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Marginal worth vectors for TU games
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1. Introduction

The Shapley value ([Shapley 1953]) is a solution for cooperative TU games. Marginal
worth in cooperative games is a kind of difference of the characteristic function. The Shapley
value could be expressed as a convex combination of marginal worth vectors. In this article
taking marginal worths of several players into consideration we give relations between the
Shapley values for subgames. We characterize the Shapley value as a sum of differences
of several players, which satisfies the efficiency. See [Grabisch/Marichal/Roubens 2000]
with respect to extensions of this kind of discussions under Boolean function etc. See, for
example, [Lange/Grabisch 2011] with respect to topics around the Shapley value.

A TU game is a pair (N,v), where N = {1,...,n} is a finite set of players and v is a
real-valued function defined on the subsets of N with v(#) = 0. v is called the characteristic
function of the TU game. A subset of N is called a coalition. For a TU game (N,v) and
a coalition S C N, a subgame (S,v) is a TU game where S is the player set and v is
a restriction to the subsets of S. For any set Z, |Z| denotes the cardinality of Z. For
a coalition S, R® is the |S|-dimensional product space RSl with coordinates indexed by
players in S. An element z of R" is a payoff vector. The i-th component of z € R is
denoted by z;. For S C N and z € RY, we define z(S) = Y, .gxi (if S # 0) and = 0 (if
S =@). For a TU game (N,v) let

X(N,v) = {z € RN : z(N) = v(N)}. (1)

An element of X (N,v) is called a pre-imputation. The Shapley value ([Shapley 1953]) for a
TU game (N, v) is a payoff vector p(N,v) € R where

(N = S L= DI IS oy s (i) @

n!
S:es
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It is well-known that the Shapley value is a pre-imputation, that is, p(N,v) € X(N,v).
2. Marginal worth vector and the Shapley value

Let a : 2¥ — R be a function. For each R C N, let

cr(a) = Y _(-1)!ATlg(T), (3)
TCR
and for R C N, define a characteristic function vg by
1, fRCSCN;
vp(S) = (4)

0, otherwise.
The next lemma was used in [Shapley 1953] to define and characterize the Shapley value.

Lemma 2.1. ([Shapley 1953]) For any TU game (N,v) and all S C N,
’U(S) = Z CR(’U)’UR(S). (5)

9£RCN

Let a: 2Y — R be a function. Fori € N and S C N, define

Aqa(S) = aS) — a(S\ {i}). (6)

When a = v for some TU game (N,v), A;u(S) is called the marginal worth of i € N at
S. The next lemmas are obtained straightforwardly from Lemma 2.1, and given (at least
implicitly) in [Shapley 1953].

Lemma 2.2. For a TU game (N,v) and S C N,

Aw(S)= ) crlv). 0
i€ERCS
Proof:
Aw(S)= D cr(®)[vr(S) —vr(S\ {i})]
0£RCN
= Z cr(v).

iIERCS

O

Lemma 2.3. For a TU game (NV,v) and for each ¢ € N and S C N such that i € S,

wi(N,v) = Aw(S) + Z CR](%U) + Z (Tl% — )cr(v). (8)

i€R,RZS || i€RCS
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Proof: By Lemma 2.2 and from [Shapley 1953]

@i(N,v) = Z ﬁq{(v}. O

i€RCN

Let a : 2¥ — R be a function. For |S| > 2, let S = {i1,...,%s}. Define inductively with

(6), the marginal worth of several players, by

Lemma 2.4. ([Grabisch/Marichal/Roubens 2000]) Let a : 2% — R be a function. For
SCTCN,

Ai1>---»i}s1a‘(T) = Z CR(a)7 (9)

SCRCT

where S = {i1,...,%g}.
Proof: Let s = |S|. By induction on s. When s = 1, that is, S = {i}. We define
b:2Y — R by b(R) = a(R) — a(0) for all R € 2V. Since b(0) = 0, (N, b) could be regarded
as a TU game. It is easy to see cgr(a) = cg(b) for all R € 2¥. Applying Lemma 2.2, we
have

> (@)= > cald) = Ad(T) = Awa(T).

i€ERCT iERCT

So it holds for s = 1. Suppose s > 2.

Ail,iz,m,isa(T) = A1'1,~~~,is—1a'(T) - Aiu---,is—la‘(T\ {7’5})

= > - > cr(a)

{i1,---,8s—1}CRCT {i1,--,8s—1}CRET\{4s}

= > cr(a). O

{i1,-485-1,8s }CRCT

From Lemma 2.4 we could express Ay, i a(T) as Asa(T) without confusion. When a = v
for some TU game (N, v), Agv(T) is called the marginal worth of S € N at T. The next
lemma, is from [Grabisch/Marichal/Roubens 2000].



Lemma 2.5. For a TU game (N,v) and i € N,

aNo) o+ Y ArE) (10)

R:€RCN,|R|>2 IRl

Proof: This is by Lemmas 2.3 and 2.4 and by v(§) = 0. O

Example 1. Let n = 3. By Lemmas 2.4 and 2.5,

Al 21)(12) A1’3’U(13) Al,g 3’(}(123)
¥ + + 3
2 2 3
(A1,2721(12) + A2,3721(23) + A1,2,3§(123))(0’1’0)
n (A1,3;(13) + A2,33(23) + 2A1,2,3§(123))

1 1 1
=z'® 4 58120(12)(1,1,0) + 58150(13)(1,0,1) + 58230(23)(0,1,1)

P(N,v) = ' 4

)(1,0,0)

(0,0,1) (11)

1
+ §A172,3’U(123)(1, 1, 1)

where z'% = (v(1),v(2), v(3)).

For § C N, let ¢(S,v) be the Shapley value for the subgame (S,v). The next theorem

gives a relation between the Shapley values for subgames.

Theorem 2.6. For every i € N,

o) = T (5,0

1ESCN
or (12)
Anv(N
> (-1l (s,v) + 2N)
i€SCN n
Proof: By induction on n. Assume that it holds for all (R, v) such that |R| < n—1. Then

3 (1)l (5,) + 2280

1€SCR

Anv(N
4 Anu)
n

= 0.

From this and Lemma 2.5,
Anv(N
@i(N7 ’U) = wi({i}a ’U) - Z Z (—I)IRHI_IS'(pi(S, ’U) + M
i€RCN,|R|[>24i€SCR n
Here

> X NSy = 3 (- sy Y (-

i€RCN,|R|>2i€SCR i€SCN SCRCN,|R|>2
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Furthermore we see

(=, 1S > 2
—1)B =
Z =1 {1—(—1)n, if § = {i}.

SCRCN,|R|>2
So,
oiV,) = ulfi}, ) 11— (-1l (i}, )
- Y sy 2
i€SCN,|S|>2
=D (—1)"+1"'S|<Pi(5av)+w- U
1ESCN

3. Marginal worth vector and the potential function

In this section we see a relation between the potential functions for subgames. Propo-
sition 3.1 and Theorem 2.6 could be compared.
Define the potential function (See [Hart/Mas-Colell 1989)) for a TU game (N,v) by

P(N,vy= ——CTI(J)- (13)
0#£RCN
In the same way the potential function P(S,v) for each subgame (S,v),0 # S C N, is
defined.
Proposition 3.1. For a TU game (N, v),
S (~yrtp(s ) + 27U

g#£SCN

=0. (14)

Proof: By induction on n. Assume that it holds for all (R, v) such that [R| <n—1. Then

ARU(R)
|

> (~DIFEIP(S,0) +
0#SCR

=0.

From this and (13),

PNy =— Y Y (~)FEBIP(S ) +

0#RCN 0#SCR

AN’U(N)

= Y P(s) 3 (—ppmeist g B

P#£SCN SCRCN



Here, letting s = |S],

s or()

SCRCN r=s
=_(n;s) N (nzs) __.,+(_1)n—s(z:z)
= (=),
So,
P(N,vy= Y P(S,v)(—1y"+71sI 4 %‘Q, 0
0£SCN

4. Multilinear extension and the Shapley value

In this section we state a relation between the marginal worth and derivative of multi-
linear extension ([Owen 1972]).
For (N, v),let
f@y, @) =Y {Mhesarlligs(1 — ) }u(S), (15)
SCN
where
0<z;<1, Vi=1,....n
Proposition 4.1 Let R = {iy,...,1,} where r = |R|.
of
Tor o = 2 Tkes\neligs(1 — )} (Arv)(S). (16)
" *  RCS

Proof: By induction on r > 1. Let r = 1 and R = {4}. Then

0
8;[- = Z{HkES\{i}zkagzs(l — zi) }v(5) — Z{ersxknkgs,k;ei(l — zk) }v(S)
' des

¢S

= Z{erS\{i}kakgéS(l — z) po(S) — Z{Hkés\{i}mknkﬁfs(l —zx) }u(S\ {i})

€S €S

= Z{ers\{i}ﬂ%nkgs(l — zk) HAW)(S).

€S
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Next assume it holds for r — 1. Then

il of (> {Mesymgin@rlligs(l — 2) }Aq, i1 0)(S))

8$1'1 s 8301-, N 8$iT R\(}CS

of

81’1,

(Z{HkES\(R\{ir})kakgéS(l — 1) }(Aiy, i, V)(S)
RCS

+ Y {Mhes\azallgs(1 — z0) HAx, i, 0)(S))
R\{(ir}CS,ir ¢S

= Z{erS\RmknkeéS(l — 1) }(Aiy, i1 0)(S)

RCS

- E {Myes\rTrllkgs ki, (1 — k) }(Aq .., V) (S)
R\{ir}CS,irgS

= > {Mres\rewlligs(l — 2i) }(Aiy....ir, 0)(S)
RCS

=Y {Tkes\rzallegs(l — )}, 0)(S \ {ir})

RCS

=3 {Mkes\azallegs(l — 20) HAy,,..50)(S). O
RCS

5. Another expression of the Shapley value

In this section we characterize the Shapley value as a sum of marginal worths of coalitions

at N which is a pre-imputation, that is, it satisfies the efficiency.

Theorem 5.1. For any TU game (N,v), define a payoff vector y(N,v) by y:i(N,v) =
D iescny ¥s|(Asv)(N) for all i € N. Then y(N,v) is a pre-imputation for all TU games
(NV,v) if and only if it is the Shapley value.

Before proving this theorem, we need lemmas.
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Lemma 5.2. For ) # S C N,

(Asv)(N) = > (-1)"ly(N \ R). (17)
Proof: Let S = {i1,...,%,}.
(B, 5 )(V) = (B iay VN) = (B 0) (N {6})

= D (DMu(N\R)— > (-)Fu(N\{i}\ R)
RCS\{is} RCS\{is}

= Y (-)Ru(N\R)- > (-1)R-y(N\R)
RCS\{is} RCS,is€R

= 3 (-DB(N\R)+ Y (-1)Ry(N\R)
RCS,i;¢R RCS,is€R

=> (-1)"y(N\R). O
RCS

Lemma 5.3. For a TU game (N,v) and i € N,

pi(Nv)= > (- 1'S'+1A“’|”S|N ) (18)

1ESCN

Proof: From Lemma 5.2,

S (-pysin 22

i€SCN 1]
(-1 ISI IRl
- ¥ S S ey B
i€SCN RCS
ISI+
> = | | [ 3 (~D)Ru(N\R)+ Y (~1)Ro(V \ R)]
i€eSCN i€RCS igRCS
IRI+]S|+1 _1\RI+IS|+1
-y 3! 1) e+ Y Y g
1€SCN i€RCS 1€ESCN igRCS | |
the 1st term = Z (-1)®ly(N \ R) Z (= T;IQIH
i€RCN S:RCS
n _1\s+1 _
= ¥ comnm Y S (7
i€RCN s~|R| 8 s— A

i€RCN (|R[ 1) i€RCN ”(|17;|_-11)



(__1)|S[+1
5]

(__1)]S|+1

the 2nd term = Z (=1)®ly(N \ R) Z

igRCN S:i€S,RCS

= > (-)Fu(N\R) ]

igRCN S:RU{i}CS 1]

= Y (R R Y

i¢RCN s=|R|+1

= (—1)Bly(N R( )IRI= v(N\ R)
= 2 CTINR) ey >

i¢RCN igRCN n(ﬁl_ﬂl)

s—|R|—-1

Hence

) (—pysi2svN) > o(N\R) > v(N\R)

i€SCN Bl i€RCN n(lgrjl) i¢RCN n(nll‘%ll)
- TS Y
ol S nlns)
_ v(S\{dh) | v(S)
zegc:N ISI) i€SCN n(nn—_|é|) ’

which is the Shapley value, p;(N,v). O
Lemma 5.4. Let 4 = 3", .5y s51(Asv)(N). If for all TU games (N, v),

Dyl =u(N)
ieEN
then

-1 s+1
aszL—)—, foralls=1,..., n.
s

Proof:

=y =) Y ag(Asv)(N)

iEN €N i€SCN

=" a(Asv)(V)

S#P €S

=" ISlays(Asv)(N)

S#0

= z |S|alSl Z IR' N \ R)

S#0 RCS

=D (-DFu(N\R) > |Sles

RCN S#0,RCS

1)+ (n— IR| -1

38
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Since this is an identity, we compare coefficients v(N) of both sides.
" /n
1=> ISlass =3 (s)sas- (21)
S#0 s=1
For R # 0, N we compare coefficients of both sides.
"\ (n—|R|
0=2 ISlaysi = (s- |R|)Sas' (22)
RCS s=|R|

For R = N, by comparing coefficients of both sides, we have na,v() = 0, which holds
since v(@) = 0. In the equation (22) on {as}, let R be such that |R| = n—k for k = 1,2,3.
Then

(n—1Dap-1+na, =0, fork=1,
(n—=2)apn—2+2(n—Da,_1 +na, =0, for k=2,
(n — 3)an-3 + 3(n — 2)an—2 + 3(n — Loy + na, =0, for k = 3.

From these,

noy = —(n—1op_1 =0 —2)a,2=—(n—3)an_3.

Assume for £ < k — 1,
(n — )an_¢ = nay, if £is even, and = —na,, if £ is odd.

The equation (22) for |R| = n — k becomes to

k nan(—(’f) + (';) — 4+ (5), if k is even;
- — K)o
(O)(n A {nan(—}—(’lc) - (g) 4= (’,:)), if k is odd;
k non(—(8)), if k is even;
= n — k)oy,—
(0)( ) € {nan(—f—(’g)), if k is odd.

Inductive consideration implies

nay,, if k is even;
(Tl — k)an_k = (23)
—nay,, if kis odd;

From this, the equation (21) becomes to

) () (e
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if n is even. If n is odd, the equation (21) becomes to

()~ (s

So na, = (—1)"*!. From this and (23), we have the lemma. O

From Lemmas 5.2-5.4, we have the theorem. ]
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