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Maillet type theorem, convolution equations and
multisummability of formal solutions

By

Hidetoshi TAHARA* and Hiroshi YAMAZAWA**

Abstract

Let P()A) be a polynomial of degree m. In this note, we consider the following linear singular
partial differential equation

(E) P(td)u= > a;alt)(t0:)8%u+ f(t,z)

J+|alSL

with (t,z) € C; x Ry (or (t,2) € C; x CY') and with holomorphic coefficients a;j,a(t). First,
we present a Maillet type theorem for formal solutions of this equation (E), then we give an
analogue of Maillet type theorem in convolution partial differential equations, and finally we
give an application to multisummability of formal solutions of (E). Only the results are written
in this note: the details will be published elsewhere.

§1. Preliminaries

We denote by (¢, ) the variables in C; x RY. Let D, = {t € C; [t| < r} with » > 0,
and let V' be an open subset of RY. For ¢ > 0, we denote by G117} (V) the set of all
functions u(z) € C*°(V) satisfying the estimates

sup |0%u(z)| < Chl®(ja]!)?, Va e NV
eV

for some C' > 0 and h > 0. A function u(z) € GI7}(V) is called a function of the Gevrey
class of order ¢. For u(z) € G{°}(V) we write

3 u e

|a|>0
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where || - ||y denotes the supremum norm on V. We see: a function u(z) € C®(V)
belongs to the class G{7}(V) if and only if |||u||, is convergent in a neighborhood of

p=0.
Similarly, we denote by G{1:?}(D, x V) the set of all functions f(t,z) € C®(D, x V)
holomorphic in ¢ € D, and satisfying the estimates

sup |85 f(t,z)| < Chl*l(|a)!)?, VaeNV
(t,x)eD,.xV

for some C > 0 and h > 0. We write also

@i, = 3 1ELOI et

|} >0

§2. Maillet type theorem

Let m be a positive integer, let A be a finite subset of N x N™, and let us consider
the following model equation:

(2.1) P(to)u= Y a;a(t)(td)02u+ f(t,z),
(J,a)eA

where

PO =2A"+cd™ 4+t emo1A+em
is a polynomial of degree m, a;(t) ((j,@) € A) are holomorphic functions on D, and
ft,z) € GIHH (D, x V). 1t is easy to see that if the conditions
(2.2) P(n)#0 forany n=0,1,2,..., and
(2.3) a;,o(0) =0 for any (j,a) € A

are satisfied, the equation (2.1) has a unique formal solution

(2.4) a(t,z) = Zun (@)t" e G°HV)[t].

n=0
We denote by ordi(a) the order of the zero of the function a(t) at t = 0. We
set ¢j o = ordi(aj,«) ((j,a) € A): since (2.3) is supposed, we have g;, > 1 for any
(J,a) € A. We define the index s > 1 by

(2.5) s—~1+max[0 max 1 olol=m
(4,0)€A 9j,a

About the estimates of the coefficients u,(z) (n = 0,1,...) of the formal solution (2.4),
we have:
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Theorem 2.1 (Maillet type theorem). Suppose the conditions (2.2) and (2.3). Let
i(t,z) be the unique formal solution of (2.1). Then, there are constants A > 0, H > 0
and p > 0 such that

(2.6) llunll, < AH™RI57) n=0,1,2,...

In [2], this kind of theorem is called a Maillet type theorem. Similar results are
obtained in [8] for formal solutions in G’ (V)[t] of nonlinear partial differential equations
in the case 0 > 1. We note that in the above theorem our assumption is ¢ > 0.

§3. Convolution partial differential equations

Next, let us give an analogue of Maillet type theorem in the following convolution
partial differential equation

P(ke")w = f(&,2)+ Y aja(€) *k (A;,a[02w]) on Sy x V,
(J,a)eEA

where P()) is a polynomial of degree m, and A is a finite subset of N x N™.

§3.1. An analogue of Maillet type theorem

For an open interval I = (6;,6;) we write S; = {€ € R(C\ {0}); 8; < arg¢& < 65}
(where R(C\ {0}) denotes the universal covering space of C\{0}), and |I| = 6, —6;. For
k > 0 and two holomorphic functions f(£¢) and g(£¢) on S; we define the k-convolution

(f *k g)(€) of f(£) and g(&) by

3
(f *x 9)(€) = / F()g((€F ~ P R)ark | € e s,

Let £ > 0 and o > 0 be fixed. For (j,a) € N x N® we write

e (KEYW), i o] > 0
AyalW) =] TERD R
(kXYW if |a| = 0.

In this section, as a model we will consider the following convolution partial differ-
ential equation

(3.1) P(ke*)w = f(€,2)+ Y aja(€) # (Mal02w))
(4,2)€A

on S; x V, where
PA) ="+ d™ 4+ oA+ em
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is a polynomial of degree m. We suppose: k > 0 is a real number, 0 < |I| < 27 /k,
o >0, f(&,z) € GILo}(Sr x V), and a; 4(€) ((j,a) € A) are holomorphic functions on
the sector S;. Moreover, we suppose that there are real numbers g > 0 and gjo > 0
((4,a) € A) such that the estimates

FE)l, < FlE* exp(cl¢[*) on S,
|aj,a(€)] < Ajal€|%="Fexp(clé]¥) on S; ((j,@) € A)

hold for some p >0, FF > 0,c >0 and A;, >0 ((j,a) € A).
Under these assumptions, we set

(3.2) s=1+ max[O, max ( J —+-.a|a| — >}
(G:)EAN G50 + K[ + ol —m]y

For a real number z we write [z]+ = max{z,0}. We set
K ={g.a+klj+olal —mls; (j,a) € A} :

since this is a finite set, we can write K = {k1,...,K¢} where k1,...,k, are distinct
positive real numbers. We set

I
N =p+ Z Nk,
i=1
that is, a real number n belongs to .4 if and only if n is expressed in the form n =
4+ K1q1 + - - + Kkeqe for some g, € N (i = 1,2,...,£). Since .4 is a discreat set of
positive real numbers, we can write it in the form .4 = {ng, ny,ng,...} with ng = pu,
0<np<ni<ng<...,andn, — oo (asp — 00).
We let A1, ..., A, be the roots of P(A) = 0. We denote by p: R(C\ {0}) — C the
natural projection. We have

Theorem 3.1 (Analog of Maillet type theorem). Suppose the condition

Ai € C\p(skj) fori=1,2,...,m.
Then, the equation (3.1) has a formal solution

w(t, )= Y wal£,z), wal,2) € GHHS x V) (ne )
neA

which satisfies the estimates

n ., 1s—1 n—k
63 @l < SFe e ep(alel) o i, o e

for some p >0, A>0, H>0 and c; > 0.
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This is an analogue of Maillet type theorem. We note that the formula (3.2) is very
similar to the formula (2.5) in Maillet type theorem: this indicates that we can prove
Theorem 3.1 by a similar argument to the proof of Theorem 2.1.

§3.2. Analytic continuation in ¢

Let us show the possibility of analytic continuation of the solution of (3.1). First we
define k; > 0 by the following:

Lemma 3.2. Let s be the one in (3.2). Then we have:

(1) s =1 holds, if and only if j + ola| < m holds for any (j,o) € A. In this case,
we set ky = k.

(2) s > 1 holds, if and only if j + ola| > m holds for some (j,a) € A. In this

case, we have s —1 < 1/k and so we can define a real number k; > 0 by the relation
1/ky =1/k— (s —1).

For € > 0 we write Sr(e) = {¢£ € S;; 0 < [¢] < €}. By combining the estimate (3.3)
in Theorem 3.1 with the argument in [7] we have

Theorem 3.3 (Analytic continuation). Suppose the condition
Ai =0 or \; E(C\m fori=1,2,...,m.
If a function w(¢,z) € G1}(S1(e) x V) (where € > 0) satisfies (3.1) and
llw(@lll, < ClE*=*  on Si(e)

for some C > 0, then w(€, ) has an analytic continuation w*(&,z) € GILoH(Sr x V) as
a solution of (3.1) that satisfies the following: for any I, € I there are p; >0, M > 0
and ¢y > 0 such that

MigiH—*

(3.4) o™ @lle: < 3=

exp(cl|£|k1) on S, .

§4. Entire functions of finite order

For z = (z1,...,zn) € CN we write |z| = |z1]| + -+ + |zn|. We say that f(z) is an
entire function if it is a holomorphic function on C¥: for v > 0 we say that f(z) is an
entire function of order «y if it is a holomorphic function on C¥ satisfying

|f(z)| < Aexp(alz|”) on CN
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for some A > 0 and a > 0. We denote by Exp!"} (CY) the set of all entire functions of
order 7. Similarly, for § > 0 and v > 0 we denote by Exp{”} (Ds x CV) the set of all
holomorphic functions u(t,z) on Ds x CV satisying the estimate

lu(t,z)] < Bexp(bjz|') on Ds x CV

for some B > 0 and b > 0.
For v > 0 we set 0 = 1 — 1/~; then we have 0 < 1 and v = 1/(1 — ). As to the
estimates of derivatives of entire function, we have the following

Proposition 4.1. Let v > 0 and let f(z) be an entire function. Set c =1 — 1/7.
The following two conditions are equivalent:

(1) f(z) belongs to the class Expt}(CV).

(2) For any compact subset K of CN there are A > 0 and h > 0 such that the
following estimates hold:

(4.1) max |97 f(z)] < Ahl*l(la!)?, VYa e NV,

This result says that if f(z) belongs to Exp!”(CV), we have the estimates (4.1)
which is the same as the estimates of a function in the Gevrey class of order ¢ = 1—1/7.
We note that 0 < o < 1 is equivalent to v > 1. Therefore, Theorems 2.1, 3.1 and 3.3
are valid also in the case where we repace G1}(D, x V) by Exp!" (D, x CV) with
v > 1. This leads us to the next §5.

Before proceeding to §5, let us explain how to use the Exp{"’}-version of Theorem
3.3. For example, let us consider

(4.2) P8 u=F(t,z)+ D Ajalt)(t51*(t*F18,)702u)
(j.)€A

where k > 0, F(t,z) € Exp!"(S;(8) x CN) with |F(t,z)| < AJt|* exp(a|z|?) for some
A>0,u>0anda >0, and Aj,(t) is a holomorphic function on S;(8) with A; 4 (t) =
O(t%:=) (as t — 0) for some g; jo > 0. If |I| > 7 /k holds, by applying the k-Borel
transform By [-] to (4.2) we have

(4.3) P(keF)w = f(€,2) + Z aj,a(€) *k (Aj,a[0Zw])

(7,a)EA

with 'U)(f, :E) = Bk[U](f,m), f(é’x) = Bk[F](é-a .’L‘), a‘j,a(g) = Bk[Aj,a](g) ((]7a) € A)
Thus, we can apply Theorem 3.3 with 0 =1 — 1/7.
In the above calculation, we used the k-Borel transform Bi[F](£,z) of F(t,z) etc.

in the form 1

Bk[F](§,$) = 27!‘\/—_1

/ exp((£/1)*) F(t)dt
€ (&)
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where €(§) is a contour starting from 0e*(*18&+7/2k+d) and ending to Oei(ereé—m/2k—d)
with 0 < d < min{arg{ — 6,0, — arg&, w/k} in S;(6).

§5. Multisummability of formal solutions

In this last section, we will give an application of results (with G{1:7}(D, x V)
replaced by Exph} (Dy x CN)) in §§2 and 3 to the problem of multisummability of
formal solutions of the equation

(E) P(td)u= Y a;a(t)(td)0%u+ f(t,z),

(J,)eA
where (t,z) € Cy x C¥,
PRA)=A"+c A"+ e A+

is a polynomial of degree m, a;(t) ((j,a) € A) are holomorphic functions on D, and
ft,z) € Exp(D, x CM). As before, we denote by ord;(a; ) the order of the zero
of aj(t) at t = 0. Without loss of generality we may suppose that a;a(t) # 0 for all
(4,a) € A.
As is seen in §2, if the conditions
P(n) #0 for any n=0,1,2,..., and
ajo(0) =0 for any (j,a) € A

are satisfied, we know that the equation (E) has a unique formal solution

(5.1) at,z) = i‘ un(z)t" € ExpOHCM)[1].

n=0

If A C {(ja) e NxN¥;j+|al < m}, by Theorem 2.1 and Lemma 3.2 we see
that the formal solution u(t,z) is convergent in a neighborhood of (t,z) = (0,0). If
otherwise, that is, if

(5.2) Jj+lal >m for some (j,a) € A,
this formal solution is not convergent in general. Thus, our problem is:

Problem 5.1. Under what condition on 7 (in the assumption f (¢, z) € ExpIH(D, x
C™)), is the formal solution (5.1) multisummable?

As to the definition of multisummability, we can refer to [5] and [1]. Standard argu-
ments on the summability or multisummability of formal solutions in partial differential
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equations can be found in [7] and [3]. In the case of heat equation, the necessary and
sufficient condition for the formal solution to be Borel summable is established in [4].

See also [6].

§5.1. Newton polygon with respect to ¢

For (a,b) € R?, we write C(a,b) = {(z,y); T < a,y > b}. We define the ¢t-Newton
polygon N;(E) of the equation (E) by the convex hull of the union of sets C(m, 0) and
C(]> Ordt(a'j,a)) ((]a a) € A)7 that is,

N¢(E) = the convex hull of [C(m, 0) U U C(j,0rd¢(ajq))|-
(G,e)eA

Note that the term tP(t8;)? 3% corresponds to C(j,p) (not C(j + |a|,p)): therefore, our
t-Newton polygon is different from the usual Newton polygon. We are observing only
the t-variable. The figure of N;(E) can be drawn as follows:

Lo
kO (lOa 60)

Figure 1. t-Newton polygon
As is seen in Figure 1, the verteces of N;(E) consists of p* + 1 points

(lO,eO)a (l1’61)7 (l2’62)7"') (lp*—lvep"—l)a (lp*)ep‘);

the boundary of N;(E) consists of a horizontal half line I'g, p*-segments I'1, ', ..., T'p-,
and a vertical half line I'p. ;. We denote the slope of T'; by k; (¢ =0,1,2,...,p* + 1);
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then we have
k0=0<k1<k2<"'<kp* <I€p*+1:OO
Since ord¢(aj,o) > 1 is supposed, we have (lg, eg) = (m, 0).
We denote by (N;(E))° the interior of the set N;(E). From now, we suppose the
following condition:

(5.3) (J,a) € A and |a| >0 = (j,ordi(a;4)) € (N:(E))°
which is equivalent to
p*+1
(4,0rdi(aj,q)) € U I'i = |a| =0.
i=1

§5.2. Singular directions

In the case p* > 1, let us define the set of singular directions. For i = 1,2,...,p%

we set
I; = {(4,0) € A; (j,ords(a0)) € T}, i=1,2,...,p"

For (j,0) e , UL, U- U Iy« we set g;0 = ords(a;j,0); then we have
aj,o(t) = tq""’a?’o(t) with a2 ,(0) # 0
for some holomorphic function a2 ,(t). We set

(5.4) PN = > alg@N ™ —1=a) ()N o1
(j,O)Ell

and for 2 <1 < p*, we set

(5.5) P(\) = Z a2, (0)NI k-1 = af GO)Nh=1 4oy a)_, o(0).
(j,O)EIi

We call P;(A) the characteristic polynomial on I'; and we denote by
)\i,l Yoy )‘i, li—li—a

the roots of P;(A) = 0 that are called the characteristic roots on I';. Since a) (0) # 0
and a __ (0) # 0 hold, we have

Xig#0 foralll<i<p*and1<d<Il, —1I_;.

Definition 5.2. We define the set = of singular directions by

U {wﬁ j=0,41,42,. }

—
.
—

[ C"ﬁ

179



180

HipeETOSHI TAHARA AND HIROSHI YAMAZAWA

§5.3. Statement of main result

In the equation (E), we have supposed:
(5.6) f(t,z) € Exp"H (D, x CM).

In order to state our condition on the exponent v, we need to define the set € of

admissible exponents. We set
(5.7) A" ={(j,@) € A; (j + |af,orde(aj,a)) & Ne(E)}-

If (4, a) € A*, by the definition of N;(E) we have |a| > 0 and by the assumption we have
ordi(aje) > 1 > eg (= 0). Therefore, if we set Af = {(j,a) € A*; e;_1 < ordi(a;jq) <
e} (1 =1,2,...,p* + 1 with e,«41 = 00), we have

A*=ATU - UALUAS .
We note:
Lemma 5.3. If (j,a) € A} for some 1 <i<p*+ 1, we have
0<j+|al —li—1 — (ord¢(aj o) — €i-1)/ki < |a.
Let us define:

Definition 5.4 (Definition of ¥). We define the set € of admissible exponents for

(E) in the following way.
(1) In the case 1 < i < p*: if A} = 0 we set 7, = oo and &; = (0,00); if A} # 0 we
set

. [l )
;= min | =
% (J,a)eA? (] + |a| — li—l - (ordt(aj,a) - ei_l)/ki
and set %; = (0,+;) which is a nonempty open interval.
(2) In the case i = p* + 1: if Ap-y1 = 0 we set yp«41 = 00 and Gp+41 = (0, 00); if
Ap-1 # 0 we set
vy ()
P Gra)ert  \J + laf = lpr
and set €p-+1 = (0,7vp-+1] which is a nonempty half-open and half-closed interval.
(3) Then, we define € by
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By Lemma 5.3 we have
1<y, <00, i=12,...,p"+1

and so we have (0,1 + €) C ¥ for some € > 0.
The following theorem is the main result of this note.

Theorem 5.5 (Tahara-Yamazawa [9]). Suppose the condition
(5.8) vYEF

and let -
Wt z) =Y un(@)t” € ExpH(CV)[1]
n=0

be the unique formal solution of (E). Then we have:

(1) If p* =0, 4(¢t, z) is convergent on Ds x CN for some 6 > 0.

(2) If p* > 1, for any d € R\ = we can find e > 0, 6 > 0 and a holomorphic solution
u(t,z) of (E) on S(d, m/2kp-+¢; 6) x CV with S(d, T/2kp-+€,6) = {t € R(C;\{0}); 0 <
[t| < d,|argt — d| < m/2kys + €} such that the following asymptotic relation holds:

N-1

u(t,z) — Z Up (z)t"

n=0

on S(d, 7/2kp- +€6) x CN for any N =0,1,2,...

(5.9) < AHNNWR N exp(b]z|)

for some A >0, H>0 and b> 0.
Example 5.6. (1) Let us consider
(5.10) (t0y + L)u = f(t,z) + td2u + t2(t0;)3w,

where (t,z) € C? and f(t,z) € Exp"}(D, x C). In this case, we have a unique formal
solution (¢, z) € Exp{"}(C) [t] and

E={nj;j=0,£1,42,...}, %= (0,00).

Therefore, for any y > 0, the formal solution 4(t, x) is Borel summable in any direction
deR\E.
(2) Let us consider

(5.11) (t0: + 1)u = f(t,z) + tu + t2(28,)3u,

where (t,z) € C? and f(t,z) € Exp"} (D, x C). In this case, we have a unique formal
solution @(t, z) € Exp"}(C)[¢] and

E={nj;j=0,£1,42,...}, % =(0,3).
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Therefore, if 0 < v < 3 holds, the formal solution (¢, z) is Borel summable in any
direction d € R\ =.
(3) Let us consider

(5.12) (t8; + Du = f(t,z) + t30%u + t2(t8;)*u,

where (¢, z) € C? and f(t,z) € Exp!” (D, x C). In this case, we have a unique formal
solution (¢, z) € Exp{}(C)[t] and

E={nj;j=0,%1,%£2,...}, € =(0,4].

Therefore, for any 0 < v < 4, the formal solution #(t,z) is Borel summable in any
direction d € R\ =.
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