. This together with (3.4) implies that

sup ||la(?)|loo < oo. (3.7
T-1<t<T

By (3.7) we apply the local L*-estimates for parabolic equations (see [12, Chapter III,
Theorem 8.1}]) to (3.3), and by the Holder inequality we obtain

1/p

T 1/2 T
lv(z, T)| < C (/ / |v(z, t)|2dxdt) <cC (/ / lv(z, t)l”'d:cdt> (3.8)
T-1JB(z,1) T—-1JB(z,1)



97

for all z € RN, where C and C’ are positive constants and ¢ = max{p,2}. On the other
hand, it follows from (3.6) that

T
/ / lvu(z, t)|P dzdt < oo,
T-1JRN

and for any € > 0, we can find a constant R such that

T
/ / lo(z, O dadt < e. (3.9)
T-1Jz|>R
Therefore, by (3.8) and (3.9) we have

[v(z, T)| < C'eM/? (3.10)

for all z € RN with |z| > R+ 1. Taking a sufficiently small ¢ if necessary, by (1.9) and (3.10)

we have
u(z, T) > G\(T) — C'APL(T)PE? > ¢\(T)/2 > 0

for all z € RN with |z| > R + 1. This together with (3.1) implies that

= inf wu(z,T) > 0. 3.11
m:= inf u(z,T) (3.11)

Therefore, by (3.11) we apply the comparison principle to obtain
u(z,t) > (m(t — T), (z,t) € RN x [T, 00). (3.12)

On the other hand, it follows from (1.6) that

6= (505)7 T HAHOE) =GO +06) st o

for any p > 0. Then, by (3.1) and (3.12) we obtain
u(@,t) = GO +0(t™) = G +G(#)PO0(1) in LoRY)

as ¢t — oco. This implies (3.5), and the proof of Proposition 3.1 is complete. O
By Proposition 3.1 we apply the Taylor theorem to (3.4), and obtain

aa,t) = 2OV, (001 4 X280z, 56,7102

for all z € RV and all sufficiently large ¢, where 0 < 6(z,t) < 1. These together with (1.6)
and Proposition 3.1 imply that

la(@, )] < (& Plo(=, )] < (1+ ) o(z,t)] < (1+1)72 (3.13)
for all (z,t) € RV x (0,00), and we have

[F(z,t)| < (14t)"2|v(z,t)]
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in RY x (0,00). Then, by Lemma 2.1 we have
sup ¢330 [llo(t) g + 1 Vo(t)llg] < oo for any g € [p,o0]. (3.14)
0<t<oo

This together with (3.13) implies that

|F(z,t)] < (1+ ) 2u(z, Olllv(z, t)] + (1 + )3 Vo(z, 1)]] (3.15)
< (148" 5 |o(z, 8)] + (1 +8)3|Vo(z, )] (3.16)
for all (x,t) € RN x (0, 00).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By (1.9) and (3.14) we have (1.13), and it suffices to prove (1.14).
Let ¢ € BC(RN)NLP(RN) for some p € (1,00) and 1 < p < ¢ < o0. By (3.3) (see also (27))
we have

t t/2
lv(t) — e ollq 5“ / et~I2F(s)ds| + / (=98 F(s)ds (3.17)
t/2 q 0 q
for all t > 0. By (G), (3.14), and (3.16) we have
t t
[ 2R < [ IF)lads
t/2 q t/2
t
<675 [[ ol + 2 Vale)leas =B 86D )
/2

for all ¢ > 1. Similarly, by (G), (3.14), (3.15), and the Holder inequality we have the following:
(i) If p > 2, then

¢/2
/ et=)AF(s)ds
0

t/2 _N2_1y
< /O (t — ) TG DY F(s)|, ods
q

2_1

_____ t/2 _ 1
<7260 /0 (1+8) (sl [lo()llp + (1 + )F[Vo(s)llp) ds
I £ 7G-0 forallt> 1; (3.19)

(ii)) If 1 < p < 2, then

£/2
/ et-2F(s)ds
0

t/2
5/0 (t—s)—%(l_%)llF(S)lhds
q

A

N 1 t/2 1
F0-D /0 (1+ ) 2oz, [I0(s)llp + (1 + )| Vo(s)ll] ds

7173 forall ¢ > 1. (3.20)

PN

Therefore, by (3.17)—(3.20) we have

—1-N N .
Nt 1 t7V7 Lt if p>2
12 & q)||v(t) - etAgollq = —1_N —Na-1y ’
tT w4+t 2V i 1<p<?,



for all t > 1, and obtain
£ G0 u(e) - el = Ot %) + 0~ F473) (3.21)

as t — oo. This together with (1.9) implies (1.14), and Theorem 1.1 follows. O

Next we apply Lemmas 2.1 and 2.2 to prove Theorem 1.2.

Proof of Theorem 1.2. Assume ¢ € BC(RN)NLY(RY, (1+|z|¥)dz) for some K > 0 with
(1.16). Then it follows from (3.16) that

|F(2,8)] < (1+8)72"F Jo(a, t)

for all (z,t) € RY x (0,00). Then Lemma 2.1 gives assertion (i). On the other hand, by
(1.16) we have

2 (2 + 1-;[— - 1) > K. (3.22)
Then, since it follows from (1.17) and (2.6) that
my(v(t),t) = M,(¢), t>0, (3.23)
applying property (Z;) and Lemma 2.2 with A = 2 + N/2, by (3.22) and (3.23) we have:
e For any v € M with |v| < K, there exists a constant M, such that
|M,(t) — M| < (1 +¢)~A+HN/D+072 = 5(1) (3.24)
as t — oo;

e For any q € [1, 00],

£20-D), =o(t™ %) (3.25)

[vi<K
as t — 00.

Assertion (ii) follows from (3.24). Furthermore, by (2.2), (3.22), (3.24), and (3.25) we have
ﬁ‘“‘%ﬂw(t) - Wl
'u(t Z M,(t)g.(t

Jv|<K

<t2(1 +t2(1 o) Z IM (t Mu”l.‘]v(t)“q

lv|<K

= o(t™%)

as t — oo. This together with (1.9) implies assertion (iii), and the proof of Theorem 1.2 is
complete. O
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Proof of Corollary 1.1. Assume ¢ € BC(RN) n LP(RV) for some p € (1,00). By

Theorem 1.1 and (1.9) we have

u(z,t) = () + A~PG()Pu(z, t)
= G(t) + AP (@) + Ot 7 ) + Ot T)]
= () + APG @B 0) (@) + O]

in L*(RN) as t — co. On the other hand, we have

[(emuo)(:c)-(ﬂ—” +(B- 1)t] e [(A 4 (ep)(2)) D 1 (6 1)t]

1

_ [,\—(3—1) (1- (8- 1AM (B)@) +0(F)) + (8 - 1)t]

B 1)AP(eBp)(z) + Ot 7

= (,\—w‘l) +(8 - 1)t)71_1 [1 ¢ A-(0-D) 4 (8- 1)t

AB(eBo)(z) + O(t™7)
A=(B-1) 4 (8 ~ 1)t

= 601447607 (0o + 0 )|

= 1) + AP0 ((Be) @) + 0t )

—a0[1+ 05

(3.26)

in L°(RN) as t — oo. This together with (3.26) yields assertion (i). Similarly, by Theo-

rem 1.2 we can prove assertion (ii), and Corollary 1.1 follows. O
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