0oooo0O0oooo
0 1860 0 2013 0 58-72 58

Variable Selection for Bayesian Linear Regression
Model in a Finite Sample Size

Satoshi KABE !
Graduate School of Systems and Information Engineering,
University of Tsukuba.

Yuichiro KANAZAWA 2
Graduate School of Systems and Information Engineering,
University of Tsukuba.

1 Introduction

Data analysis often involves a comparison of several candidate models. Because true model
is seldom known a priori, there is a need for a simple, effective, and objective methods for
the selection of the best approximating model. Akaike (1973) proposed an information
criterion later known to be Akaike’s information criterion (AIC) based on the concept of
minimizing the Kullback-Leibler Information, a measure of discrepancy between the true
density (or model) and approximating model: The discrepancy between two models or
two probability densities is expressed by the expected log-likelihood with respect to the
true density. AIC is designed to be an approximately unbiased estimator of the expected
log-likelihood under the assumption that “true model” is one of the candidate models
being considered.

Hurvich and Tsai (1989) illustrated that AIC can be dramatically biased when the
sample size is small by comparing AIC with the finite bias-corrected version of AIC (AIC¢)
proposed by Sugiura (1978). This criterion adjusts AIC to be an exact unbiased estimator
of the expected log-likelihood. They then extend AIC¢ so that it can be employed for
autoregressive (AR) model and autoregressive moving average (ARMA) model. Later
Bedrick and Tsai (1994) further extend Sugiura (1978) to multivariate regression cases
where response variable is expressed by a matrix.

In the ‘fully’ Bayesian data analysis, the deviance information criterion (DIC) is widely
used for the model selection. Spiegelhalter et al. (2002) proposed a Bayesian measure of
model complexity (i.e., effective number of parameters pp ) obtained from the difference
between the posterior mean of the deviance and the deviance at the posterior mean of
the parameters. When the number of data is sufficiently large, DIC is given by adding
pp to the posterior mean of the deviance. Spiegelhalter et al. (2002) gave an asymptotic
justification of DIC in cases where the number of observations is large relative to the
number of parameters.

In an discussion to Spiegelhalter et al. (2002), Burnham (2002) questioned “[a] lesson
that we learned was that, if sample size n is small or the number of estimated parameters
p is large relative to n, a modified AIC should be used, such as AICc = AIC + 2p(p +
1)/(n—p—1). I wonder whether DIC needs such a modification or if it really automatically
adjusts for a small sample size or large p, relative to n.” We write this article to answer this
question, at least partially for a very important case of linear regression. More concretely,
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we propose a finite-sample bias corrected information criterion for the Bayesian linear
regression models with normally distributed error, and then we implement simulation
studies when the sample size is relatively small.

The rest of this article is organized as follows: Next section briefly describes the
Bayesian linear regression model. In Section 3, we propose our information criterion for
the Bayesian linear regression model. Section 4 shows the results of simulation studies
to show the validity of our proposed information criterion when the sample size is small.
Finally, Section 5 draws some conclusions concerning our proposed criterion.

2 Bayesian Linear Regression Model

We consider the linear regression model as follows
y=XB+e, e~N(0,0Iy) (2.1)

where y is a N x 1 vector and X is a N x K non-stochastic matrix. The parameter
vector B is a K X 1 vector and error term ¢ follows a N-dimensional multivariate normal
distribution N (0, 02T y).

We assume that prior distribution of 3 is a K-dimensional multivariate normal distri-
bution and that of 072 is a gamma distribution:

Blo~ ~ N (b, 0" Bo) (22)
-2 Y o
o g ( 5’5 ) ) (2.3)
Then posterior distributions of parameters 3 and o~2 are expressed as
,3]0‘2,y,X NN(thzBl) (24)
-2 v
oy, X Q<2,2) (2.5)

where b, = By (X'y + By'by), By = (X'X + Bgl)_l, v =v+N+K, A =X+ (y—
XBn)'(y — XBy) + (bo — By)' (X' X)™ + Bo] ! (by — By) and By = (X'X)' X'y.

3 Finite-Sample Bias Correction and Variable Selec-
tion Criterion

Let us denote unknown true density as fy(-) and approximating model as g(-|@) with
parameter vector 6. Then Kullback-Leibler Information between fy(-) and g(-|@) can be
expressed as follows

1(fe,a16) = [ feloyiog {2 4z 1)

and (3.1) can be rewritten as

I(fy,9(:16)) = E; [log{ fy(2)}] — E, [log{g(2]6)}] . (3.2)

59



60

Even though the true density fy(-) is unknown, the first term on the right-hand side of
Kullback-Leibler Information in (3.2) can be regarded as a constant since the variable
z is integrated out. Then we select the best approximating model with maximizing the
expected log-likelihood.

In Bayesian perspective, parameters follow the posterior distributions estimated by
observed data y. Hence we consider the posterior mean of (3.2):

Eoyy [1(fv,9(:10))] = E; [log{fx(2)}] — Ey [E: [log{g(2(0)}]] (3:3)

and as in Spiegelhalter et al. (2002) and Ando (2007), our proposed information criterion
is constructed based on the posterior mean of expected log-likelihood.

From the Bayesian linear regression model (2.1), we use y as observed data of sample
size N obtained from the unknown true density fy(y) to estimate the posterior distri-
butions of parameters B and o2, while we also use 2z as replicate data of sample size
N generated from the unknown true density fy(z) to evaluate the goodness of fit of ap-
proximating model g(z|X,3,572). Then posterior mean of expected log-likelihood T is
defined as

T = Ego2pyx [E: [log {9(21X,8,07%)}]] (3.4)
where expectation Eg -2, x[-] can be calculated by E,-2j x[ Egjo-2x[*] | from the

posterior distributions (2.4) and (2.5).
To estimate the posterior mean of expected log-likelihood 7 in (3.4), we use the

posterior mean of observed log-likelihood T
?N = Eﬁ,o-2|y,X [10g {g(le, ﬂa 0‘2)}} . (35)

and the bias-corrected estimator is obtained as 7\}\/ - ZN, where ZN is an estimate of bias
be = E,[Ty — T] # 0. Then we propose information criterion (IC) of the form

IC = —27y + Zby. (3.6)

Ignoring the constant term, we can express the log-likelihood function for the replicate
data z such as

-2

log {g9(2|1X,B,07%)} = glog o UT(z - XpB)(z-XB) (3.7)

where parameters 3 and o2 follow the posterior distributions estimated by observed data
y and X. Then the posterior mean of expected log-likelihood 7 in (3.4) is rewritten as

T =Eggo—2yx [Ez [% logo™2 — U—Q_E(z - XB)(z - X,B)H

N -2
= Eﬁ,a‘2|y,X |:'é' IOg 0-_2 - 0_2'(y - Xﬂ),(y - X:@):I

-2

~Bpo-ax [Be | G2 - XB) (- X8|

0.—2
+ Ego-21y,x [T(y -XB)(y-X ﬂ)]



=Ty —C1+Cy (3.8)

and the bias bg with respect to the true density fy(y) is obtained by bg = E, [’7}; -T]=
E,[C1 — Cy).

First we evaluate C; in (3.8). However, true density fy(2) is seldom known in practice,
so that expectation with respect to the true density is not analytically obtained. In
the previous studies, Kitagawa (1997) replaced the unknown true density by the prior
predictive density to construct the predictive information criterion (PIC) for the Bayesian
linear Gaussian model, while Laud and Ibrahim (1995), Gelfand and Ghosh (1998), and
Ibrahim et al. (2001) considered using the posterior predictive density to generate the
replicate data z for model assessment. In this article, we use the posterior predictive
density to evaluate the expectation with respect to the true density fy(z) in C; because
the prior predictive density is far more sensitive to the selection of prior distribution.

To evaluate C} in (3.8), we replace the true density fy () with a (conditional) posterior

predictive density
ZIO'_z,y,X NN(Xbl,O'QE()) y (39)

where 072 follows the posterior distribution (2.5) and £y = Iy + X B;X’. From (3.9),
we estimate C) in (3.8) as

R -2
Cy = Epg-2pyx [Ez,(,-z,y,x [%—(z —XB)(z - XB)”
o2
= Eﬂ,a—zly,X [Ez[a*z,y,X [T(Z — Xbl)’(z — Xbl)}jl
o2 /
+ Boryx [tr {?(X'X)Eﬁ,a_zyy,x (8- by) (B—by)] }} . (3.10)

The first term on the right-hand side of (3.10) can be rewritten as follows

-2

Eg o2y x [Ez[a‘z,y,X {%(Z - Xb)'(z - Xb1)H

-2

= E,-2 x [%—tr{Ez]a—2,y,X [(z — Xb1)(z - Xbl)l]}]

o2

= Ea‘zly,X [—é—tr{azxo}J
1

= 5tr {In+XB:; X'}

=g—+%tr{(X’X)B1}. (3.11)

The second term on the right-hand side of (3.10) is similarly obtained from the posterior
distribution (2.4) as follows

Eqoy.x [tr { T (X'X)Ea sy [(B—b) (B by)] H

0.—2
= EU*zl%X [tl‘ {—Q—(X/.X)O'ZBl}:'
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_ -;—tr (X'X)Bi}. (3.12)
From (3.11) and (3.12), C; in (3.10) is evaluated as follows
R —2
Cl = Eﬂ,a"2|y,X [Ezla“z,y,X [%—(Z - Xb])/(z - Xb]_)j”

0_2 ! !/
+ Ea—2|y,X {tr {T(X X)Ema—z,y,x [(,3 - by) (ﬂ - bl) ] }]
N 1 , 1 ,
= 3 + 5131‘ {(X X)Bl} + §tr{(X .X)Bl}
= % +tr {(X'X)B;}. (3.13)
Then we notice that C; does not depend on any data v, i.e., Ey(al) = C,.

Suppose that interchange of order of integrations is valid, we can rewrite E,(C;) such
as

B, (Cs) = B, [Baax | 5w - X6)(w - X8|

ag

~Byos [Buans | G0 - X8)tw— X)) (3.14)

where Eg ,2[ - | is an expectation with respect to the joint prior distribution and Eyx g 2| -]
is an expectation with respect to N-dimensional multivariate normal distribution with
mean vector X3 and variance-covariance matrix o2Iy. Since Eyx g,-2[(y — X8)(y —
XB)] = oIy, E,(Cs) in (3.14) can be evaluated as

E, (Co) = Ep,-2 [Eylx,ﬂ,o-2 [tr {0_—2@ ~XB)y - X'@),}H

2
1
= Etr {IN}
N
-5 (3.15)
Therefore EN is given by
BN = Ey [61 - 02]
=Ci-E,(&y)
- % +tr{(X'X)B;} - _]2!
=tr {(X'X)B;}. (3.16)

Then by in (3.16) can be regarded as a ratio of variance-covariance matrices o2(X'X)™
and ¢2B;. L
Multiplying —2 to the bias-corrected estimator Ty — by, our proposed information
criterion for variable selection in the Bayesian linear regression model (ICpy,) is obtained
by
ICpr = —2Tn + 2tr {(X'X)B4} (3.17)



where B; = (X'X + By') ™,
For simplicity, let us denote the parameter By in (2.2) as By = kol g (ko > 0) and
the bias term by can be rewritten as

by =K —tr{(X'XBo + Ix)""} (3.18)

from the matrix inversion lemma 3. Then if the sample size N — oo, the last term in
(3.18) is expected to be zero because tr{(xoX'X /N + Ix/N)"'/N} = 0 (ie., by = K)
when each element of X’'X /N does not diverge. Furthermore, if r is sufficiently large
(i.e., non-informative prior), we also have tr{(koX'X + Ix)"'} — 0 in (3.18).

4 Simulation Experiments

4.1 Deviance Information Criterion (DIC)

We conduct two simulation studies to compare small sample performances of our proposed
information criterion (ICgy) in (3.17) with the deviance information criterion (DIC) :

DIC = —27x + po, (4.1)

where Spiegelhalter et al. (2002) termed pp as the effective number of parameters defined
to be pp = 2log{g(y|X,B,57)} — 27y evaluated at the posterior means of parameters
B (=b1) and 372 (= 11 /A1) in (2.4) and (2.5).

4.2 Simulation studies

In this article, we present two small sample simulation studies: The first one is designed
to examine cases where the set of candidate models includes many over-specified models;
the second one examines performances with respect to under-specified candidate models.

Case 1

As in Hurvich and Tsai (1989), we consider the nested candidate models by using seven
explanatory variables @, s, ..., 7. In our simulation study, «; is a N x 1 vector whose
elements are ones (i.e., intercept term) and the other N x 1 vectors &; (2 < ¢ < 7)
are generated from the uniform distribution U(—2,2). These variables @1, xy, ..., 7 are
included into the candidate models in a sequentially nested fashion. The candidate models
are linear regression models given by y = f1@1 4+ foxa+- - -+ Bk +€, € ~ N(0,0%Iy).
The candidate model with K = 1 has only intercept term and with K = 7 is the full
model. In this simulation study, we determine the number of variables K by using our
proposed information criterion (ICpg) in (3.17) and DIC in (4.1) in small sample cases
N = 25,50, 100 with informative (ko = 0.1) and non-informative (ko = 100) priors. To

3For any matrices A (m x m), B (m x n), C (n x m), and D (n x n), we have
(A-BD'C) '=A'+A'B(D-CA'B) 'ca™!

where A and D are nonsingular matrices.
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examine the small sample performance in the Bayesian linear regression cases, we generate
a sample of y from the true model (K = 3):

Y= 1.0z, + 2.0z + 3.0x3 + g, & N (0, 1011\/) . (42)

In Table 1, we examine the performance of ICg;, and DIC for the small sample cases
(N = 25,50,100). The parameters of prior distributions in (2.2) and (2.3) are set to be
by =0, By = koI x (ko = 0.1 or 100), and vy = A9 = 0.1. The simulation considered each
combination of N = 25, 50,100 and x¢ = 0.1,100. We draw 50,000 MCMC samples from
the posterior distributions in (2.4) and (2.5) to compute the posterior mean of observed
log-likelihood Ty in (3.5). For each combination of (N, k), we generate 100 observations
of ICg. and DIC, and record the number of selected models (i.e., the candidate model
with minimum value for the two criteria).

Table 1 shows that our proposed information criterion (ICpy,) identifies the true model
(K = 3) for the small sample cases (N = 25,50, 100) with informative prior (ko = 0.1)
far better than DIC, on the other hand DIC tends to overfit the true model. For the
non-informative prior (kg = 100), both criteria tend to overfit the true model for the
sample size N = 25 and 50, but nevertheless our proposed information criterion (ICgy,)
far outperformes DIC at the sample size N = 100.

In Tables 2 and 3, we show the results of average criteria in 100 observations for the
small sample cases (N = 25,50, 100) with informative (ko = 0.1) and non-informative
(ko = 100) priors. Both criteria selected the true model (K = 3) in all cases, but the
difference between ZZN and pp becomes more apparent along with an increase in the
number of explanatory variables. Hence the effective number of parameters pp in DIC
tends to underestimate the model complexity compared with the bias term 2by in ICpy,.

Case 2

Next we consider the cases where explanatory variables in the candidate models are se-
lected from the subsets of {x1, T2, T3}, (i-e., {®1}, {®2}, {@3}, {®1, 22}, {71, 23}, {22, X3}
and {x, 2, x3}). Then we specify a true model such as

y=10x, +20x;+e, €~N(0,1.0Iy). (4.3)

We implement a simulation study to examine the performance of ICpy in (3.17) and DIC
in (4.1) for under-specified candidate models in small sample cases.

The parameters of prior distributions in (2.2) and (2.3) are set to be by = 0, By =
kol k (ko = 0.1 or 100), and vy = Ap = 0.1. We draw 50,000 MCMC samples from the
posterior distributions in (2.4) and (2.5) and compute the posterior mean of observed
log-likelihood Ty in (3.5). For each combination of (IV, kg), we generate 100 observations
of ICp;, and DIC and record the number of selected models such as Case 1.

Table 4 shows that DIC tends to select a full model (i.e., {1, %2, x3}) as compared
with ICp;, in small sample cases. On the other hand, under-specified candidate models
(i.e., {z}, {@2}, {z3}, {x1, 23}, {T2, x3}) are not selected at all. Hence, DIC shows a
tendency to overfit the true model in this simulation study.

In Tables 5 and 6, average values of model complexity in ICg; and DIC with respect to
the candidate models {x1, x>}, {x1, 3}, and {x2, x3} are close to each other. However,



true model (i.e., {x1, z2}) has the largest value of posterior mean of observed log-likelihood
Tn among three candidate models. Therefore, average values of ICg,, and DIC successfully
select the true model (4.3) in all cases.

5 Conclusion and Discussion

In Bayesian data analysis, DIC (Spiegelhalter et al., 2002) is widely used for the model
selection, since this criterion is relatively easy to calculate and applicable to a wide range
of statistical models. Spiegelhalter et al. (2002) gave an asymptotic justification of DIC
in cases where the number of observations is large relative to the number of parameters.
However, Burnham (2002) questioned if the DIC needs a modification for small sample
size. In this article, we proposed a variable selection criterion ICg;, for the Bayesian linear
regression models in small sample cases, as Sugiura (1978) proposed AIC¢ in frequentist
framework. We then examined the performance of our proposed information criterion
(ICpL) relative to the DIC for small sample cases.

In our simulation studies, we found that DIC often showed tendency to overfit the true
model (see Tables 1 and 4), whereas our proposed information criterion (ICp.) performs
well for small sample cases (N = 25,50, 100). We also found that the measure of model
complexity 231\; was mostly larger than pp (see Tables 2 and 3), leading us to conclude
bias correction of DIC underestimates the model complexity in small sample cases.

An important directions for the further research would be to extend our information
criterion to the several types of Bayesian regression models (e.g., the hierarchical Bayesian
regression models, Bayesian regression models with serially correlated error, and Bayesian
Markov-switching models ) because empirical analysis is generally performed under the
limitation of data availability.
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