<table>
<thead>
<tr>
<th>Title</th>
<th>(1,1)-BRIDGE SPLITTINGS WITH DISTANCE EXACTLY n (Pursuit of the Essence of Singularity Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>IDO, AYAKO; JANG, YEONHEE; KOBAYASHI, TSUYOSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2013年，1868卷，32-37頁</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195424</td>
</tr>
<tr>
<td>Right</td>
<td>京都大学学術情報リポジトリ</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
(1, 1)-BRIDGE SPLITTINGS WITH DISTANCE EXECTLY n

AYAKO IDO, YEONHEE JANG AND TSUYOSHI KOBAYASHI

1. Introduction

On the other hand, the above concept and results have been extended to bridge splittings for links in closed 3-manifolds (for definitions, see subsection 2.3), and have been studied by several authors. For example, Saito [11] showed that for any closed 3-manifold admitting a Heegaard splitting of genus one, there is a knot in the manifold with a $(1, 1)$-bridge splitting of arbitrary high distance. Recently, Blair, Tomova and Yoshizawa [2] showed that for given integers $b, c, g,$ and n, there exists a manifold M containing a c-component link L so that (M, L) admits a (g, b)-bridge splitting of distance at least n. Moreover, Ichihara and Saito [7] showed that for any given closed orientable 3-manifold M with a Heegaard surface of genus g, and for any positive integers b and n, there exists a knot K in M which admits a (g, b)-bridge splitting of distance greater than n.

In [6], we showed that there exists a Heegaard splitting of a closed orientable 3-manifold with distance exactly n for each positive integer n. To prove this, we gave a method to extend a geodesic in the curve complex of a closed orientable surface to a geodesic with given length, and constructed a concrete example (for details, see [6, Section 4]).

In this paper, we apply the idea of [6, Section 4] to construct a geodesic of any given length in the curve complex of a twice-punctured torus, and show the following.

Theorem 1.1. For any integer $n > 0$, there exists a $(1, 1)$-bridge splitting with distance exactly n.

2. Definitions and notations

2.1. Curve complexes. Let S be an orientable surface with genus g, b boundary components and p punctures. A simple closed curve in S is essential if it does not bound a disk or a once-punctured disk in S and is not parallel to a component of ∂S. An arc properly embedded in S is essential if it does not co-bound a disk in S together with an arc on ∂S. We say that S is sporadic if $g = 0, b + p \leq 4$ or $g = 1, b + p \leq 1$.

Except in sporadic cases, the curve complex $\mathcal{C}(S)$ is defined as follows: each vertex of $\mathcal{C}(S)$ is the isotopy class of an essential simple closed curve on S, and a collection of $k + 1$ vertices forms a k-simplex of $\mathcal{C}(S)$ if they can be realized by disjoint curves in S. In sporadic cases, we need to modify the definition of the curve complex slightly, as follows. We assume that S is a torus, a torus with one boundary component, or a sphere with 4 boundary components since, otherwise, there are no essential simple closed curves in
S. When S is a torus or a torus with one boundary component (resp. a sphere with 4 boundary components), a collection of $k + 1$ vertices forms a k-simplex of $C(S)$ if they can be realized by curves in S which mutually intersect exactly once (resp. twice). The arc-and-curve complex $\mathcal{AC}(S)$ is defined similarly, as follows: each vertex of $\mathcal{AC}(S)$ is the isotopy class of an essential properly embedded arc or an essential simple closed curve on S, and a collection of $k + 1$ vertices forms a k-simplex of $\mathcal{AC}(S)$ if they can be realized by disjoint arcs or simple closed curves in S.

We can define the distance between two vertices in the curve complex $C(S)$ to be the minimal number of 1-simplices of a simplicial path in $C(S)$ joining the two vertices. We denote by $d_{C(S)}(x, y)$, or $d_{S}(x, y)$ in brief, the distance in $C(S)$ between the vertices x and y. For subsets X and Y of the vertices of $C(S)$, we define $\text{diam}_{S}(X, Y) = \text{diam}_{S}(X \cup Y)$. Similarly, we can define the distance $d_{\mathcal{AC}(S)}(x, y)$ and $\text{diam}_{\mathcal{AC}(S)}(X, Y)$. We denote by $[a_{0}, a_{1}, \ldots, a_{n}]$ the path in $C(S)$ with vertices $a_{0}, a_{1}, \ldots, a_{n}$ such that $a_{i} \cap a_{i+1} = \emptyset$ ($i = 0, 1, \ldots, n - 1$). We call a path $[a_{0}, a_{1}, \ldots, a_{n}]$ a geodesic if $n = d_{S}(a_{0}, a_{n})$.

2.2. Subsurface projections. Let $\mathcal{P}(Y)$ denote the power set of a set Y. Suppose that X is an essential subsurface of S that contains an essential simple closed curve. We call the composition $\pi_{0} \circ \pi_{A}$ of maps $\pi_{A}: C^{0}(S) \rightarrow \mathcal{P}(\mathcal{AC}^{0}(X))$ and $\pi_{0}: \mathcal{P}(\mathcal{AC}^{0}(X)) \rightarrow \mathcal{P}(C^{0}(X))$ a subsurface projection if they satisfy the following (see Figure 1): for a vertex α, take a representative α so that $|\alpha \cap X|$ is minimal, where $| \cdot |$ is the number of connected components. Then

- $\pi_{A}(\alpha)$ is the set of all isotopy classes of the components of $\alpha \cap X$,
- $\pi_{0}(\{\alpha_{1}, \ldots, \alpha_{n}\})$ is the union for all $i = 1, \ldots, n$ of the set of all isotopy classes of the components of $\partial N(\alpha_{i} \cup \partial X)$ which are essential in X, where $N(\alpha_{i} \cup \partial X)$ is a regular neighborhood of $\alpha_{i} \cup \partial X$ in X.

2.3. (g, b)-bridge splittings. Let H be a genus-g (≥ 0) handlebody. We say that a set of n arcs $\{t_{1}, \ldots, t_{n}\}$ properly embedded in H is a set of trivial n arcs if $t_{1} \cup \cdots \cup t_{n}$ is parallel to ∂H. Let H be a handlebody and $\tau = \{t_{1}, \ldots, t_{n}\}$ a set of trivial n arcs in H. Then τ can be isotoped in H so that the projection from $\partial H \times [0, 1)$ to $[0, 1)$ has exactly one critical point in each t_{i}.

It is well known that every closed orientable 3-manifold M has a genus-g Heegaard splitting for some $g(\geq 0)$, i.e., $M = V_{1} \cup_{F} V_{2}$, where V_{1} and V_{2} are genus-g handlebodies.
such that $M = V_1 \cup V_2$ and $V_1 \cap V_2 = \partial V_1 = \partial V_2 = P$. Let L be a link in M. We say that $(V_1, \tau_1) \cup_P (V_2, \tau_2)$ is a (g, b)-bridge splitting (or (g, b)-splitting for short) for the pair (M, L) if P separates (M, L) into two components (V_1, τ_1) and (V_2, τ_2) where $\tau_1 = L \cap V_1$ (resp. $\tau_2 = L \cap V_2$) is a set of trivial b arcs in A (resp. B). Then we say that P is a (g, b)-bridge surface (or a bridge surface for short). It is known that each (M, L) has a (g, b)-bridge splitting for some g and b. (For a detailed discussion, see [5, Lemma 2.1]).

For $i = 1$ or 2, $D(V_i)$ denotes the subset of $C^0(\partial V_i - \tau_i)$ consisting of the vertices with representatives bounding disks in $V_i - \tau_i$. Then the (Hempel) distance of $(V_1, \tau_1) \cup_P (V_2, \tau_2)$ is defined by $d_P'(D(V_1), D(V_2))$, where $P' = \partial V_1 - \tau_1 = \partial V_2 - \tau_2$.

3. Extending Geodesics

Let F be a twice-punctured torus. The following two propositions can be shown by using arguments in the proof of [6, Propositions 4.1 and 4.4].

Proposition 3.1 (cf. [6, Proposition 4.1]). For an integer $n \geq 4$, let $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ be a path in $C(F)$ satisfying the following:

(H1) $[\alpha_0, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_n]$ are geodesics in $C(F)$,

(H2) $\text{diam}_{X_{n-2}}(\pi_{X_{n-2}}(\alpha_{n-4}), \pi_{X_{n-2}}(\alpha_n)) \geq 4n$, where X_{n-2} is the component of $C(F \setminus N(\alpha_{n-2}))$ that contains an essential simple closed curve.

Then $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ is a geodesic in $C(F)$.

Proposition 3.2 (cf. [6, Proposition 4.4]). For an integer $n \geq 3$, let $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ be a path in $C(F)$ satisfying the following:

(H1) $[\alpha_0, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_n]$ are geodesics in $C(F)$,

(H2') $\text{diam}_{X_{n-2}}(\pi_{X_{n-2}}(\alpha_0), \pi_{X_{n-2}}(\alpha_n)) \geq 2n$, where X_{n-2} is the component of $C(F \setminus N(\alpha_{n-2}))$ that contains an essential simple closed curve.

Then $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ is a geodesic in $C(F)$.

By using Propositions 3.1 and 3.2, we construct a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ in $C(F)$, i.e., $d_F(\alpha_0, \alpha_n) = n$, for a positive integer n.

3.1. A construction of a concrete example: the case when n is even. We first assume that n is even. Let α_0, α_2 be essential non-separating simple closed curves on F which intersect transversely in one point, and let α_1 be an essential simple closed curve on S which is disjoint from $\alpha_0 \cup \alpha_2$. Let $X_2 = C(F \setminus N(\alpha_2))$. Note that $[\alpha_0, \alpha_1, \alpha_2]$ is a geodesic of length two in $C(F)$. Choose a homeomorphism $f_2 : F \to F$ such that $f_2(N(\alpha_2)) = N(\alpha_2)$ and that $\text{diam}_{X_2}(\pi_{X_2}(\alpha_0), \pi_{X_2}(\alpha_2)) \geq 4n$. This is possible by [9, Proposition 4.6]. Let $\alpha_3 = f_2(\alpha_1)$ and $\alpha_4 = f_2(\alpha_0)$. Note that $[\alpha_2, \alpha_3, \alpha_4]$ is a geodesic of length two in $C(F)$ and α_2 intersects α_4 transversely in one point.

![Figure 2](image-url)
We repeat this process to construct a path \([a_0, a_1, \ldots, a_n]\) inductively as follows. Suppose that we have constructed a path \([a_0, a_1, \ldots, a_i]\) with \(|\alpha_{i-2} \cap \alpha_i| = 1\) for each even \(i(<n)\). Then let \(X_i = \text{Cl}(F \setminus N(\alpha_i))\). Choose a homeomorphism \(f_i : F \to F\) such that
\[f_i(N(\alpha_i)) = N(\alpha_i)\]
and that
\[\text{diam}_{X_i}(\pi_{X_i}(\alpha_{i-2}), \pi_{X_i}(f_i(\alpha_{i-2}))) \geq 4n.\]
Then we let \(\alpha_{i+1} = f_i(\alpha_{i-1})\) and \(\alpha_{i+2} = f_i(\alpha_{i-2})\). Note that \([\alpha_i, \alpha_{i+1}, \alpha_{i+2}]\) is a geodesic of length two in \(C(F)\), and we have obtained a path \([a_0, a_1, \ldots, a_{i+2}]\) with \(|\alpha_i \cap \alpha_{i+2}| = 1\).

Claim 3.3. For each \(k \in \{2, 4, \ldots, n\}\), the path \([a_0, a_1, \ldots, a_k]\) constructed above is a geodesic in \(C(F)\).

Proof. We prove the claim by mathematical induction on \(k\). It is clear that \([\alpha_0, \alpha_1, \alpha_2]\) is a geodesic in \(C(F)\). Hence, Claim 3.1 holds for \(k = 2\). Assume that \([\alpha_0, \alpha_1, \ldots, \alpha_k]\) is a geodesic in \(C(F)\) for some \(k \in \{2, 4, \ldots, n-2\}\). We note that \([\alpha_k, \alpha_{k+1}, \alpha_{k+2}]\) is a geodesic in \(C(F)\). Furthermore, by the inequality (1), we have
\[\text{diam}_{X_k}(\pi_{X_k}(\alpha_{k-2}), \pi_{X_k}(\alpha_{k+2})) \geq 4n > 4k.\]
Hence, by Proposition 3.1, the path \([\alpha_0, \alpha_1, \ldots, \alpha_{k+2}]\) is a geodesic in \(C(F)\), which shows that Claim 3.3 holds for \(k + 2\). This completes the proof of Claim 3.3.

3.2. A construction of a concrete example: the case when \(n\) is odd.

Suppose that \(n\) is odd. Let \(\alpha_2, \alpha_3\) be essential non-separating simple closed curves on \(F\) which are mutually disjoint. Let \(x\) be an essential simple closed curve which intersects \(\alpha_2\) and \(\alpha_3\) transversely in one point, respectively. Choose an essential simple closed curve \(y_1\) on \(F\) that is disjoint from \(\alpha_2\) and \(x\). Let \(X_2 = \text{Cl}(F \setminus N(\alpha_2))\). By [10, Proposition 4.6], there exists homeomorphism \(f_2 : F \to F\) such that
\[f_2(N(\alpha_2)) = N(\alpha_2)\]
and that
\[\text{diam}_{X_2}(\pi_{X_2}(\alpha_2), \pi_{X_2}(f_2(x))) > 2n.\]
Let \(\alpha_0 = f_2(x)\) and \(\alpha_1 = f_2(y_1)\). Note that \(\alpha_0 \cap \alpha_1 = \emptyset\), \(\alpha_1 \cap \alpha_2 = \emptyset\) and \(\alpha_0\) intersects \(\alpha_2\) transversely in one point, which implies that \([\alpha_0, \alpha_1, \alpha_2]\) is a geodesic in \(C(F)\). On the other hand, choose an essential simple closed curve \(y_2\) on \(F\) that is disjoint from \(\alpha_3\) and \(x\). Let \(X_3 = \text{Cl}(F \setminus N(\alpha_3))\). By [10, Proposition 4.6], there exists a homeomorphism \(f_3 : F \to F\) such that
\[f_3(N(\alpha_3)) = N(\alpha_3)\]
and that
\[\text{diam}_{X_3}(\pi_{X_3}(\alpha_3), \pi_{X_3}(f_3(x))) > 2n.\]
Let \(\alpha_4 = f_3(y_2)\) and \(\alpha_5 = f_3(x)\). Note that \(\alpha_3 \cap \alpha_4 = \emptyset\), \(\alpha_4 \cap \alpha_5 = \emptyset\) and \(\alpha_3\) intersects \(\alpha_5\) transversely in one point, which implies that \([\alpha_3, \alpha_4, \alpha_5]\) is a geodesic in \(C(F)\).

Claim 3.4. The path \([\alpha_0, \alpha_1, \ldots, \alpha_5]\) constructed above is a geodesic in \(C(F)\).
Proof. By Proposition 3.2 together with the inequality (2), the path $[\alpha_0, \alpha_1, \alpha_2, \alpha_3]$ is a geodesic. By Proposition 3.2 again together with the inequality (3), we see that the path $[\alpha_0, \alpha_1, \ldots, \alpha_5]$ is also a geodesic in $C(F)$. \hfill \Box

We extend the above geodesic $[\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5]$ as follows. Suppose that we have constructed a path $[\alpha_0, \alpha_1, \ldots, \alpha_i]$ for an odd integer i with $5 \leq i < n$. Let $X_i = C(F \cap N(\alpha_i))$. Then there exists a homeomorphism $f_i : F \to F$ such that $f_i(N(\alpha_i)) = N(\alpha_i)$ and that $\text{diam}_{X_i}(\pi_{X_i}(\alpha_{i-2}), \pi_{X_i}(f_i(\alpha_{i-2}))) \geq 4n$. Let $\alpha_{i+1} = f_i(\alpha_{i-1})$ and $\alpha_{i+2} = f_i(\alpha_{i-2})$. Note that $[\alpha_i, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic in $C(F)$ and that α_i intersects α_{i+2} transversely in one point. By Proposition 3.1, the path $[\alpha_1, \alpha_2, \ldots, \alpha_{i+2}]$ is a geodesic in $C(F)$. We repeat this process until we obtain a geodesic $[\alpha_1, \alpha_2, \ldots, \alpha_n]$ of length n. Note that α_{n-2} intersects α_n transversely in one point.

4. PROOF OF THEOREM 1.1

Basically we mimic the proof of [6, Theorem 1.1]. For $i = 1, 2$, let V_i be a solid torus and t_i a trivial arc properly embedded in V_i. The following assertion is proved by Saito [11, Proposition 3.8].

Assertion 4.1. Let D_i be an essential disk in $V_i - t_i$ as in Figure 4. Then any non-separating essential disk in $V_i - t_i$ is isotopic to D_i and any separating essential disk in $V_i - t_i$ can be isotoped to be disjoint from D_i.

![Figure 4](image)

Let $P = \partial V_1$. Then starting with a geodesic $[\alpha_0(= \partial D_1), \alpha_1, \alpha_2]$ in $C(P - t_1)$ with $|\alpha_0 \cap \alpha_2| = 1$, we construct a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_{n+2}]$ with $|\alpha_n \cap \alpha_{n+2}| = 1$ as in Subsections 3.1 and 3.2. We glue ∂V_1 and ∂V_2 by a homeomorphism $h : \partial V_1 \to \partial V_2$ such that $h(\partial t_1) = \partial t_2$ and $h(\alpha_{n+2}) = \partial D_2$. Then the argument in the proof of [6, Theorem 1.1], together with Assertion 4.1, enables us to show that the distance of the (1,1)-bridge splitting $(V_1, t_1) \cup_F (V_2, t_2)$ is exactly n.

REFERENCES

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY

E-mail address: eaa.ido@cc.nara-wu.ac.jp

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY

E-mail address: yeonheejang@cc.nara-wu.ac.jp

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY

E-mail address: tsuyoshi@cc.nara-wu.ac.jp