<table>
<thead>
<tr>
<th>Title</th>
<th>ON CONFLUENT HYPERGEOMETRIC FUNCTIONS AND REAL ANALYTIC SIEGEL MODULAR FORMS OF DEGREE 2 (Automorphic Representations and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MIYAZAKI, TAKUYA</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2013), 1871: 48-53</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195471</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>

Note: The table contains information about a mathematical research paper, including the title, authors, citation details, and publication information. The paper is titled "On Confluent Hypergeometric Functions and Real Analytic Siegel Modular Forms of Degree 2." It is associated with the Departmental Bulletin Paper of Kyoto University.
ON CONFLUENT HYPERGEOMETRIC FUNCTIONS AND REAL ANALYTIC
SIEGEL MODULAR FORMS OF DEGREE 2

TAKUYA MIYAZAKI

We consider a vector-valued version of the confluent hypergeometric functions on the real symplectic groups, [11]. We characterize their vanishing in certain cases in Section 1, and give them another expressions of Fourier-Jacobi type in Section 2. They are applied to study Fourier-Jacobi expansions of certain real analytic Eisenstein series and also to construct a real analytic Siegel modular form.

1. VANISHING OF INTEGRALS

Let \(G \) be the real symplectic group of degree \(n \) with a maximal compact subgroup \(K \simeq U(n) \). We put \(\mu_g(i) = C i + D \) for \(g = \begin{pmatrix} C & D \\ \ast & \ast \end{pmatrix} \in G \) with \(i = \sqrt{-1}1_n \). Let \(\varphi(x) \) be a polynomial on complex symmetric matrices \(x \in S(\mathbb{C}) \) of size \(n \), and let \(\ell \) be an even integer. Then we define a function \(\varphi_{\ell}(g,s) := \det(\mu_g(i))^{-\ell^2} \det(\overline{\mu_g(i)})^{-\ell^2} \varphi(\mu_g(i)^{-1} \mu_g(\overline{i})) \) of \(g \in G \) and \(s \in \mathbb{C} \). A natural action of \(K \) on \(S(\mathbb{C}) \), and hence on \(\varphi(x) \), shows that \(\varphi_{\ell}(g,s) \) defines a \(K \)-finite vector in \(I_P(s) \), a degenerate principal series representation induced from the Siegel maximal parabolic subgroup \(P \) of \(G \).

For a real symmetric nonsingular \(n \) by \(n \) matrix \(B \in S(\mathbb{R}) \) we define an integral

\[
W_B(g,s)(\varphi_{\ell}) := \int_{S(\mathbb{R})} e^{-\operatorname{tr}(Bx)} \varphi_{\ell}(w_2n(x)g,s) dx
\]

with \(e(t) = e^{2\pi it} \), \(w_2 := \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix} \) and \(n(x) := \begin{pmatrix} 1_n \\ 0_n \\ 1_n \end{pmatrix} \). This is the confluent hypergeometric function associated with \(\varphi_{\ell}(g,s) \in I_P(s) \).

If the parameter \(s \) is specialized to an integer, then \(I_P(s) \) will become reducible. In that case we can obtain a vanishing criterion of (1.1) depending on each \(\varphi_{\ell}(g,s) \in I_P(s) \) and the signature \((p,q)\) of \(B \in S(\mathbb{R}) \). A typical example of this can be stated as following. Assume that \(n = 2 \) and that \(\varphi(x) \) belongs to an irreducible \(U(2) \)-module of highest weight \((r,0)\) with an even integer \(r \geq 0 \). We understand \(\det(x) \) is of weight \((2,2)\). In particular \(\varphi_{\ell}(g,s) \) is of weight \((r - \ell, -\ell)\).

Proposition 1.1 ([6], [14]). Let \(n = 2 \) and \(s = d + 1 \) with a positive even integer \(d \). Assume that \(\varphi \) is of weight \((r,0)\). Then \(W_B(g,d+1)(\varphi_{\ell}) \) is vanishing in the following cases.

(i) \(r - \ell < d \) and \(-\ell \leq -d \), and \((p,q) = (2,0)\).

(ii) \(r - \ell \geq d \) and \(-\ell \leq -d \), and \((p,q) = (0,2)\) or \((2,0)\).

(iii) \(r - \ell \geq d \) and \(-\ell > -d \), and \((p,q) = (0,2)\).

As the complements we can prove that \(W_B(g,d+1)(\varphi_{\ell}) \neq 0 \) if \(r - \ell \geq d \) and \(-\ell \leq -d \), and \((p,q) = (1,1)\), for example. For results in higher degrees, see [7].
Proof. The proof proceeds as follows. It suffices to discuss the vanishing of
\[(1.2) \int_{S(\mathbb{R})} e(-\text{tr}(Bx)) \det(\epsilon(x))^{-\frac{d-r+\ell+1}{2}} \det(\epsilon(x))^{-\frac{d-\ell+1}{2}} \varphi(\epsilon(x)^{-1} \overline{\epsilon(x)}) dx, \quad \epsilon(x) = 1_{2} - ix.\]

Here we remark \(\epsilon(x)^{-1} \overline{\epsilon(x)} = 2\epsilon(x)^{-1} - 1_{2}\). Then the following lemma is crucial.

Lemma 1.2 (A generalized binomial expansion formula). Assume \(\varphi\) is of weight \((r_1, r_2)\). Then
\[\varphi(1_{2} + x) = \sum_{(r'_1, r'_2)} \varphi_{r'_1, r'_2}(x),\]
where \(\varphi_{r'_1, r'_2}(x)\) is a polynomial belonging to the \(U(2)\)-module of weight \((r'_1, r'_2)\) with \(0 \leq r'_1 \leq r_1\) and \(0 \leq r'_2 \leq r_2\).

This can be proved by constructing a basis of \(U(2)\)-modules by using Jack polynomials of two variables. Then the above binomial expansion is reduced to the corresponding property of Jack polynomials which was established by Lassalle [5], Kaneko [3]. See Yokokawa [14] for details, and [7] for the proof in higher degree case.

According to the lemma, (1.2) can be written as a sum of
\[(1.3) \int_{S(\mathbb{R})} e(-\text{tr}(Bx)) \det(\epsilon(x))^{-\frac{d+r+\ell+1}{2}} \det(\epsilon(x))^{-\frac{d-r+\ell+1}{2}} \varphi_{r'_1, 0}(\epsilon(x)^{-1}) \psi(\epsilon(x)^{-1} \overline{\epsilon(x)}) dx\]
with \(r'_1 \leq r_1\). Each of these integrals can be studied by following the arguments by Shimura [11] and [12], Proposition 3.1. It implies indeed that (1.3) are vanishing for all \(r'_1 \leq r_1\) and \(-\ell \leq -d\) and \((p, q) = (2, 0)\), for example. Thus the vanishing of (1.2) is concluded in this case. On the other hand, (1.2) can be rewritten in another form as
\[(1.2) = \int_{S(\mathbb{R})} e(-\text{tr}(Bx)) \det(\epsilon(x))^{-\frac{d+r+\ell+1}{2}} \det(\epsilon(x))^{-\frac{d-r+\ell+1}{2}} \varphi_{r'_1, 0}(\epsilon(x)^{-1}) dx\]
with an appropriate \(\psi\) of weight \((r, 0)\). By repeating the previous arguments, this expression yields that (1.2) is vanishing if \(r - \ell \geq d\) and \(-\ell \leq -d\) and \((p, q) = (0, 2)\). This combined with the above gives the assertion in (ii) of the proposition. \(\square\)

2. Expressions of Fourier-Jacobi Type

Let us take \(\varphi = 1\) of weight \((0, 0)\) for brevity, and put \(s = d + 1\) and \(\ell = d\) in (1.1). Then we have
\[(1.1) = \det(a)^{2-d} \int_{S(\mathbb{R})} e(-\text{tr}(B[a]x)) \det(\epsilon(x))^{-\frac{1}{2}} \det(\epsilon(x))^{-d-\frac{1}{2}} dx\]
when \(g = m(a) := \begin{pmatrix} a & 0_2 \\ 0_2 & a^{-1} \end{pmatrix}\), \(a = \left(\begin{array}{cc} \sqrt{v} \\ \sqrt{v'} \end{array} \right) \in \text{GL}_2(\mathbb{R})\), \(v, v' > 0\) and \(q \in \mathbb{R}\). Also let us put coordinates on \(x \in S(\mathbb{R})\) as \(x = \begin{pmatrix} u' & p \\ p & u \end{pmatrix}\).

Assume that \(B\) is of the form \(B = \begin{pmatrix} 1 & 0 \\ \ell & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda n \\ \frac{1}{n} & 1 \end{pmatrix} \) with \(\lambda = 0\) or \(\frac{1}{2}\) and \(\ell, n \in \mathbb{Z}\) (index 1) and is nondegenerate.
Proposition 2.1. With the above setting (2.1) is equal to
\[
(2\pi v')^{d+1} e^{-2\pi v'}(2\pi v)^{d+1} \int_0^\infty e^{-4\pi \sqrt{}}t \Omega(4\pi|\det(B)|v, 4\pi(\frac{q}{v} + \ell + \lambda)^2v; \frac{1+t}{1+t})(1+t)^{-\frac{d}{2}}-dt,
\]
when \(\det(B) = n - \lambda^2 < 0\). On the other hand, it is vanishing, when \(\det(B) > 0\). Here we are defining
\[
\Omega(x,y;w) := (1-w)^{\frac{1}{2}}\exp(-\frac{x+y}{2})\sum_{\kappa=0}^{\infty}\frac{\Gamma(\kappa+1)}{\Gamma(d+\frac{1}{2}+\kappa)}L_{\kappa}^{d-z^{1}}(x)L_{\kappa}^{-z}(y)w^{\kappa},
\]
with \(|w| < 1\) using the Laguerre polynomials \(L_{\kappa}^{v}(z)\).

We note that \(\nu^{d}eL_{\kappa}^{d-z^{1}}(4\pi|\det(B)|v)\) is the Whittaker functions of the antiholomorphic discrete series representation \(\overline{\pi}_{d+^{1}2}\) of \(\overline{SL_{2}}(\mathbb{R})\) of \(SO(2)-\)type (= weight) \(-d-\frac{1}{2}-2\kappa\), and its product with \(\mathcal{V}t_{e^{-2\pi(_{v}^{q}+\ell+\lambda)^{2_{\mathcal{V}}}}L_{\kappa}^{-S}}(4\pi(_{v}^{q}+\ell+\lambda)^{2}v)\), which is of weight \(\frac{1}{2}+2\kappa\), gives the Whittaker function of weight \(-d\) belonging to a discrete series representation of the real Jacobi group. This means that \((2\pi v')^{\frac{d+1}{2}}\Omega(4\pi|\det(B)|v, 4\pi(\frac{q}{v} + \ell + \lambda)^2v; \frac{1+t}{1+t})\) is a generating series of Whittaker functions of weight \(-d\) on the real Jacobi group. Moreover, we should remark the generalized Hille-Hardy formula [Erdélyi 1, Rangarajan 9, and Srivastava 13]:
\[
\Omega(x,y;w) = \Gamma(d+\frac{1}{2})^{-1}\exp(-\frac{x+y}{2}\cdot\frac{1+w}{1-w})\Phi_{3}(d,d+\frac{1}{2};\frac{xw}{1-w}, \frac{xyw}{(1-w)^{2}}),
\]
where \(\Phi_{3}(\beta, \gamma,X, Y)\) is an Humbert’s confluent hypergeometric function, [2], Vol. I, p.225, (22). Then we can estimate the right hand side, cf. Shimomura [10], which is essential to verify the convergence of the integral expression in the proposition.

3. A SCALAR VALUED EISENSTEIN SERIES

We can apply the local formula in Proposition 2.1 to study the Fourier-Jacobi expansion of a scalar-valued Eisenstein series. Define at every finite prime \(p\)
\[
\Lambda_p(n(x_p)m(a_p)k_p) := |\det(a_p)|_{p}^{d+1}
\]
with \(n(x_p)m(a_p) \in P(\mathbb{Q}_p)\) and \(k_p \in G(\mathbb{Z}_p)\), and
\[
\Lambda_{\infty}(g_{\infty}) = \det(\mu_{g_{\infty}}(i))^{-z}\det(\overline{\mu_{g_{\infty}}(i)})^{-d-z}1l
\]
with an even integer \(d \geq 4\). We set \(\Lambda(g) := \Lambda(\infty)\Pi_p\Lambda_p(g_p), g \in G(A)\), and define
\[
E(g) := \sum_{\gamma \in P(\mathbb{Q})\backslash G(\mathbb{Q})} \Lambda(\gamma g).
\]
It is a scalar valued Eisenstein series. We set \(g = n(x_{\infty})m(a_{\infty})\Pi_p k_p\) with \(x_{\infty} = \left(\begin{array}{ll}u' & p \\ p & u\end{array}\right)\) and \(a_{\infty} = \left(\begin{array}{ll}q/\sqrt{v} & 0 \\ \sqrt{v} & \sqrt{v}\end{array}\right)\), and consider the Fourier-Jacobi expansion
\[
E(g) = \sum_{m \in \mathbb{Z}} \text{FJ}_m(\tau, z; v' + \frac{q^2}{v})e(mu'), \quad \tau = u + iv, \quad z = p + iq.
\]
Proposition 3.1. Let $m = 1$. Then there exists a family $\{ \phi^\kappa_1(\tau, z) : \kappa = 0, 1, 2, \ldots \}$ of real analytic Jacobi form of index 1 and weight $-d$ satisfying the following properties.

(i) $\phi^0_1(\tau, z)$ is a skew holomorphic Jacobi Eisenstein series of index 1 and weight $-d$.
(ii) $\phi^\kappa_1(\tau, z)$ is obtained by differentiating $\phi^0_1(\tau, z)$ by k times.
(iii) The generating series

$$
\phi^\Sigma_1(\tau, z; w) := (1 - w)^{\frac{1}{2}} \sum_{\kappa=0}^\infty \frac{\Gamma\left(\kappa + 1\right)}{\Gamma\left(d + \frac{1}{2} + \kappa\right)} \phi^\kappa_1(\tau, z) w^\kappa, \quad |w| < 1
$$

converges absolutely.
(iv) The coefficient $\text{FJ}_1(\tau, z; v + \frac{2}{\tau})$ of index 1 is equal to

$$
(2\pi v')^{d+1} e^{-2\pi v'} \int_0^\infty e^{-4\pi t'} \phi_{\Sigma 1}\left(\frac{\tau}{1+t'}, \frac{z}{1+t}\right) \left(1+t\right)^{-\frac{1}{2}d^2 - \frac{1}{2}d} dt.
$$

This result refines Kohnen's limit formula, [4]. Also by applying suitable operator, (3.1) yields a description of every coefficient of a positive index. As concerns the coefficients of negative indices we will meet another ingredient that did not appear in the case of positive index.

4. Vector-valued Siegel modular forms

One can generalize the results in Section 3 to a vector-valued Eisenstein series. We take a polynomial belonging to the $U(2)$-module $V(d)$ of weight $(2d, 0)$ and put

$$
\Lambda_{\infty}(g_\infty)(\varphi) := \varphi_d(g_\infty, d + 1)
$$

using the notation in Section 1. Then we set $\Lambda(g)(\varphi) := \Lambda_{\infty}(g_\infty)(\varphi) \prod_p \Lambda_p(g_p)$ and define

$$
E(g)(\varphi) := \sum_{g \in \Gamma(\mathbb{Q}) \backslash G(\mathbb{Q})} \Lambda(g)(\varphi).
$$

This belongs to the $U(2)$-module of weight $(d, -d)$ according to the right K-translation.

Proposition 1.1 implies that the Siegel-Fourier expansion of (4.1) is supported on those B of signature $(1, 1)$, and besides, $(1, 0)$, $(0, 1)$, and $B = 0_2$. Now we are concerned with the Fourier-Jacobi expansion. Then it turns out that this vector valued Eisenstein series has suitable symmetry for its coefficients of positive and negative indices and that we can treat them in a parallel way. Indeed, the coefficient of indices ± 1 can be described by suitably modifying the expressions (3.1). Besides these, we can also describe the coefficient of index 0, thus the Fourier-Jacobi expansion of $E(g)(\varphi)$ is understood well explicitly. See [8] for the details.

Our method can be extended to study other Siegel-type Fourier series of degree 2. Keep that φ varies in $V(d)$ and consider $W_B(g)(\varphi) := W_B(g, d + 1)(\varphi_d)$ defined in (1.1). Besides it, let $h(\tau)$ be a cusp form of weight $d + \frac{1}{2}$ for $\Gamma_0(4)$ that corresponds to a normalized cuspidal eigenform of weight $2d$ for $\text{SL}_2(\mathbb{Z})$ by Shimura correspondence. Consider its Fourier expansion

$$
h(\tau) = \sum_{\ell=1}^\infty c(\ell)e(\ell\tau).
$$
Let us define

\[F(g_{\infty}k; \varphi) := \sum_{B} F_B(g_{\infty}k)(\varphi) \text{ for } g_{\infty}k \in G(\mathbb{R}) \prod_p G(\mathbb{Z}_p), \]

where the coefficients \(F_B(g_{\infty}k; \varphi) \) are determined by

(i) If \(D_B := -\det(2B) > 0 \), then

\[F_B(g_{\infty}k; \varphi) := \left(\sum_{t | e_B} t^d c \left(\frac{e_B}{t^2} \right) \right) D_B^{1-d} W_B(g_{\infty})(\varphi), \]

where \(e_B := \gcd(m, r, n) \) for \(B = \begin{pmatrix} m & r/2 & n \\ 0 & 0 & 0 \end{pmatrix} \) with \(m, n, r \in \mathbb{Z}. \)

(ii) If \(D_B < 0 \), or if \(\text{rank}(B) = 1 \), then \(F_B(g_{\infty}k; \varphi) := 0. \)

(iii) If \(B = 0_2 \), then

\[F_{0_2}(g_{\infty}k; \varphi) := \sum_{0 \neq \ell \in \mathbb{Z}} \left(\sum_{t | \ell} t^{d-1} c \left(\frac{\ell}{t^2} \right) \right) |\ell|^{1-2d} W_{\ell}(g_{\infty})(\varphi), \]

where we put

\[W_{\ell}(g_{\infty})(\varphi) := \int_0^\infty e(-\ell s) \int_0^\infty \Lambda_{\infty} \left(w_1 n \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right) m \begin{pmatrix} 0 & 1 \\ 1 & s \end{pmatrix} g_{\infty} \] \[dtds \]

with \(w_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}. \)

The compact group \(K \cong U(2) \) acts on \(\{ F(g_{\infty}k; \varphi) \mid \varphi \in V(d) \} \) by the right translation, which has the weight \((d, -d)\). Using our local formulas we can rewrite (4.2) into a series of Fourier-Jacobi type and study its transformation property for the action of Jacobi group. Then we get the following result by repeating the argument in the holomorphic case, [15].

Theorem 4.1 ([8], Theorem 9.4). For every \(\varphi \in V(d) \) (4.2) satisfies

\[F(\gamma g_{\infty}k; \varphi) = F(g_{\infty}k; \varphi) \]

for all \(\gamma \in \text{Sp}(2, \mathbb{Z}), \) thus it defines a real analytic Siegel modular form of degree 2.

References

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI, YOKOHAMA 223-8522, JAPAN

E-mail address: miyazaki@math.keio.ac.jp