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Weak solvability for abstract nonlinear Schrodinger equations

REHERRERER - HAZRI D3 $3KBIT (Toshiyuki Suzuki)

Department of Mathematics, Tokyo University of Science

1. Introduction

In this paper we consider the following Cauchy problem for nonlinear Schrédinger
equations with inverse-square potential:

Ou a , N
(CP), i = ( A+ lx|2)u+f(u) in R x RN,
u(0, z) = uo(x) on R¥Y,

where i = v/—1, a > —(N — 2)%/4. The feature for (CP), is the presence of a strongly
singular potential a|z|2; note that —A and a|z|~? are the same scale symmetry:

(=A)u(ro)] = X¥(-Aw)(Az), (l2]*)[u(Az)] = X*(] - [u)(Az), VA >0.

This implies that the so-called scaling argument can not be applied to
a

P, :=—-A .
@ e

In other words, (CP), can not be reduced to the case with |a| and ||up||: small enough.
On the other hand, from the viewpoint of operator theory, P, = —A + alz|™2 is
nonnegative and selfadjoint in L2(RN) (as form-sum) if N > 3 and a > —(N — 2)?/4.
Moreover, P, is nonnegative and selfadjoint in H~!(R™) with domain D(P,) = H'(R")

if N >3and a> —(N — 2)%/4. These are consequences of the Hardy inequality
%—QH% <Vule VueH®RY), N >3

L2

If f(u) =0 and uy € H!(RY), then e~*Fey, is a unique solution to (CP), in H~!(RN).
Now we consider f(u) Z 0. If V € L®(RN) + LP(R") for some p > N/2, then
V(z)u + f(u) can be regarded as a nonlinear term. For example, let V(z) = |z|™*
(a > 0). Then V € L*°(RY) + LP(RY) for all p < N/a. In paticular, if 0 < a < 2, then
|z|~ € L®(RN) 4+ LN/?(RY). However, V(z) = |z| 2 € L®(R") + LP(RN) (« = 2) for
any p > N/2. Hence we can not regard the term a|z|~2u as a part of the nonlinear term.
The above consideration suggests that we may apply the preceding methods to (CP),
by replacing —A with P,. However, there exist a lot of difficulties for solving (CP),
by the preceding methods: Ginibre-Velo’s [6], Kato’s [8], Cazenave-Weissler’s[5] and
Cazenave’s [3, 4].
(i) There is no work for the dispersive estimates for e=*Fs:

e”“P“cp 1o < Clt (N/9)—(N/2) Oy VEteER, 2<p< oo,
L



where P, := —A+a|z|2. Hence we can not apply Ginibre-Velo’s method [6, 7] because
LeL¢ type estimates is essentially used;
(ii) We can apply Kato’s method [8] since the Strichartz estimates are available in [1]:

2 N

_itpauOHLT(]R;Lp(RN)) <C “u0|IL2(]RN)7 ; + ~p—— = —-2——, T, P> 2.

lle
Applying Kato’s method, Okazawa, Suzuki and Yokota [10] showed the following fact:
define f(u) := Au[P~'u, where X and p satisfies 1 < p < (N +2)/(N ~2) (A > 0) or
1<p<1+4/N (A <0). Assume

Np-1)72 (N-2)7°
(L.1) >[2(p+1)]~ T

Then for every up € H*(R") there exists a unique global weak solution u to (CP),. To
establish this fact we evaluate ||Vul|,-(;;0@n)). Since V and e~#F» are not commutative,
we use the following Strichartz type estimates:

HVe—itP“uOHLT(R;Lp(RN)) <C “V’LLOHLz(RN) [a + (N - 2)2/4]1/2 > 2/7’.

To construct local weak solutions we choose

(r6) = (0,2 and () = (Y22 p 4 1).

The latter pair applies to give the unsatisfactory restriction (1.1) on a.

(iii) Cazenave-Weissler [5] and Cazenave [4, Chapter 3] developed other methods. But
those are not applicable to the critical case (for example, f(u) := (W * |u[?>)u for W €
LN/4(RN)); this critical case can be dealt with Ginibre-Velo [7] when a = 0.

(iv) Cazenave’s method [4, Chapter 3] is useful because solvability of (CP), with a = 0
is verified without either the dispersive estimates or the Strichartz estimates. But his
method uses the m-accretivity of —A in LI(RY). Here P, = —A + a|z|~2 does not seem
to be m-accretive in LY(R") if a is near to —(N — 2)2/4. More precisely, Okazawa [9)]
proved the m-accretivity of P, in LI(RY) with

@=0CI- NN - rAN-D) Ly

a > q2 , N
(¢ — 1)V -2)° 2(N -1)
eSS 2

The lower bounds of a is greater than —(N — 2)2/4 if q¢ # 2.

Thus we need another new approach to solve (CP),. In Section 2 we introduce
energy methods for abstract nonlinear Schrédinger equations. Application to (CP),
with power type nonlinearity is stated in Section 3. Application to (CP), with nonlocal
nonlinearity (Hartree type equations) is given in Section 4. Section 5 is devoted to the
proof of the solvability of Hartree type equations in Section 4. Finally, some remarks are
in order in Section 6.
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2. Abstract theory for nonlinear Schrédinger equations

Let S be a nonnegative selfadjoint operator in a complex Hilbert space X. Put
Xs := D(SY?). Then we have the usual triplet: Xg C X = X* C X§. Under this
setting S can be extended to a nonnegative selfadjoint operator in Xg with domain Xg.
Now we consider

du

(ACP) i = Su + g(u),
’U,(O) = Uy,

where g : Xg — X} is a nonlinear operator satisfying

(G1) Existence of energy functional: there exists G € C'(Xs; R) such that G’ = g,
that is, given u € Xg, for every € > 0 there exists § = §(u,e) > 0 such that

|G(u +v) — G(u) — Re (g(u), v)xz.xs| L€llvllxs Vv e Xs with ||v]|xs <9
(G2) Local Lipschitz continuity: for all M > 0 there exists C(M) > 0 such that
lg(w) — g(w)llxz < C(M)llu —vllxs Vu, v € Xs with ||ul|xs, [lv]|xs < M;

(G3) Holder-like continuity of energy functional: given M > 0, for all > 0 there
exists a constant Cs(M) > 0 such that

|G(u) = G(v)| <5+ Cs(M)lu—vlx Vu,ve Xswith [|lullxs, |vllxs < M;
(G4) Gauge type condition for the conservation of charge:
Im (9(“)’u>x§,xs =0 Vue Xg;

(G5) Closedness type condition: given a bounded open interval I C R, let {w,},
be any bounded sequence in L*(I; Xg) such that

2.1) {wn(t) — w(t) (n = 00) weakly in Xg a.a.t € l,
g(w,) = f (n — o0) weakly* in L*(I; X3).

Then

22 Tm [ (Ow0(O)xx,dt = lim I | (olun(e), un)) s x, o

Here f = g(w) is guaranteed if

(2.3) wy(t) = w(t) (n = oo) strongly in X a.a.t € I,

(G6) Lower boundedness of the energy: there exist € € (0,1] and Cy(-) > 0 such

that
1—¢

2

Here a function u is said to be a local weak solution on I to (ACP) if u belongs
to L®(I; Xs) N WH°(I; X3) and satisties (ACP) in L*°(I; Xg). If I coincides with R,
then the local weak solution is called a global weak solution.

G(u) 2 ———lullk, — Co(llullx) Vue Xs.



Theorem 2.1 (Local existence, [11]). Assume that g : Xs — X} satisfies (G1)—-(G5).
Then for every ug € Xg with ||uo||x; < M there exist Ty > 0 and a local weak solution
on (=T, Tar). Moreover

[u®)llx = lluollx, E(u(t)) < E(uo) Vt€ [-Tar,Twl,
where E(-) is the energy given by E(p) := (1/2)||SY?p||% + G(y), ¢ € Xs.

Proof of Theorem 2.1 is based on Cazenave’s method. But we avoid to apply LP

theory to the nonnegative selfadjoint operator S. Now we give a sketch of the proof of
Theorem 2.1.

Proof of Theorem 2.1 (Step 1). We consider the approximate problems in X:

due
(ACP). g = Ot gelue,
UE(O) = Uy,

where g, is the approximation of g defined as
9e(u) := (1+8)72g((1 + £S) ™ *u)

Note that g, is locally Lipschitz continuous on X.

By virtue of (G1), (G2) and (G4), (ACP), admits a unique global weak solution
u, belonging to C(R; Xg) N C*(R; X%). More precisely, we apply the following theorem
to go(u) := ge(u) and Go(u) := G((1 +&S)~/?u).

Proposition 2.2 ([4, Theorem 3.3.1]). Let S : Xs C X; — X% be a nonnegative
selfadjoint operator. Assume that gy : X — X satisfies

(1) there exists Go € C*(Xs; R) such that G} = go, that is, given u € Xg, for everye > 0
there exists 6 = 0(u,€) > 0 such that

|Go(u +v) — Go(u) — Re (go(u),v) x| < ellvllxs Vv € Xs with ||v]|xs < 6;
(ii) go is locally Lipschitz continuous on X:
I90(2) — 9o@)llx < L(M)llz —yllx Vz,y€X with|z||x, llyllx < M;
(iii) Re(go(u),iu)y =0V u € X.
Then for every x € Xs there exists a unique solution u € C(R; Xs) N CY(R; X}) to

za—? =Su+go(u) mR,
u(0) = z,
Moreover conservation laws hold:
lu@®)llx = llzllx, Eo(u(t)) = Eo(z) VteR,

where Ey is the energy defined as Eo(y) := (1/2)||SY2y||% + Go(y), y € Xs.
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Proof of Theorem 2.1 (Step 2). We prove the uniform boundedness with respect to
e >0
”us(t)”Xs < M' Vte ["TM,TM].

This fact is proved in a way similar to Cazenave’s method. See {11, Lemma 4.2] (or [4,
Theorem 3.3.5}).

Proof of Theorem 2.1 (Step 3). Since ||u.(t)||xs and ||u/(t)| x5 are uniformly bounded
in [T, Tn], the Ascoli type lemma (see [4, Proposition 1.1.2]) yields that there exist a
sequence {ue, }x C {ue}e and a function v € Cy([—Tnm, Tu]; Xs) N W (=T, Tag; X3)
such that

(2.4) e, (t) = u(t) (k > oo) weakly in Xg V't € [-Tar, Tn).
Hence it follows from u/ — u’ (k — oo) weakly* in L®(~Ts, Trr; X5) that u satisfies
du . oo «
(ACPY i = Su+ f in L°(=Tum, Tar; X3),
u(0) = uo.

It suffices to show that f = g(u). To end this, we suppose weak closedness condition
(G5). In fact, since (2.4) and

g((1 +€xS8)Y2u,,) = f (k= 00) weakly® in L®(=Tr, Tnr; X3),
(G5) and (G4) imply that

1 1 t
SOl = 3luolle =T [ (£(5), u()x o =0

This is nothing but the conservation law of charge. (2.4) and |ju., (t)|lx = |lwollx =
|lu(?)||x yield that u, (t) = u(t) (kK — co) strongly in X. Hence we see from (G5) that

f=g(u).
Therefore we have proved Theorem 2.1.

Here we compare Cazenave’s method with ours (see Figure 1). First we can make
more moderate approximation. Cazenave used the m-accretivity of —A in LP(RY) and
that the resolvent (1 — eA)~! maps from L%(R") to L"(RN) (2 <r < 2N/(N —2)) and
from L' (RY) (2 < p < 2N/(N - 2)) to L%(R"). Here r = 2N/(N — 2) = p is excluded
because he applied Rellich’s compactness theorem to verifying f = g(u) in Step 3. We
do not need to apply Rellich’s compactness theorem by virtue of (G5).

Next we introduce the global existence of weak solutions to (ACP). Note that we
need the uniqueness of local weak solution to (ACP).

Theorem 2.3 (Global existence, [11, Theorem 2.4]). Assume that g : Xs — X3 satisfies
(G1)~(G6) and the unigueness of local weak solutions to (ACP). Then for every up €
Xg there exists a global weak solution u € C(R; Xg) N C*(R; X%) to (ACP) and the
conservation laws hold:

Ju@®)llx = luollx, E(u(t)) = E(u), teR.
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Figure 1: Comparison of Cazenave’s composite mapping and ours

3. Solvability for nonlinear Schrodinger equations of power type

We can apply Theorem 2.3 to (CP), with power type nonlinearity. Assume that
f : C — C satisfies

(N1) £(0) =0;
(IN2) There exist p € [1, (N +2)/(N —2)) and K > 0 such that
(3.1) |f(w) = f(0)l < K@+ [uf ™ + P Du—v] Vu,veC

(N3) f(z) €R (z > 0) and f(e2) = e“f(2) (z € C, § € R);
(N4) There exist ¢ € [1,1+4/N) and Ly, Ly > 0 such that

(3.2) F(z) = /m f(s)ds > —L1z* — Lyx®™* Vz>0.
0
The conditions (N1)—(N4) are nothing but what was imposed by Ginibre-Velo [6] and
Kato [8]. Typical example of (N1)—(N4) is f(u) := AMu|P~lu with
i A>0and 1 <p< (N+2)/(N-2);
(ii) A\ <0and 1 <p<1+4/N.
Applying Theorem 2.3, we obtain

Theorem 3.1 ([11, Theorem 5.1]). Let N > 3, a > —(N —2)%/4. Assume f : C —
C satisfies (N1)-(N4). Then for all up € HY(RYN) there ezists a unique global weak
solution to (CP),. Moreover, u belongs to C(R; HY(RN))NCY(R; H}(RY)) and satisfies
conservation laws

lu@®llzz = lluollz2,  E(u(t)) = E(uo) ViE€ER,

where the “energy” is defined as
' 1 all ¢ |2 e ()]
E(p) == 2 —H—— / / ds.
()= gVl + 5| Gl + [ [ Feas

This is an improvement of [10, Theorem 1.2].
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4. Solvability for Hartree type equations

Next we consider the following problem:

ot

u(0, ) = uo(x) on RV,

Ou a 2 : N
(HE), {z—— = (—A+ W)u+K(|u| Ju in R xRV

where K is an integral operator:
(4.1) K(f)a) = K@) = [ K@) dy

The feature for (HE), is the nonlocal nonlinearities K (Ju|?)u. Let a = 0 and k(z,y) =
W(z —y). Then (HE), is the usual Hartree equation (see [7]).
We consider the kernel & of the integral operator K [defined by (4.1)].

Definition 4.1. L3(Lg) = LA(RY; Lg(RY)) is the family of k : RY x RN — R such that

o Bla 1/8
(«2) gy = ([, ([, et dr) " a) " < o

Now we assume that the kernel k satisfies the following three conditions:
(K1) k is a symmetric real-valued function, that is, k(z,y) = k(y,z) € R a.a. z, y € RV,
(K2) k € LP(LE) + LE(LS) and k — kg — 0 in LE(LZ) for some «, 8 € [1,00] such that
a< B, o™t + 571 <4/N;
(K3) k- := —min{k, 0} € L(Ly°) + L{(LS) and k- — (k-)r — 0 in LE(LZ) for some
@&, B € [1,00] such that & < 8, & + 87! < 2/N.

Here kg is defined as

k(z,y) |k(z,9)| < R,
(4.3) kr(z,y) = q R k(z,y) > R,

-R k(z,y) < —R.

For example, let W € LP(RY). Then k(z,y) := W(z — y) belongs to LP(L?) and

satisfies ||k||zeo ey = [[W/|Lo.
Theorem 4.1 ([13, Theorem 1.3]). Let N > 3 and a > —(N — 2)?/4. Assume that
k satisfies (K1)—(K3). Then for every ug € H*(RY) there exists a unique global weak
solution u to (HE),. Moreover, u belongs to C(R; H*(R")) N C*(R; H~}(R")) and
satisfies conservation laws

(4.4) lu®llze = luollzs,  E(u(t) = B(uo) VteR,

where the “energy” is defined as

= v+ 22
B(e) = 5 IVolis + 5|15

2 1
11 / / k(z,y)|p(z)lo(y)|? dedy.
RN JRN
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Figure 2: Admissible exponents for (K2) and (K3)

Now it is possible to take k(z,y) = W(zx — y) in the definition of integral operator
(4.1) as in the usual Hartree equations. In this context let W € Li_(R") satisfy the
following three conditions:

(W1) W is a real-valued even function, that is, W(—z) = W(x) € R a.a. z € RY;
(W2) There exists p > max{1, N/4} such that W € L®(R¥) + LP(R");
(W3) There exists g > N/2 such that W_ := — min{W, 0} € L*(RY) + LI(RV).

We can show that k(z,y) = W(z — y) belongs to LP(Ly) + Le(LyY™N). Thus the
admissible pair in the convolution case is located on the edge OA (N > 4) or OP (N = 3)
as in Figure 2. Hence we have the following:

Corollary 4.2. Let N > 3 anda > —(N—2)?/4. Assume that W satisfies (W1)~(W3).
Then for every ug € H(RY) there erists a unique global weak solution u to

(4.5) Z%tg = —Au+ I—;—ll;u + (W *|ul?)u inR xRN,
u(0,z) = up(x) in RN,

Moreover, u satisfies conservation laws (4.4) with

2
L2

+ i ‘LN /IRN W(z — y)l‘ﬁ(fb‘)lzfﬁo(y)]? dxdy, ¢ € HI(RN).

46) B =3IVelh+ 5|5

Proof of Corollary 4.2. By virtue of Theorem 4.1, it suffices to show that k(z,y) :=
W(z — y) satisties (K1)-(K3). Here (K1) follows from (W1). Next we show (K2)
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and (K3), that is, k belongs to LP(Ly) + L(Ly"™*) and k_ belongs to L2(L) +
Lg"(L{,\m). For R > 0 set

W(z) (W(z)| <R),
Wgr(z):=¢ R (W(z) > R),
-R (W(z) < —R).

Then we have |Wg(z)| < R on RY so that
(4.7) (W (z)| < W (z) — Wr(z)| + [Wr(z)| < |W(z) — Wr(z)| + R.

By (W2) we have W — Wy € LY™(RV), where g(N) := (N/4) V 1. Hence

[ W =)~ Wale =)™ da = [ W(a) - Wa(a)l" da
RN RN

= |W - Wg|‘%), VyeRN.
Thus we obtain

||k‘ - kR"LgQ(LZ(N)) = “W - WR”Lq(N) —0 (R — OO)

Therefore k(z,y) = W(z — y) belongs to LP(L°) + L;"(LZ(N)) and satisfies (K2).
Since k_(z,y) = W_(z — y), we conclude that k_ belongs to Lg°(L>*) + Le(LY?)
and satisfies (K3) in a way similar to (K2). |

5. Proof of Theorem 4.1

In [13] the proof of Theorem 4.1 is mostly omitted. Thus we fully give the proof of
Theorem 4.1 in this section. To show Theorem 4.1 we verify (G1)-(G6) with

6D o)) = WK(P)E) = uo) [ ko)l d, e B®Y),
62 G=y / ) / K@) ()P dady, e H(RY)

and the uniqueness of local weak solutions to (HE),.

First we show the uniqueness of local weak solutions to (HE),. To prove it, we
use the Strichartz estimates for {e~*f=} established by Burq, Planchon, Stalker and
Tahvildar-Zadeh [1] (see also [10, Theorems 2.3 and 2.5]):

Lemma 5.1. Let N > 3 and (p,q) be a Schrodinger admissible pair, i.e.,
2 N_N

P 27 D, q =2
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Then the following inequality holds:
(5.3) le™ 9|l o@;zay < Cllelle Vo € LRY).
Moreover let (p;,q;) (7 =1, 2) be Schridinger admissible pairs. Then

(5.4) ”‘/Ot e =P (s 1) ds‘

In fact the endpoint case p; = 2 = p, in (5.4) has been restricted in [10, Theorems
2.5]. But we can remove the restriction by Pierfelice [12, Theorem 2 in Section 3] (see
also [2, Theorem 3]).

Lemma 5.2. Let u; (j = 1, 2) be local weak solutions to (HE), on (—T,T) with initial
values u;(0) = ujo. Then fort € (-T,T)

(5.5) lur(2) — w2 (@)l z2 < Clluro — uzollzz,

where C' is a constant depending on ||u;|peo(-1.7;02) and ||uj||peorrir2ny (G = 1, 2).
Proof. Let u; € L*(I; H'(R")) (j = 1, 2) be local weak solutions to (HE), on (~T', T
with initial values u;(0) = u;o. Then u; (j = 1, 2) satisfy the following integral equa-
tions:

<C'|o| V& € I[P (R; L1 (RY)).

i !
LP2(R;L92) ~ LP1(R;L%1)

t
wi(t) = e Pouyg — i / e~ C9Peg(u(5)) ds.
0

Therefore we see that v(t) := u;(t) — ug(t) satisfies

t
v(t) = e Peluy 5 — up o] — z/ e~ =P [g(uy(s)) — g(ua(s))] ds.
0
Now let (r(y),27v) be a Schrédinger admissible pair:
2 N N | 4y
——+ —=—, ie, r(vy) = —~1—.
ORI )= ¥5-1

Applying (5.23), (5.24) and the Strichartz estimates (5.3), (5.4), we see that for every
Schrodinger admissible pair (7, p),

(5.6) |~ [u1,0 — 0] || L (~1,1300) < Crlluso — uap|z2,

60 | [ el - gl

< COO,T”gl (ul) — g1 (u2)”L1("T,T;L2)
< 200 BT [lJuallZgerz + llunll go 2wz Lgo 2 + luall3e g2l |0l poo(-7,7:22),

L7(~T,T;L#)

55 | / e g3 (u1(5)) — ga(ua(s))) ds

< Cryyrllg2(u1) — gz(uz)“er'(_T’T;L(zq)')
< Crt) +(2T)' 7270 gl 5ars)

X (llurllzge v + llusl| ooz lluzllzgo v + lugllgo ] 19| oo irizonys

L™(~T,T;L®)
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where || - [|zgors = || - |zeo(-1,7;L0)-
Putting (7, p) := (00,2) and (7, p) := (r(7), 27) in (5.6), (5.7) and (5.8), we see that
(5.9) “v”L'("f)(-—T,T;Lz“') + ||U||L°°(—T,T;L2)
< (Cry) + Coo)lluro = ugoll 2 + 6(Cooy0 + Coo,rin)) RMPT [[0]| Loo-1:7:22)

+ 3(01"(7),00 + Cr(*r),r(v))”eR" Lg(Lg)M 2(2T)1_2/r(7) |lv“Lf(7)(—T,T;L27)a

where
M = max{lujl|z=(-rrie2) V 1|2 (-rzizam -

Case 1 (a1 4871 < 4/N). Take Ty € (0,T) such that 6(Ceo,c0 + Cooyr(v) RM?Tp < 1/2
and 3(Cr)c0 + Crinrin) || Rll 215y M*(2T0) =7 < 1/2. Then by (5.9) we obtain

(5.10) oIl Lren (— 1o, mo22v) F 101200 (<70, 0322) < 2(Criyy + Coo)l|uin,0 — uz 0| L2-

Case 2 (o' + 87! =4/N). This is the critical case because of 2y = 2N/(N —2). Then
we see from (5.9) that

|l L2 —r,7;2n7-23y + ||Vl Lo (-7, 2)
< (C2 + Coo)luro — uz0ll 22 + 6(Coo00 + Coo2) RMT ||v|| Lo (1,112
+ 3(Ca0 + Co2) Il 15y M N0l 2 ryypamic-y.

Fix R > 0 so that 3(Cz,e0 + Ca2)1¢rll 21y M? < 1/2. Next take Tp € (0,T) such that
6(Cooy00 + Cooyr(r)) RM?Tp < 1/2. Then we have (5.10).

Extending the interval step by step, we conclude (5.5). |

Selecting w1 = ug2, We see that u; = ug in L°(—T,T; H'(R")). Hence we conclude
the uniqueness of local weak solutions to (HE), on (-T,T).

Next we verify (G1)-(G6). To end this, we apply the following two lemmas.
Lemma 5.3 ([13, Lemma 2.4]). Let «, 8, v, p € [1,00]. Assume that k € LS(L;’) N
LA(LZ) and

1 1 1

1
a<p<p, E+E+;=1+;.

Then the operator defined by (4.1) is linear and bounded from L”(RY) to L°(RY). More-
over

(5.11) 1K fllommy < (1Kl ggugy V RN o oe) I lvmey V¥ f € LT(RY).

Lemma 5.4 ([13, Lemma 2.5]). Let «, B € [1,00] be two exponents such that o < B and
a4+ 871 <4/N. Puty':=1—(a"1+B71)/2. Assume that k € LE(LY) is symmetric.
Then for allu; € H'(RM) (=1, 2, 3, 4)

(5.12) llua K (uatis) | pamr < 1Rl g2y lunllon [zl cov [[us| 2w,

(5.13) |/N urtz K (ugiha) | < [l pp pg) e llon [l v us]| cov | wal| -
R



Now we start to verify (G1)-(G86).
Verification of (G1). Let u, v € H'(R"). Then we see from (K1) that

(5.14) G(u+v) — G(u) — Re (g(u), v) -1
- ?}I/RN / k(@ 9)l|(u +0)@)PI(u + o) ) — lu(@)lu(y)|?] dedy
- i /R ; /]R Kz, 9)[2Re (u(@)o(z))[u(y)|* + 2Re (u(y)3(y)) u(z) ] dody.

Now let A, B, &, n € C. Then we see that
(5.15)  |A+£PIB +nf? — |AR|BJ — 2| B?Re (AZ) — 2|A]*Re (B7)

= 4Re (A&)Re (B7) + [¢*(| BI* + 2Re (B7)) + [n[*(| A + 2Re (A8)) + ¢[*[n]*.

Put A :=u(z), B :=u(y), £ =v(z), 7 =v(y) in (5.15). It follows from (5.14) that
(5.16) Gu+tv) - G(u) —Re(g(u),v)g1gn =L + L+ I,

where

hi [ /R  k(z,4)Re (u(z)7(a))Re (u(y)0(y)) dedy,
bimg [ [ K@@ (uw) +2Re (u)a(0) dedy
I3 = E/RN /IRN k(z,y)|v(z)*|v(y)|? dzdy.

Now let R > 0 so that £p € LE(LZ). First we see for I that
< [ [ el @)@l dody
+ [ [ tre @)@ )u)ive) dsdy.

Applying Lemma, 5.4, we have
(5.17) || < RllullZa]lvl|Z2 + 1281l o 1) lullZer 0 1220 -
< Rllul3nllvllZ: + c* 1281l 1215y llullzn vl

In a similar way of the estimates for I;, we see that

R, o 2
(5.18) 2| < S lollg (fullz + 2llulm o)l a)

4

c
+ ElleR”Lg(Lg)angl(”u”?ﬂ + 2|jullm o)),

R ct
(5.19) 5| < < llvll3n + 1 I1eRllLswg) loll.
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Since L2"(RY) c H'(RN) we have from (5.16), (5.17), (5.18) and (5.19) that
(520) |G+ ) - Glu) — Re{g(w), )
< R + c4||eR||Lg(L;,)
- 4
Let M > 0 and £ > 0. Then we see that

1[I (Bllullz + 4llull olla + lollF)-

R+c4||€R"Lg(L3) ) \
|G(u +v) — G(u) — Re(g(u), V) g-1,mn| < 1 (6M° + 4M + 1)|v|n

Vu, ve H(RY) with ||ullm; < M, ||Jv|lm < 1.

Hence by setting § > 0 as

4e
(R+ C4||eR“L5(Lg))(6M2 +4M +1)’

d=04(u,e)=1A

we conclude that
|G(u + v) — G(u) — Re(g(u),v) g1 | S ellvllmn Vv e HY(RY) with ||v]| g < 6.
This is nothing but (G1).
Verification of (G2). Let u, v € H*(RY). Then we see that
g(w) — g(v) = K([ul)u — K([v[*)v = K(|ul* — [v[*)u+ K(jo]*)(u — v).

Now we divide K into K and Lg as

(521) Kn(f)(@) 1= [ kae.) () do
(522 L)@ = [ tale)f(0)do

Note that K = Ky + L. Applying 5.4 with L(L$°) and ||kg||zeo(20) < R we have

(5.23) I1Kr([ul’)u — Kr(lv|*)vll -1
< IKr(jul® = fo*)ullzz + | Kr(lv[*)(w — v) 22
< R(|lullz2 + lJvllz2)lle — vllz2llullzz + R |[vl|Z2llu = vllz2
< R(|lullfs + llullzzllollze + llollZ2) lu — vllze.

On the other hand, applying Lemma 5.4 with L? (Lg) we have

(5.24) ¢ | Le(Jul?)u — Lr(jv|*)v]| g~
< ||LR(|“|2)“ - LR(IU|2)”||L(21)'
< ||fR||Lg(L;-)(||U||%2v + Jlull gz lvll gy + NlvliZen) e — vllz2e

< A Rl gy (lullin + lull vl + o)l = vllm.
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Combining (5.23) and (5.24), we obtain (G2):
(525)  llg(w) = 9()lla— < R(llullZ> + llullz2llvllz2 + Iol|Z2) 1w — o]l 2.

+ IRl pzg (lullze + lullzllvlla: + [ollF)lle — vllm
Yu,v € HI(RN) with ||u||H1, ||'U||H1 <M.

Verification of (G3). Let u, v € H'(RY) with ||u||z, ||v||z < M. Then we see from
(K1) that

6w)-6w =7 [ [ Hen)u@)l -~ @) e + o)) dady.
Thus we evaluate the following two integrals:
1= [ [ ka@)(u@)P - o@P) (@) + o)) dady,
tn)=g [ [ @)l - pOPu@P + @) dsdy
Note that G(u) — G(v) = I(kg) + I(¢g). For I(kg) we calculate
k)| < T = olla(lullza + o) e + o) < BRIl vl

On the other hand, for I(£) we evaluate

1(en)] < HER“LQ’(L;;)

(lullZzr + I0lZ2)* < c*erll o ey M.
By virtue of (K2), we see that

(5.26) “BR”LQ(L;;) = ||k — kR”LQ(LS,) —+0 asR— oo.
Hence for every 6 > 0 there exists R(d) > 0 such that

0
1erelizewg) < ppa

Thus for all u, v € HY(RY) with ||u||g:, ||v||z £ M we have

|G(u) — G(v)| < 6+ R(O)M3||u— vz Vé>0.
This is nothing but (G3).
Verification of (G4). Let u € H(RY). Then (K1) implies (G4):

tm (o), Wy s =T [ [ Ko, lut)Pfu(o)] dyd = .
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Verification of (G5). Let {w,}, be a sequence in L*®(I; H!(R")) satisfying

(5.27) {“’n(t) — w(t) (n — 0) weakly in H*(R") aa.tel,

g(w,) = f (n = o) weakly* in L®(I; H}(RV)).

Define o, := 2, 09 := 27y and
0 = @) [ ka@ )Py, 6 =) [ tao @

Since {g1(wn)}n and {g2(wy)}x are bounded in L*(I; H~}(R")) and the Sobolev embed-
dings, there exist a subsequence {wn(j)}; of {wn}. and fi, fo € L°(I; H~}(RN)) such
that

(5.28) 9i(wngj)) = fi (j = 00)  weakly® in L=(Z; L% (RY)) (I =1, 2).

To confirm (2.2) let 2 C RY be an arbitrary bounded open subset with C' boundary.
Then

(5.29) (fi®), w()) Lot () poray = i) = 91 (wn () (8)), w(8) Lot ) 1o @
+ (9 (wn(i) (), w(t) = Wn(5) () 1ot gy Lo
+ (91(wn(i) (8)), Wa(5) () Lo (), Loy
=:In(t) + Ie(t) + Ii3(t) (I=1,2).

The weak convergence (5.28) asserts that
(5.30) /Iﬂ(t)dt-)O(j—)oo), I=1,2
I
Next we consider ;3 (I = 1, 2). Rellich’s compactness theorem implies that wy;(t) =
w(t) (j — oo) strongly in L%((2) a.a. t € I. Hence it follows from the boundedness of

{g1(wn(;)(t))}; in L*() a.a. t € I that I () = 0 (j = oo) for a.a. t € I. Moreover, the
boundedness of {wy;}; and {g1(wa(;))}; in L=(I; L*(§2)) implies that

(5.31) / Tia(t) dt = 0 (j — o0).

On the other hand, for I, we evaluate |I»(t)] < 2M*c*||¢r| s.,q) Note that the
=Ly
constant 2M*c*(|g(| ¢,y does not depend on €2 and j. Hence we have
T v

(532 [ Falt)dt| < 21 il



Since kg and (g, are real-valued, we see that Im I;3(t) = 0 a.a.t € I (I = 1, 2). Integrating
(5.29) over I and using (5.30), (5.31) and (5.32), we obtain

Im / (f1(8), w(t)) 2y dt = O,
I
[t /I (Fa(8), () g vy 8| < 2ATIMAH €l

Since {2 is arbitrary and f = f; + f,, we obtain (2.2) by letting R — oo and using (G4):

Im/ ) w@) g1 gudt =0 = hm Im/ (9(wn(?)), wn(t)) gr-1 g dt.

Next we show that f = g(w) by assuming further that w,(t) — w(t) (n = o0) in
L*(RY) a.a. t € I. Let M := sup,, ||wnl|rer.z). It follows from (5.25) that

lg(wn(®)) — g(w(E)lla-+ < 3M*R |lwn(t) — w(t)l|z= + 6" M*||Lr]l 1o 1.
Passing to the limit as n — oo, we obtain

lim sup [lg(wn(t)) — g(w(t))lla-+ < 6 M*€ll gy a8t E L

n—o0

Since R is arbitrary, we see that g(w,(t)) — g(w(t)) (n = o0) in H-}(RN) a.a. t € I.
Therefore we conclude that f = g(w) and (G5) is verified.

Verification of (G6). Let k_(z,y) := (—k(z,y)) V0 and

539 k(o) = {;—@w) ek
(5'34) f};(.’l), y) = k—(xay) - k}}(‘”’ y)

Then we see from (5.2) and (K3) that
6wz~ [ [ kaelu@Pluw)P dsdy
-1 L, [ e @) ddy v ue HE®,
4 RN JRN
Applying Lemma 5.4, we have for u € H'(RY),
1 _ 1
-1 L, [ @@ dsdy > Rl

—-/ / 25 (z, y)|u(@) ?|lu(y)|? dzdy > — HER”L/S(L(,)HU'HLZ”Y’
RN
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where 7! = 1 — (6~ 4 71)/2. It follows from the Gagliardo-Nirenberg inequality that
(5.35) lull < collullZ’ Vel Vue H'(RY),

1 1 N/1 1
—N(ré;) —z(z*“;)-
Case 1 (&~! + B! < 2/N). Note that N(&~* 4 f~!) < 2. Hence (5.35) and the Young
inequality imply that

where

1, _ 4-N(G-14+8-1 N(a—1+5-1
L 1 PR 1 T BN 1 el A

> =8| Vul?: — Cs(||ullz2) VY ue HYRN).

Putting 4 := (1 — €)/2 for some € € (0, 1), we see that (G6) is satisfied.
Case 2 (G~! + 7! = 2/N). This is the critical case. In view of (5.35) we see that

1, _
— Ml g lullzas 2 =G 18RI 55 luliZ2 I VullZa.

Since ||€g]| — 0 as R — oo by (K3), there exists R; = R (||u||r2,€) > 0 such that

LE(L)
— €

- 1
Rl 5 g lullZe < ——> B> Ru.

Then we have

l1-—¢
2

This is nothing but (G6).

Since (G1)-(G6) are verified and the uniqueness of local weak solutions for (HE),
is proved, Theorem 2.3 yields the global existence of weak solutions to (HE),.

1
Gu) 2 - IVullzs = ZRa(llullz2, &) lullz: Vu e H(RY).

6. Concluding remarks

Remark 6.1. In general, nonlocal nonlinearity does not satisfy the condition

(6.1)

u, = u (n = o00) weakly in Xg,
{ ( ) YRS 5 f=g(u)

g(uy) = f (n — co0) weakly in X3

for any sequence {un}, in Xs (see Section 2.3 for notations). Let Xg = H'(R), X =
L*(R), X5 = H™}(R) and consider g(u) := ||ul|?;u (k(z,y) = 1). Then g satisfies (G1)-
(G6). Now we show that g does not verify (6.1). Let ¢ € H*(R) with supp ¢ C [—1,1].
Put wy(z) := ¢(z) + ¢(z — 2n). Then {w,}, is a bounded sequence in H*(R). It is easy
to see that

w, = ¢ weakly in L*(R)
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and hence weakly in H'(R). Since ||w, |2, = 2||¢||2, for all n € N, we have
g(wy) = f:=2|¢||32¢ weakly in L%(R)

and hence weakly in H~'(R). But g(¢) = |l¢]|2.¢ and so f # g(¢).
On the other hand, local nonlinearity satisfies the condition (6.1). See [11] for details.

Remark 6.2. Assume that k satisfies (K1)-(K3). By applying Lemma 5.2 we obtain
the Lipschitz type dependence

lur(t) — ua(®)llz2 < L(M)e*MM||uy g — ugollze VYt ER,

where u; (j = 1,2) are the global weak solutions to (HE), with initial values u;(0) =
ujpo € H'Y(RY), |lujollr < M. See also [10, Proposition 3.7] for details. Hence we
conclude that (HE), is wellposed.

Remark 6.3. Another example of the kernel which belongs to LA(LZ) is the following:
(6.2) k(z,y) = U(z)W(z —y)U(y),

where U, W are real-valued functions and W is even such that U € LP(RY) and W €
L4(RY). Then k belongs to L2(L5%®*9)). By virtue of the Holder inequality we have

IU(@)W(z = YU orwrar < U@ W |a||U|lr  a.a.z € RY
and hence we obtain

Il s zorovary S NUllze (W llzallU ||z
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