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1. Introduction. The purpose of this note is to announce my recent results in [8] with
T. Fukui. Refer to [8] for details.

Let $f:(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ which defines a surface (possibly with
singularities) in $\mathbb{R}^{3}$ . We define families $H:(\mathbb{R}^{2},0)\cross S^{2}arrow \mathbb{R}$and $D:(\mathbb{R}^{2},0)\cross \mathbb{R}^{3}arrow \mathbb{R}$ offunctions
on $f$ by

$H(u, v,w)=\langle f(u, 1,),w\rangle$ , and $D(u, n,p)=\Vert p-f(u, v)\Vert^{2}-t^{2},$

respectively, where $S^{2}$ is a unit sphere in $\mathbb{R}^{3},$
$\langle,$ $\rangle$ denotes the dot product in $\mathbb{R}^{3}$ and $t\in \mathbb{R}\backslash \{O\}.$

We define $h_{w}(u, lJ)=H(u, \iota,,w)$ and $d_{p}(u, \iota,)=D(\mathcal{U}, l),p)$ , which are the heightfunction on $f$

in the direction wand the distance squaredfiunction on $f$ from the point $p$ , respectively. The
family $H$ is a 2-parameter unfolding of $h_{w}$ , and the family $D$ is 3-parameter unfolding of $d_{p}.$

The analysis of the contact of a submanifold with degenerate objects (lines, planes, circles,
spheres, etc.) is important to understand geometric properties of the submaifold. The con-
tacts of a surface in $\mathbb{R}^{3}$ with planes and spheres are measured by singularities of the height
functions $h_{w}$ and the distance squared functions $d_{p}$ on the surface, respectively. By using
these kinds of techniques of the contacts, several researchers have studied the differential
geometry of submanifolds in Euclidean space (see, for example [2, 3, 5, 15, 22]) and other
ambient spaces.

FIGURE. 1: The Whitney umbrella, $(u, v)arrow(u, uv, v^{2})$

H. Whitney [26] showed that smooth maps of $\mathbb{R}^{2}$ into $\mathbb{R}^{3}$ can have a singularity which are
not avoidable by small perturbation. This singularity is called Whitney umbrella or cross-
cap (Figure 1). Since ffie 珂珂 hitney umbrella is a stable singularity, it is natural to seek its
geometry. The extrinsic differential geometry of the 珂珂 hitney umbrella is investigated in
[4, 6, 7, 9, 10, 19, 20, 21, 24, 25], and in [11] its intrinsic properties are considered. It is shown
for instance in [4, 25] that there are generically two types ofWhitney umbrellas, labeled hy-
perbolic Whitney umbrella and elliptic珂珂 hitney umbrella (Figure 2), and ffiese are character-
ized by the singularity type oftheirparabolic set in the source. The change from an elliptic to
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a hyperbolic Whitney umbrella occurs at a parabolic Whitney umbrella. In [6, 7], the singu-
larities of the height and distance squared functions on Whitney umbrellas were studied in
terms of its differential geometric properties via a blowing up. In [6], the singularities of sec-
tions ofthe $\mathcal{W}$hitney umbrella by planeswere studied and we showed the analogous theorem
of $J$ . A. Montaldi [17] for Whitney umbrellas. In [7], the criteria of singularities ofwave-fronts
and caustics of the Whitney umbrellawere obtained, and the focal conic of the Whitney um-
brella was introduced, which is the counterpart of focal points ofsmooth surfaces (Figure 2).

The (generic) type of the focal conic determines the (generic) type of the Whitney umbrella,
and vice-versa.

FIGURE. 2: The three types of the Whitney umbrella and their focal conics: hyperbolic Whitney um-
brella (left), parabolic Whitney umbrella (center), elliptic Whitney umbrella (right).

In [16], D. Mond showed that every $\mathscr{A}$ -simple germ of a map from a 2-manifold to a3-
manifold is equivalent to one of the germs in Table 1.

TABLB 1.
Name Normal form $\mathscr{A}$ -codim.

Immersion $(u, \iota,,0)$ $0$

Whitney umbrella $(S_{0})$ $(u, v^{2}, uv)$ 2
$S_{k}^{\pm} (u, v^{2}, v^{3}\pm u^{k+1}v), k\geq 1 k+2$

$B_{k}^{\pm}C_{k}^{\pm} (u, v^{2},u^{2}v\pm v^{2k+1}),k\geq 2 kk:_{2}2$
$(u, v^{2}, u^{2}v\pm v^{k}v), k\geq 3$

$F_{4} (u, v^{2}, u^{3}v+v^{5}) 6$

$\frac{H_{k}k+.2}{(Whenkiseven,S_{k}^{+}isequivalenttoS_{k}^{-},andC_{k}^{+}toC_{k}^{-})}$

$(u, uv+u^{3k-1}, v^{3}), k\geq 2$

It is also of interest to investigate the singularities of the height and distance squared func-
tions on singular surfaces defined by $f:(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ with $\mathscr{A}$ -simple $singu4$arities more
degenerate than the Whimey umbrella (see Table 1). Our main objective is to investigate the
relations between the differential geometric properties of singular surfaces which have one
of $S_{k},$ $B_{k},$ $C_{k}$ , or $F_{4}$ singularity (shown in Table 1) and singularities of the height and distance
squared functions on these singular surfaces. Work in the direction ofthe understanding the
differential geometry of singular surfaces with a singularity of corank 1 was carried out, for
instance, in [11, 13, 14, 21].
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2. Preliminaries. In order to analyze the differential geometry of a surface, relevant pa-
rameterization of the surface are essential. The Whitney umbrella case was obtained in [25]
(see also [7]).

Proposiuon 2$.1$ . Let $f:(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a map-germ ofcorank 1 at the origin. Then, after
using rotations in the target and changes ofcoordtnates in the source, we can reduce $j^{k}f(0,0)$

to

$(u, \frac{1}{2}\iota^{2}+\sum_{i=2}^{k}\frac{b_{i}}{i!}u^{i}, \frac{1}{2}a_{20}u^{2}+\sum_{i+j=3}^{k}\frac{a_{ij}}{i!j!}u^{i}v^{j})$ (2.1)

if$j^{2}f(0,0)$ is $\mathscr{A}$ -equivalent to $(u, \iota)2,0)$ , or

$(u, uv+ \sum_{i=3}^{k}\frac{b_{i}}{i!}v^{i}, \frac{1}{2}a_{20}u^{2}+\sum_{i+j=3}^{k}\frac{a_{ij}}{l!j!}u^{i}v^{j})$ (2.2)

if$j^{2}f(0,0)$ is $\mathscr{A}$ -equivalent to $(u, un,0)$ .

Proposition 2.2. Let $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ ofcorank 1 and let $j^{k}f(0,0)$

be given in theform (2.1). $77len$ the conditionsfor $f$ to $be\mathscr{A}$ -equtnalent to $S_{k},$ $B_{k},$ $C_{k}orF_{4}$ are
as follows:

$S_{1}$ : $a_{21}\neq 0,$ $a_{03}\neq 0,$

$S_{k\geq 2}$ : $a_{21}=\cdots=a_{k,1}=0,$ $a_{k+1,1}\neq 0,$ $a_{03}\neq 0,$

$B_{2}$ : $a_{03}=0,$ $a_{21}\neq 0,3a_{05}a_{21}-5a_{13^{2}}\neq 0,$

$B_{k\geq 3}$ : $a_{03}=0,$ $a_{21}\neq 0,3a_{05}a_{21}-5a_{13^{2}}=0,$

$\xi_{3}=\cdots=\xi_{k-1}=0, \xi_{k}\neq 0,$

$C_{k}$ : $a_{03}=0,$ $a_{21}=\cdots=a_{k-1,1}=0,$ $a_{k,1}\neq 0,$ $a_{13}\neq 0,$

$F_{4}$ : $a_{03}=0,$ $a_{21}=0,$ $a_{31}\neq 0,$ $a_{13}=0,$ $a_{05}\neq 0,$

where $\xi_{m}$ depends on the $(2m+1)-iet$ ofthe third component of(2.1).

Remark2.3. Each of these criteria of Proposition 2.2 includes the condition that

$a_{21}\neq 0$ or $a_{m,1}=0(2(\leq m\leq n),$ $a_{n+1,1}\neq 0$ for some $n$ . (2.3)

Let $f:(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ of corank 1 at the origin $0$ . At the singular
point $0$ , the tangent plane degenerates to aline, that is, the image of $(df)_{0}$ is aline, which is
the tangent line. The plane passing through the singular point $0$ perpendicular to the tangent
line is called the normal plane. There exists non-zero vector $\eta\in T_{0}\mathbb{R}^{2}$ such that $(df)_{0}(\eta)=0.$

We call $\eta$ the null vector (cf. [12, 23]). $A$ regular plane curve in the parameter space passing
through $(0,0)$ whose tangent vector is transverse to $\eta$ is called a tangential curve. Let $\gamma(t)$ be
the parameterization of a tangential curve with $7(0)=(0,0)$ . Clearly, $f\circ\gamma$ is tangent to the
tangent line of $f$ at the singular point $0$ . If $j^{2}f(0,0)$ is $\mathscr{A}$ -equivalent to $(u, v^{2},0)$ , then there
exists a plane passing through the singular point $0$ spanned by the tangent line and $\eta\eta f(0,0)$ ,
where $\eta\eta f$ is the twice times directional derivative of $f$ with respect to $\eta$ . We call the plane
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the principal plane. We remark that the definitions of the tangent line, normal plane and
principal plane are independent of the choice of coordinates on the source. Let $j^{2}f(0,0)$ be
$\mathscr{A}$ -equivalent to $(u, \iota^{2},0)$ . The singular point $0$ is a inflection point if $f\circ\gamma$ have at least 3-
point contact (inflectional tangent) with the principal plane at $0$ . We denote $\Gamma$ by a family
of tangential curves $\gamma.$

$A$ member $\Gamma_{0}$ of the family is a characteristic tangential curve if the
curvature, of the projection of $f\circ\Gamma_{0}$ to the principal plane, at $0$ has the extremum value $\kappa_{0}.$

Note that tangential curves tangent to the characteristic tangential curve are characteristic
tangential curves. If the singularpoint $0$ is a inflection point, the singular point $0$ is a degener-
ate inflection point if $\kappa_{0}=0$ . We remark that the definitions of the inflection and degenerate
inflection points are independent of the choice of the coordinates on the Source. We also
remark that the ways of definitions of the inflection and degenerate inflection points differ
here from those in [21].

FIGURE. 3: The tangent line, the normal plane and the principal plane of $S_{1}^{-}$ (left) and $S_{1}^{+}$ (right).

Proposition 2.4. Let $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ of corank 1 at the origin,
and let $j^{k}f(0,0)$ be given in the form (2.1). Then the origin is an inflection (resp. degenerate
inflection) point ifand only if$a_{20}=0$ $($ resp. $a_{20}=b_{2}=0)$ . Moreover, tangential curves tangent
to $\partial_{u}$ at $(0,0)$ are the characteristic tangential curves.

Let $f:(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ of corank 1 at the origin, and let $j^{k}f(0,0)$

be given in the form (2.1) with the assumption (2.3). We set the map $\Pi_{n+1};\mathbb{R}\cross S^{1}arrow \mathbb{R}^{2}$ with

$\Pi_{n+1}(r,\theta)=(r\cos\theta,r^{n+1}\cos^{n}\theta\sin\theta) (n=1 if a_{21}\neq 0)$ .

The unit normal vector $\tilde{n}=n\circ\Pi_{n+1}$ of $f$ in $(r,\theta)$ is extendible near the exceptional set $\{(r,\theta)\in$

$\mathbb{R}xS^{1}|r\cos\theta=0\}$ and

$\tilde{n}(0,\theta)=\frac{(0,-a_{n+1,1}\cos\theta,(n+1)!\sin\theta)}{\mathscr{A}(\theta)},$

where $\mathscr{A}(\theta)=\sqrt{(a_{n+11}\cos\theta)^{2}+((n+1)!\sin\theta)^{\angle}}$. The principal curvatures $\tilde{\kappa}_{i}=\kappa_{i}\circ\Pi_{n+1}$ of $f$

in $(r,\theta)$ are expressed as follows:

$\tilde{\kappa}_{1}(r,\theta)=\frac{-a_{n+1,1}b_{2}\cos\theta+(n+1)!a_{20}\sin\theta}{\mathscr{A}(\theta)}+O(r)$ ,

$\tilde{\kappa}_{2}(r,\theta)=\frac{1}{r^{2n+2}}(\frac{-((k+1)!)^{2}a_{n+1,1}}{\cos^{2n-1}\theta \mathscr{A}(\theta)^{3}}+O(r))$ .
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The vector $v_{i}=(N-\kappa_{i}G)\partial_{u}-(M-\kappa_{i}F)\partial_{v}(t=1,2)$ is a principal vector relative to $\kappa_{i}$ . The
principal vectors $\tilde{v}_{i}$ in $(r,\theta)$ are given by

$\tilde{v}_{1}=(-\frac{a_{n+1,1}}{\mathscr{A}(\theta)}+O(r))\partial_{r}$

$+(- \frac{a_{n+2,1}\cos^{2}\theta\sin\theta+(n+2)(n+1)!a_{12}\cos\theta\sin^{2}\theta}{(n+2)\mathscr{A}(\theta)}+O(r))\partial_{\theta},$

$\tilde{v}_{2}=-\frac{(n+1)!a_{n+1,1}(a_{20}a_{n+1,1}\cos\theta+(n+1)!b_{2}\sin\theta)\cos^{2-n}\theta}{\mathscr{A}(\theta)^{3}r^{2n+1}}$

$((\sin\theta r+O(r^{2}))\partial_{r}+(\cos\theta+O(r))\partial_{\theta})$ .
We can describe the asymptotic behavior of the ridge and sub-parabolic curves. Here, the
ruge (resp. sub-parabolic) curve is the locus of points where one principal curvature has an
extremum along lines of the same (resp. other) principal curvature. It is known that the ridge
and sub-parabolic curves of a regular surface in $\mathbb{R}^{3}$ correspond, respectively, to the cuspidal
edges and parabolic set of caustics of the surface (see, for instance [3, 18]).

3. Singularities ofheight hmcuons. Even at a singular point of a singular surface $f$ , we
can define, in the parameter space, the parabolic set of $f$ as the zero set of

$(\langle f_{uu},f_{u}\cross f_{U}\rangle\langle f_{vv/}f_{u}\cross f_{v}\rangle-\langle f_{uv},f_{u}xf_{U}\rangle^{2})(u, \iota,)$.
The parabolic set of $f$ has a $\sin\varphi$]arity The singularities of the parabolic set of singular
surfaces with one of $\mathscr{A}$ -simple singularities of $\mathscr{A}_{e}$ -codim. $\leq 3$ are investigated in [21].

Theorem 3.1. Let a smooth map-germ $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be $\mathscr{A}$ -equtvalent to one of$S_{k},$ $B_{k},$

$C_{k}$ or $F_{4}$ singularity, and let the origin be not tnflection point.

(1) There is a branch $P$, ofthe parabolic set of$f$, which is a chamcteristic tangential curve.
(2) Let $\mathscr{L}(t)$ be a parameterization $ofP$ on $f$ wtth $\mathscr{L}(0)=(0,0,0)$ , and let $b(t)$ and $\tau(t)$

denote by the unit binormal vector and the torsion of$\mathscr{L}(t)$ , respectively. Then the height
$fi4$nction h on $f$ in $w=\pm b(0)$ has a singularity at $(0,0)$ oftype

$A_{2}\Leftrightarrow\tau(0)\neq 0$

$A_{3}=\tau(0)=0, \tau’(0)\neq 0,$

$A_{\geq 4}\Leftrightarrow\tau(0)=\tau’(0)=0.$

(3) The bmnch $P$ has at least $m$ -point contact with $tts$ tangent ltne at (0,0), where $m$ is as
shown in thefollowing table:

For Whitney umbrellas, an analogs theorem was obtained in [21]. Ifwe replace the assump-
tion that the origin is not inflection point with the assumption that the origin is degenerate
inflection point and $\hat{\gamma}$ has 3-point contact with the principal plane at the origin, Theorem3
holds except that $h_{w}$ on $f$ in $w=\pm b(0)$ does not have an $A_{2}$ singularity at (0,0).
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4. Singularities ofdistance squared iunctions. Let $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-
germ of corank 1 at the origin $0$ , and let $j^{2}f(O,0)$ be $\mathscr{A}$ -equivalent to $(u, v^{2},0)$ . The locus
of points $p$ where the distance squared function $d_{p}$ has a degenerate singularity at (0,0) is
called the focal locus. The focal locus can be considered as an anal$0$gy of the focal conic of
Whitney umbrellas (cf. [7, Lemma 3.3]).

Theorem 4.1. Letf: $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ be a smooth map-germ ofcorank 1 at the origin $0$ , and
letj2$f(0,0)$ be $\mathscr{A}$ -equivalent to $(u, v^{2},0)$ .

(1) The origin is not an inflection point ifand only if the focal locus is a pair of two inter-
secting lines (a unique line and a line).

(2) The origin is a non-degenerate inflection point if and only if the focal locus is a two
parallel lines (a unique line and a line).

(3) The origin is a degenerate inflection point ifand only ifthen thefocal locus is a unique
line.

FIGURE. 4: Focal loci of $S_{1}^{+}.$

Wave-fronts are described by Huygens’s principle as follows: The wave-frontofa surface
at a instant is the envelope of spherical wavelets from points on the surface at the instant.
Even if a surface is smooth its wave-fronts in general have singularities. The caustic of a
surface is the envelope of the normal rays to the surface. The caustic can be thought of the
set of the singularities of all wave-fronts. The wave-front and caustic of a surface are the
discriminant and bifurcation sets of the family $D$ of the distance squared function $d_{p}$ on the
surface, respectively.

Theorem 4.2. Assume that $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{3},0)$ is a smooth map-germ ofcorank 1 at the origin
whose $k-jetj^{k}f(0,0)$ is given in the form (2.1). Moreover, let $f$ be $\mathscr{A}$ -equtvalent to one of$S_{k},$

$B_{k},$ $C_{k}$ or $F_{4}$ singularity, and let the origin be not degenerate inflection point. The singular-
ities offronts and caustics off at $p= \tilde{n}(0,\theta)\int\tilde{\kappa}_{1}(0,\theta)(cos\theta\neq 0)$ are shown in Table 2 and 3,
respectively.

TABLE 2. Singularities offronts.
$\frac{conditionfor(0,\theta)singularity}{notrugerelati\nu eto\tilde{v}_{1}cuspidaledge}$

lst ridge relative $to\tilde{v}_{1},$

swallowtail
notsub-parabolic relative $to\tilde{v}_{2}$
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TABLB 3. Singularities ofcaustics.
$\frac{conditionfor(0,\theta)singularity}{notridgerelati\iota_{!}/eto\tilde{v}_{1}non-singular}$

lstridge relative $to\tilde{v}_{1}$ cuspidal edge
Here, $(0,\theta)$ is $a$ lst ridge relative $to\tilde{v}_{1}$ ifthe ridge curve relative $to\tilde{v}_{1}$ is transverse $to\tilde{v}_{1}$ at $(0,\theta)$ .
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