<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Superstring Theory and Triple Systems (Algebra and Computer Science)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Sato, Matsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1873: 114-121</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195507</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Superstring Theory and Triple Systems

Matsuo Sato

Department of Natural Science, Faculty of Education, Hirosaki University
Bunkyo-cho 1, Hirosaki, Aomori 036-8560, Japan

1 Introduction

It has been expected that there exists M-theory, which unifies string theories. In M-theory, some structures of 3-algebras were found recently. First, it was found that by using $u(N) \oplus u(N)$ Hermitian 3-algebra, we can describe a low energy effective action of N coincident supermembranes [1-5], which are fundamental objects in M-theory.

Second, recent studies have indicated that there also exist structures of 3-algebras in the Green-Schwartz supermembrane action, which defines full perturbative dynamics of a supermembrane. It had not been clear whether the total supermembrane action including fermions has structures of 3-algebras, whereas the bosonic part of the action can be described by using a tri-linear bracket, called Nambu bracket [6,7], which is a generalization of Poisson bracket. If we fix to a light-cone gauge, the total action can be described by using Poisson bracket, that is, only structures of Lie algebra are left in this gauge [8]. However, it was shown under an approximation that the total action can be described by Nambu bracket if we fix to a semi-light-cone gauge [9]. In this gauge, the eleven dimensional space-time of M-theory is manifest in the supermembrane action, whereas only ten dimensional part is manifest in the light-cone gauge. Moreover, 3-algebra models of M-theory itself were proposed and have been studied in [9-13].

The hermitian (ϵ, δ)-Freudenthal-Kantor triple systems [14-36] are generalizations of the hermitian 3-algebras [1-9,37-71]. The hermitian 3-algebras are special cases, where $K(a,b) = 0$ or equivalently, $<abc> = -<cba>$, of the hermitian $(-1,-1)$-Freudenthal-Kantor triple systems of second order. And the hermitian 3-algebras are classified into the $u(N) \oplus u(M)$ and $sp(2N) \oplus u(1)$ hermitian 3-algebras [13,43,45,46,52]. Therefore, it is natural to extend these triple systems to more general hermitian $(-1,-1)$-Freudenthal-Kantor triple systems or hermitian generalized Jordan triple systems.

In the following section, we summarize some results concerning with the generalization of the hermitian 3-algebras in M-theory [72,73].

2 Definitions

Let us start with a definition of a $^*-(\epsilon, \delta)$-Freudenthal-Kantor triple system.

Definition. A triple system U is said to be a $^*-(\epsilon, \delta)$-Freudenthal-Kantor triple system if relations (0)-(iv) satisfy;

0) U is a Banach space,
\[L(a, b), L(c, d) = L(<abc>, d) + \epsilon L(c, <bad>), \]
where \(L(a, b)c = <abc> \) and \(K(a, b)c = <acb> - \delta <bca> \), \(\epsilon = \pm 1 \), \(\delta = \pm 1 \).

\[K(<abc>, d) + K(c, <abd>) + \delta K(a, K(c, d)b) = 0, \]
where \(<xyz> \) is \(C \)-linear operator on \(x, z \) and \(C \)-anti-linear operator on \(y \).

\[<abc > \] continuous with respect to a norm \(|| \) that is, there exists \(K > 0 \) such that
\[|| <xxx> || \leq K||x||^3 \] for all \(x \in U \).

Furthermore, a \(*-\langle \epsilon, \delta \rangle \)-Freudenthal-Kantor triple system is said to be hermitian if it satisfies the following condition,

v) all operator \(L(x, y) \) is a positive hermitian operator with a hermitian metric
\[(x, y) = tr L(x, y), \]
that is, \((L(x, y)z, w) = (z, L^*(x, y)w) \), and \((x, y) = \overline{(y, x)}. \)

Let \(U \) be a \(*-\langle \epsilon, \delta \rangle \)-Freudenthal-Kantor triple system. Then we may define the notation of tripotent as follows.

Definition. It is said to be a tripotent of \(U \) if
\[<ccc> = c, c \in U. \]

3 Tripotent basis

In this section, we give decomposition theorems based on the tripotent basis.

Theorem 1.1. Let \(U \) be a hermitian \((-1, \delta) \)-Freudenthal-Kantor triple system. If \(W \subset U \) is flat (that is, \(L(x, y) = L(y, x) \) for all \(x, y \in W \)), then we have a decomposition,
\[W = Re_1 \oplus \cdots \oplus Re_n \]
where \(e_i \) are tripotents or bitripotents.

Proof. See [72,73].

We define the odd power of \(x \) inductively as follows;
\[x^{(3)} := <xxx>, \]
\[x^{(2n+1)} := <xx^{(2n-1)}x>. \]

By using this theorem, we have

Theorem 1.2. Let \(U \) be a hermitian \((-1, \delta) \)-Freudenthal-Kantor triple system. Then every \(x \in U \) can be written uniquely
\[x = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_ne_n, \]
where the \(e_i \) are tripotents or bitripotents, which are linear combinations of power of \(x \), and the \(\lambda_i \) satisfy
\[0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n. \]

Proof. See [72,73].
4 Peirce decomposition

In this section, we give a theorem on a Peirce decomposition of a $^*\!\!\!\!\!\!\!\!(−1, −1)$-Freudenthal-Kantor triple system equipped with the tripotent $<ccc >= c$.

Theorem 2.1. Let U be a $^*\!\!\!\!\!\!\!\!(−1, −1)$-Freudenthal-Kantor triple system. Then, we have a decomposition with respect to a tripotent c (i.e., $<ccc >= c$) as follows

$$U = U_1(c) \oplus U_{\frac{1}{2}}(c) \oplus U_0(c),$$

where

$$U_1(c) = \{x | (L(c, c) + R(c, c))x = 0, (R(c, c) - Id)x \neq 0\},$$

$$U_{\frac{1}{2}}(c) = \{x | (L(c, c) + R(c, c))x \neq 0, (R(c, c) - Id)x = 0\},$$

$$U_0(c) = \{x | (L(c, c) + R(c, c))x = 0, (R(c, c) - Id)x = 0\}.$$

Proof. See [72, 73].

5 Generalized hermitian 3-algebra

In this section, we extend the $u(N) \oplus u(M)$ 3-algebras to a hermitian $(-1, -1)$-Freudenthal-Kantor triple system.

Let $D_{N,M}^*$ be the set of all $N \times M$ matrices with operation

$$<xyz> = x\overline{y}^Tz - z\overline{y}^Tx + zx^T\overline{y},$$

where x^T and \overline{x} mean transpose and conjugation of x, respectively.

Then $D_{N,M}^*$ is a hermitian $(-1, -1)$-Freudenthal-Kantor triple system. In fact, it satisfies the conditions (0), (i),(ii),(iii),(iv) and (v). This is an extension of the $u(N) \oplus u(M)$ hermitian 3-algebra, $<xyz> = x\overline{y}^Tz - z\overline{y}^Tx$, which is a basis for the effective action of the multiple membranes in M-theory.

One of the tripotents is given by

$$c = \begin{pmatrix} Id & 0 \\ 0 & 0 \end{pmatrix},$$

where Id is a $n \times n$ identity matrix ($n \leq N, M$). Because any element is decomposed as

$$x = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \left(\frac{1}{2}(A - A^T) & B \\ 0 & D \right) + \left(\frac{1}{2}(A + A^T) & 0 \\ C & 0 \right),$$

the Peirce decomposition is given by

$$U_1(c) = \left\{ \left(\frac{1}{2}(A - A^T) & B \\ 0 & D \right) \right\},$$

$$U_{\frac{1}{2}}(c) = \left\{ \left(\frac{1}{2}(A + A^T) & 0 \\ C & 0 \right) \right\},$$

$$U_0(c) = \{0\}.$$

As in Theorem 1.1, we can expand any element as $x = \Sigma(\lambda_{ij}E_{ij} + \mu_{ij}\sqrt{-1}E_{ij})$, where E_{ij} means that (i, j) element is 1 and other element is zero, and E_{ij} and $\sqrt{-1}E_{ij}$ are tripotents, i.e., $<E_{ij}E_{ij}E_{ij}> = E_{ij}$, and $<\sqrt{-1}E_{ij}\sqrt{-1}E_{ij}\sqrt{-1}E_{ij}> = \sqrt{-1}E_{ij}$.
References

[27] K. Meyberg, Lecture on algebras and triple systems, Lecture Notes, the Univ. of Virginia, 1972.

[57] A. Gustavsson, S-J. Rey, Enhanced N=8 Supersymmetry of ABJM Theory on R(8) and R(8)/Z(2), arXiv:0906.3568 [hep-th].

