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with unbounded drift
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1. Introduction and result
In this paper we deal with the second-order elliptic operators of the form
Au(x) = —div(a(z)Vu(z)) + F(z) - Vu(z) + V(z)u(z), z€R",

where N € N and the coefficients a, F, V' are assume to be satisfy the following condition:

(A1) a = a € CYRN;RVN) F € CYRY;RY), V € LE.(RY;R) and a(z) is positive-

loc
definite for every x € RY, that is, (a(z)&,£&) > 0 for every z € RV, ¢ € CV \ {0}.
Here (-,-) is the usual Hermitian product. The boundedness of a, F,V is not re-
quired. Under condition (A1) we define the minimal and maximal realization of A in
LP(RY) (1 < p < 00) respectively as

Apmintt = Au, D(Apmin) := CP(RY),
Apmaxtt = Au, D(Apmax) = {u € LP(RY) N WZP(RY); Au € LP(RV)}.

loc

Our interest is the following properties of Ap min and Ay max:

e essential m-accretivity of Ay mix (generation of a contraction semigroup { e‘t"ir’mi"}
by Ap min, the closure of Ay min);

e m-accretivity of Aj n.. (generation of a contraction semigroup {e~*4rmsx}) and
coincidence Apmax = Apmin (CC(RY) is a core for Ay max);

o m-sectoriality of Apmax (analyticity of {e~t4pmsx}),

These properties of second-order elliptic operators with unbounded coefficients are
closely related to those of Kolmogorov and Schrédinger operators.

In particular, if A = —A + V with singular potentials (i.e., a = (d;;) and F = 0,
where §;; is the Kronecker delta), then there are many investigations dealing with the
(essential) selfadjointness in L*(R") and m-accretivity in LP(R") (see, e.g., Kato [9],
[12], Simon [20], Semenov [19], Okazawa [16] and others). More generally, the opera-
tors of the form —div(aV) + V are considered in Kato [10, Section 2] and Kovalenko-
Semenov [13]. The quasi-rn-accretivity of Schrédinger operators with vector potential
(iV+b)?+ F-V+V in L*(R") is dealt with in Kato [11] and Okazawa-Yokota, [18].

Metafune-Pallara-Priiss-Schnaubelt [14] obtained the m-accretivity (and sectorial-
ity) of Apmax when the symmetric diffusion a € C*(RY; RV*V) satisfies

(a(z)z, ) < K(|z[*log|z])?, = €RY (jz| 2 R),



76

(the generality of which is explained in Eberle [6, Theorem 2.3]) and there exists a
positive auxiliary function U € C*(RY) such that

(1.1) 0<U<V<, (aVUVUOV2<AU¥? 4K

with some additional inequalities. Their proof of the m-accretivity is based on that of
—div(aV) + V by regarding F - V as a perturbation. Since their argument depends on
the so-called separation property

|div(aVu)|| ewny + | F - V|| o@yy + |Vl oy < Cllu + Aul|o@ny,

it seems that condition (1.1) and the others are necessary.

Recently, Metafune-Pallara-Rabier-Schnaubelt [15] succeeded in proving the m-
accretivity of Apmax and identity Apmax = ~p,min under some conditions weaker than
those in [14]. For example, they assume that there exist p € CV(RY) and s > 0 such
that Vp # 0 a.e. on R" and

(1.2) v divF

+ s[F -Vp— (1 - %)div(an)] - s%(aVp,Vp) > 0.

However, condition (1.2) and the others in [15] seem to be rather unnatural as a gen-
eralization of p =2 to p # 2.

The first purpose of this paper is to propose Key Identity (see below) for the
operator A which behaves like a sesquilinear form over LP x LP" established in [21].
Key Identity plays a fundamental role in proving our three theorems for general
coefficients. The second is to present a simple and natural condition (see (A2)
below) for the m-accretivity of Apmin and Apmax (Theorems 1.1 and 1.2). Actually,
we can improve the result in [15] to the effect that (1.2) is fairly simplified as (1.7)
stated below. The third purpose is to establish the mn-sectoriality of A, msx under some
stronger condition (Theorem 1.3). As stated above, the mn-sectoriality was shown in [14]
under the additional condition (1.1), while condition (1.1) is completely removed in our
result. To clarify the simplicity (and sharpness in a sense) of our criterion, we give two
typical and important examples in Section 3. One is Kato’s example in [10, Appendix
2] transplanted into LP(RY) from L?(R") and the other is Arendt-Metafune-Pallara’s
example in [2, 3] concerning Au = —u” + z*u’ + ¢|z|"u in LP(R).

Now we state Key Identity for the operator A.

Key Identity ([21]). Assume that (A1) is satisfied. Then for every 1 < q < oo,
w € WH(RY) and 3 € CP(RY),

loc

(1.3) /R (Ap)wds = /R ) [(aV'z/),Vw) + (v - di;’F )1/)@"} dz
+ /R ) B(mw, F) - é(w-w, F)] da,

where q' is the Holder conjugate of g.



We see that if w = 1[¢|972, the duality map of ¢ on LI(RY) to LY(RY) (with
multiplying some constant), then the real part of the second term on the right-hand
side of (1.3) vanishes. In fact, we can compute it as

Re /R § E(wvw,ﬁ“) — 3<¢V‘u‘), F)] dz = Re (z /R ; (Im( V) |p|272, F) dw)
= 0.

By virtue of this property, Key Identity with ¢ = p plays a crucial role in proving
both the accretivity of A, i, and maxmality of flp,min and even identity Ap max = /ip,min.
This point of view enables us to remove the conditions like (1.1) and (1.2).

Next we state the assumption which will be used to estimate the respective terms
on the right-hand side of (1.3).

To state our assumption we introduce the following class of functions Fg for R > 0:

(e8]

(1.4) Fr = {f € C([R,00);R); f>0on [R,00), /R o) ds = oo}.

(A2) There exist constants o, 8 > 0,7 > 2, Ry > 0 and f € Fg, and a nonnegative
auxiliary function ¥, € L2 (RY;R) such that

loc

w5 LD g @yt aa o e RY B
]
(16) LT < b+ 0@ (e aa v eRY\ B
divF

(1.7) V- >V, ae on R,

where Bp is the N-dimensional ball with center at the origin and radius R. The
optimality of (A2) with ¥, = 0 is essentially described in Davies [5] (see also [6,
Remark of Theorem 2.3]).

Remark 1.1 (A class Fg). For example, the function fo(s) := slogs (s > ¢) belongs to
the class g with R = e. Theorem 1.1 with f = f is proved in Sobajima [21]. Here
we describe the general case f € Fg.

Now we are in a position to state our main result based on Key Identity. The first
theorem asserts the essential m-accretivity of Ap min-

Theorem 1.1 (Essential m-accretivity). Let 1 < p < co. Assume that (A1) and (A2)
are satisfied. Then Apmin is essentially m-accretive in LP(RY), that is,

Re / (Apmint)TuP2de > 0 Vu € D(Aymin), BT Aom) = LP(RY),
RN

where R(1 4 Apmin) 15 the range of 1+ Ap min-

7
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Applying Theorem 1.1 to A and the formal adjoint of A defined as
(1.8) Bv := —div(aVv) — F - Vv + (V — divF)v,

we obtain the identity Apmax = fip,min with the aid of (By min)*, the adjoint operator
of By min- In this case we need to control the minus sign in front of the first order term
in B. This explains the difference of (1.9) from (1.6).

Theorem 1.2 (m-accretivity). Let 1 < p < co. Assume that (Al) and (A2) are

satisfied with (1.6) replaced with a stronger condition:

(1.9) %x—n < B(1+ ¥,(x)) 7 f(jz]) a.a. z€RY\ Bg

Then Apmax is m-accretive in LP(RY), that is,
Re / (A ) TlufP~2dz > 0 Y € D(Apmas)y,  R(L+ Apmax) = IP(RY).
]RN

Moreover, C(RY) is a core for Ay max-

The Hille-Yosida theorem implies that —A, max in Theorem 1.2 generates a con-
traction semigroup {e*4rmx} on LP(RY). Next we describe the result for analyticity
of {et4rmax}  To show that {e~*4rm=} is an analytic contraction semigroup of type
S(c™) (ie., {e~*4»m=} is analytic and contractive in S(c¢™')), it suffices by [8, Theo-
rem 1.5.9] to prove that A, may is m-sectorial of type S(c) for some 0 < ¢ < oo, that is,
Ap max is m-accretive and

/ (Apmest)TufP2dz € S(6) Vu € D(Apumad),
RN

where S(c) is the closed sector S(0) := [0, 00), S(00) := {z € C; Rez > 0} and
S(c) :={z € C; |Imz| < cRez} (0 < ¢ < 00).

For m-sectoriality we reinforce the assumption further. Roughly speaking, we as-
sume that the first order termn can be completely controlled by the diffusion and poten-
tial. Then we establish the third theorem which asserts the m-sectoriality of Apmax-

Theorem 1.3 (m-sectoriality). Let 1 < p < oco. Assume that (Al) and (A2) are
satisfied with (1.6) replaced with a stronger condition:

(1.10) (F(z),&)| < B, (x)2{a(z)¢,€)2, aa. zcRY,£eCV.

Then Apmax is m-sectorial of type S(cpp). In other words, {e~*4rm=x} is extended to an
analytic contraction semigroup of type S(c, }9) on LP(RY), where

o [lp=22 B
P\ ap-1) " 4




Remark 1.2 (Essential m-accretivity). Even if V = 0, we can choose ¥, # 0 in the

special case where —divF' is nonnegative and unbounded. This observation means that

Theorem 1.1 improves [6, Theorem 2.3] which dealt with the case where V = 0 and

v, =0.

Remark 1.3 (m-accretivity). Theorem 1.2 is applicable to rapidly oscillating diffusions.

For example, we consider the one-dimensional operator A with the following coefficients:
4

a(z) = 2 +sin(z®), F(z) = z(log(1 +2%))?, V(x) = (log(1 + 2?))* + —t

These coeflicients satisfy the assumption in Theorem 1.2 with Ry = e and

f(s) =slogs, V,(z):= P 1(log(l + 2%))%

1

However, if p # 2, then because of the singular behavior of a'(z) it is difficult to
construct the auxiliary function p satisfying (1.2).

Remark 1.4 (m-sectoriality). (a) If F = 0, then Theorem 1.3 asserts that Ap e =
—div(aV)+V is m-sectorial of type S(cp0), where the constant ¢, 0 = |p—2|/(2/p — 1)
is already determined in Okazawa [17]. By this fact we can regarded Theorem 1.3 as a
natural generalization of the result for Schrodinger operators in LP(RY).
(b) Kato gave an example in [10, Appendix 2| which showed that the Schrédinger
operator —div(aV) + V with unlimited growth diffusion a at infinity is selfadjoint in
L%(RY) if the potential grows fast enough at infinity. His viewpoint can be explained
from ours. Actually, an LP-generalization of this fact is described in detail in Section 3.
The plan of this paper is as follows. Theorems 1.1, 1.2 and 1.3 are proved in Section
2. To illustrate the simplicity and sharpness of our criterion, we discuss two typical
examples which are considered respectively in [10, Appendix 2] and [2, Section 6] (and
also [3]), are given in Section 3.

2. Proofs of theorems via Key Identity

For selfcontainedness we start with

Proof of Key Identity. Using integration by parts, we obtain
/ (—div(aVy))wdz = (aVy, Vw) dz,
RN RN
/ (F-Vo)ywds = L / (@, ) di + > / (Vih, wF) da
RN q JrN q JrV
- l/ @V, F) de — 1/ WV, F) de
9 JrN q JrN
1 / (divF)yw d.
RN

q
Combining the above equalities yields (1.3). O

79
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Now we prove Theorem 1.1 via Key Identity.

Proof of Theorem 1.1. It is easy to show that A, mi, is accretive in LP(RY). In fact, if
2 < p < 00, then for every u € C°(RY), taking the real part of Key Identity with
¢ =p, w = |ulP"%2u and v = u, we have that

Re [ (Awalur2dz = (p— 1) / (ufP~*(aRe(@Vw), Re(@V)) dz
RN RN

+ /R |ulP~*(aIm(aVv), Im(TVu)) dz

+ / (v _dvF ) |ulP d.
RN p

Re / (Aw)alufP~2 dz > 0.
RN

We see from (A1) and (1.7) that

Note that this inequality is justified even if 1 < p < 2. This proves the accretivity of
Ap,min-

Next we prove that R(1 + Ay min) (the range of 1+ Apmin) is dense in LP(RV). Let
v € P (RY). Suppose that for every p € C(RY),

(2.1) /mN v(p + Ap)dz =0.

Then it suffices to prove that v = 0 a.e. on RY. We may assume without loss of
generality that v is real-valued. Since the diffusion matrix a satisfies the condition
(A1), we see from the elliptic regularity (see e.g., Agmon [1, Lemma 5.1]) that v €
HL (RM)NC(RY). Using Key Identity with ¢ = p, w = v and ¢ = ¢, we can rewrite
(2.1) as the equality

(2.2) / [(aVv, Vo) + l,(F, wVo) — l(F, eVv) + (1 +V - dNF) v(p] dz =0.
RN p p p
By the density argument, (2.2) remains true even if ¢ € H}(R¥) has a compact support.
To manage the property ||v|| Lo/ ®Vy < 00, we approximate the duality map (with
multiplying some constant) |v|” ~2v by the following procedure.
Case (i): 2 <p' < o0 (1 < p < 2). We introduce a sequence of the cut-off functions
{Ga}n € WER(RY) defined as

( l=l 1
1 if || < Rp or ——ds < mn,
| " Ro f(s)
U |
C(x) =40 if/ —ds>n+1,
. Ro f(s)
n+1-— ——ds otherwise
\ Ro f(‘s)
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for n € N and z € RV. We see from the standard argument (see e.g., [4, Propositions
IX.4 and IX.5]) that for every n € N, (%|v|'~2v € H'(R") has a compact support and

V(P ~20) = rEHol” 20V, + (p' = 1) |vP V.

Setting K, := supp ¢, for n € N and choosing ¢ = ¢%|v|P'~2v in (2.2), we deduce that

23) (@' -1) / (o {aV, Vo) |ul? 2 dz + 7 / Y aVo, VG ol v de
K‘n.

Kn\Kn—l
/ divE )
+o GHEVGI dat [ ¢ (1 py g ) ol dz = 0.
D JK\Kn-1 Kn
By the Cauchy-Schwarz and Young inequalities, we have
divF ; r? ,
24 / Cn (1+V— ) v de < ——— CHaVen, V) [vfP d
( ) K, p | l 4(p/ _ 1) Kn\Kn_l ( >| I
T

- CHF, V) ol de.

/
p K \Kn_1

On the other hand, note that
T ifre Ko\ K,
Via(z) = < |2l f(|=]) mATeh
0 otherwise.

Thus it follows from (1.5), (1.6) of the condition (A2) and Young’s inequality that
there exist constants C'y, C; > 0 such that for every n € N,

. ¢"a(x)x, x)

r—2 V n’v W) = A
GOV G V) = 2 el
< ot (14 0,)F
2(p' - 1)

<Ci+ —"TZ—C:;(l +9,),

g _ GHF(z),z)
R VI )

< B+ T,)
!
<G+IZga+y,)
2r
Therefore, combining (2.4), (1.7) and the above estimates, we have
| Guswn s <+ et [ Gl
Kn. Kn\Kn—l Kn\Kn—l
Consequently, we see that

/ [f dz < (Cy + Cy) [v|P' d.
Kn__1 Kn\Kn—l
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Finally, by Lebesgue’s dominated convergence theorem we obtain

[v|P dz < 0.
RN

This implies that v = 0 a.e. on RY, that is, R(1 + A, mia) is dense in LP(RY).
Case (ii): 1 <p’ <2 (2 < p < o). To verify (2.3) we introduce the function

Ce(s) :i= (s* + )P D25 forseR, €>0.
Then G.(v) € H(R") has a compact support and
V[¢Ge(v)] = ¢ 20V + G T4 (0" — )0 + €) Vo,

where v, := v/v2 + ¢ for € > 0. Taking ¢ = ([G.(v) in (2.2), we derive that

0= [ G(aVu, Vo) = ((# — 1)v* +¢) dz
Kn

+r / ¢ HaVv, V)P v dz
Kn\Kn-1

T

+ — CYF, V)P "2t da
p Kn\Kn-l
r—2 )
P py /K eCt(F, Vuyo? v dx

+/ ¢ (1 TV - di;F) W22 dy
= (L) + (IL) + (IIL) + (IV.) + (V.).

The integrands of (II;)-(V,) are respectively estimated as follows:

29 G @V, VG2 0] < [VollaViGalloP
(29 G (R, VG 202 < [FIVGI [P

1) G, Ve 40| < [Tl

(2.8) Cn (1 +V - dl;F) Ug’—zvz < ‘1 LV - d1;F |U|pl-

Letting € — 0, we have
¢ HaVv, V)P 20 = N aV, VE,) [v]P 2
CHE, V) 720 = GTHE, VG )P
eC"(F, Vu)oP ~4v — 0;

i 7 'F 7
c (1+V—d1;F)vg-2u2—><; (1+V—d1; )|U|P.




Since all the functions on the right-hand side of (2.5)—(2.8) belong to L!(K,) and
converge as above, Lebesgue’s dominated convergence theorem yields that

(2.9) (IL) = r / U aVo, Ve ol 2 da (e = 0);
Kn\Kn-1
(2.10) () —» = / CUE, Vol de (e = 0);
p n\Kn—_1
(2.11) (IV.) =0 (e = 0);
(2.12) (Ve) = / ¢ (1 +V - diVF) IUIP' dx (e = 0).
K, p

Moreover, the integrand of (I.) has a lower bound:
(2.13) Gu(aVo, Vo) =4 ((p" ~ 1)o +¢) > (¢ — 1)1 {aVo, Vo)ol =

The function on the right-hand side of (2.13) is positive and monotone increasing with
respect to €. Noting that (I.) is bounded by virtue of (2.9)-(2.12), we see that

1) = @ —1) / ((aVo, Vo) joP 2 dz (e — 0).
Kn
In conclusion, we have (2.3). Proceeding similarly as in the case where 2 < p’ < 0o, we
obtain v = 0 a.e. on R¥. This completes the proof of Theorem 1.1. a

In view of Theorem 1.1 we can complete

Proof of Theorem 1.2. We consider the minimal realization of B (introduced in (1.8))
in the dual space L¥ (R™):

By mint = —div(aVv) — F - Vo + (V = divF)v, D(Bp min) = C(RY).
Then by virtue of condition (1.9) the triplet (@, F, V) defined as
a:=a, F .= ~F, V=V —divF

satisfies the assumption of Theorem 1.1 in L”(RY). Therefore we see from the du-
ality argument that A, min coincides with (Bp min)*- Namely, the domain of Ap min 18
characterized as

(2.14) {u e IP(RY); Au € LP(RY) in the sense of distribution}.

By virtue of Theorem 1.1, it suffices to show that D(Apmax) (defined in Section 1)
coincides with (2.14). The density of C°(R") and the Calderén-Zygmund estimate

lullwzeBry < C(|Aul|Lo@yp) + 1ullLoar)

(see e.g., Gilbarg-Trudinger [7, Theorem 9.11]) yield that the domain (2.14) is contained
in W2P(RV). We finish the proof of Theorem 1.2. O

loc
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Remark 2.1. If we regard the operator Apma, as the distributional sense, then the
characterization for the domain of A, min is already shown in the step of proving (2.14).

Finally, we prove Theorem 1.3 as an application of Theorem 1.2.

Proof of Theorem 1.3. By virtue of Theorem 1.2, it suffices to prove that Ap min is sec-
torial of type S(w) for some w > 0, that is, we shall show that for every u € Cg° (RM),

(2.15) IIm/ (Auw)z|u|P~2 dz| < wRe/ (Au)a|ulP~2 dz.
RN RN
Applying Key Identity with w = |u[P~?u and ¢ = u, we have
Re | (Auw)ujulf2dz = (p— 1)/ |u[P~*(aRe(uVu), Re(uVu)) dz
RN RN
+ / |u[P~*(alm(zVu), Im(TVu)) dx
RN

+ / (v _divF ) luf? dz,
RN p

Im [ (Aw)ajulP2dz = (p—2) |u[P~*(aRe(@Vu), Im(aVu)) dz
RN RN

+/ |u[P~2(Im(aVu), F) dz.
RN
Setting
X = / luP~4 (aRe(@Vw), Re(@Vu)) dz,
RN
Y :=/ |u[P~*(aIm(uVu), Im(TVu)) dz,
RN
Z = / U, |ul? d
RN
and using (1.7), (1.10) and the Cauchy-Schwarz inequality yield that
Re / (Awyaluf~2ds >(p— )X +Y + Z,
RN

<|p-2VXY + BVYZ.

,Im/ (Au)a|ulP~? dz
RN

Therefore setting w > 0 as

2 2
2_ 2 _ lp -2 E_
LTSy T 4
we can obtain the sectorial estimate (2.15). Consequently, A, max is m-sectorial of type
(es) P, y
S Cp.B)- O
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3. Examples

3.1. Kato’s example

Here we deal with the operator of the form

(3.1) Au = —div(aVu) + Vu,
where a and V' (and F' = 0) satisfy (A1) and
(3-2) <—“(—|‘”CZ|”2—‘—> <o+, V(z)>alzlt

with p,¢,¢5,¢1 > 0. Kato proved in [10, Appendix 2] that A ma, is selfadjoint under
the assumptions p < 2+ ¢if N = 1and p < 2+ ¢ if N > 2. This means that the
operator —div(aV) + V' with the unlimited growth diffusion a at infinity is selfadjoint
in L2(RM) if the potential grows fast enough at infinity. Recently, the remaining case
where p = 2+ ¢ and N > 2 was solved by [15]. They also tries to generalize to the
LP-setting. However, when p # 2, they require an extra restriction to the derivatives of
diffusion a.

So we consider the m-sectoriality of Apms in LP(RY) as an LP-generalization of
nonnegative selfadjointness in L*(R") under the original conditions in [10].

Applying Theorem 1.3 to the coefficients of A defined as (3.1), we obtain the fol-
lowing theorem showing that (A1) and (3.2) are essential if p < 2+ £. In fact, the
critical case p = 2 4 £ is still open under (A1) and (3.2). It seems that some endpoint
technique is required when one succeeds to deal with the critical case.

Theorem 3.1. Let 1 < p < co. Let F =0 and let a and V satisfy (A1) and (3.2).
Assume that 0 < p < 2+ £. Then Apmax is m-sectorial of type S(cp), where ¢, :=
lp —2|/(2¢/p —T). Moreover, C°(RN) is a core for Apmax-

Proof. If 0 < p < 2, then (A1) is automatically satisfied with f(r) = r and ¥, = 0.
On the other hand, if 2 < p < £+ 2, then in view of (1.7) with F =0 and V > 0, we
can take the auxiliary function as ¥, := ¢;|z|®. Thus (1.5) in (A2) is rewritten as

iﬁ% <a(l+ cllxle)l_%f(|x|)2 a.a. z € RV \ Bp.

Setting Ry :=1, f(s) := s and the exponent r as

2(p - 2)

3. =24 —

(3.3) T + T+2—,
and using (3.2), we can compute that for every z € RV \ By,

(a(z)z, z)

_I-'L'P_ < o1+ |=])”
< el ?|af?
_ —2
< 2coe; T (1+ erzl)F £(J2])?,

and hence (1.5) is satisfied. In both cases, noting again that F = 0, we see that the
coefficients of (3.1) satisfy (1.10) with 8 = 0. Therefore, the assumption of Theorem
1.3 is satisfied. O
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3.2. Arendt-Metafune-Pallara’s example
In [2, Section 6] (and [3, Section 3]) they introduced a typical and important example

(3.4) Au = —u" + 2% + ¢|z|"u
in LP(R) where v > 0 and ¢ > 0. In our notation the triplet (a, F, V) is determined as
(3.5) a(z) =1, F(z):=2% V(z):=z|;

note that the triplet (a, F,V) in (3.5) automatically satisfies (A1) and (1.5) in (A2).
They precisely characterized the properties of A depending on the parameter v and ¢
as follows.

Proposition 3.1 ([2, Propositions 6.1, 6.3 and 6.4]). Let 1 < p < oo and let (a, F,V)

be as in (3.5). Then one has the following assertions:

(i) If y > 2 or v =2 and ¢ > 3/p, then —Ap max generates a Co-semigroup {etApmax}
on LP(R) and CP(RY) is a core for Apmax-

(ii) If v > 6, then {e *4rm=} is an analytic semigroup on LP(R).

We shall prove Proposition 3.1 only in the case where v > 2 by our criterion instead
of theirs. Note that the case where v = 2 and ¢ > 3/p is an endpoint of our criterion
r = 0o. Therefore we excluded this case.

Proof of Proposition 3.1. (i) It suffices to show that the triplet (a, F, V+)) is applicable
to Theorem 1.2. First note again that the triplet (a, F,V + X) in (3.5) satisfies (A1)
and (1.5) in (A2). On the other hand, we see by the Young inequality that

F'(z) 3 3|z|?

p
C 2 3 ‘L-z C\~ 32 C
>_,7_(1__ (_)’ _) A P s S
‘2|£' 'y) P (2 2|L| Ao

Thus we set A := Ao + ¢/2 and choose the auxiliary function as

V(z) -

= cjz|”

¥y(2) = 5 (el +1).

Then we have (1.7) for (a, F,V + A):
F'(z)

(V(g) + ) - > Up(2).

Moreover, taking f(s) := s, we see that (1.9) is also satisfied: for every z € R \ B,

< |z f(l))

< (9)7 @+ @) (e,
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Consequently, taking

we conclude that the triplet (a, F, V + )) satisfies the assumption of Theorem 1.2.
(ii) If v > 6, then we obtain that (a, F,V + ) satisfies (1.10): for € R and £ € C,

|F(z) - £] < |zPl¢]
3 1
< (1+Jal")7(a(2)6,€)2
3
C\ ™ 1 1
<(5) " B al)g 0.
Therefore Theorem 1.3 yields that {e~*e~*4rmax} can be extended to an analytic con-
traction semigroup on LP(R). This completes the proof. O
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