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Some questions on the real numbers *
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Friends of main, who are specialists in functional analysis, asked me some
questions on the real numbers and real functions. Some are easy to answer and
some are not.

1 Queer additive functions

Let f : R — R be a real function. f is additive, if

f@+y) = f(z)+ f(v)

for all z,y € R. It is well known that there is a non-linear (thus, discontinuous)
additive real function. Now, the first question is

Question 1.1. Is there a discontinuous additive real function f satisfying
f(V2z) = V2 ()
forallz e R?

The following is a general answer to this question.

Theorem 1.2. Let A be a set of real numbers such that the field K = Q(A)
generated by A over Q is not equal to R. Then, there is a discontinuous additive
function f satisfying

floz) = o f(z) (1)

foralla € A and z € R.

Proof. Let {e;};cr be a K-linear base of R. Let f : R — R be a K-linear
mapping such that f(e;) = 0 and f(e;) =1 for ¢,j € I with i # j. Then, fis a
discontinuous additive function satisfying (1). O

The next queer question is

*This is a final version and will not appear elsewhere.
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Question 1.3. Is there a nonzero additive real function f satisfying
f(V2z) = V3 f(2)
forallz e R ?

More generally, for real numbers «, 8 and a real function f, consider the

property
C(a,B): f(az)=pFf(z) forallzeR.

Question 1.4. Is there a nonzero additive real function f satisfying C(«, 8)
for real numbers a # 3 7

If both o and B are transcendental, or algebraic with the same minimal
polynomial over Q, the substitution & — J induces an isomorphism ¢qp :
Q(a) = Q(B) of fields. We have

¢aﬁ(af(a)) = ﬁf(,B) = ,@¢aﬁ(f(a))

for any f(a) € K = Q(a). Let L be a K-subspace of R such that R = K & L.
Extend ¢os : K — Q(B) C R to an additive map ® : R — R by defining
®|x = dap and ®|r = 0. Then, P satisfies C(c, §).

Theorem 1.5. For o, 8 € R. there is a nonzero additive function ® satisfying
the condition C(a, B), if and only if

(i) both o and B are transcendental, or

(1) o and B are algebraic with the same minimal polynomial over Q.

Proof. The above discussion shows the sufficiency of the condition for the exis-
tence of f satisfying C(a, ).

Conversely, let f be a nonzero additive function with property C(a, 8). Since
the additive function f is Q-linear, for any p(X) = ag+a1 X ++ - -+an X" € Q[X]
(a; € Q) and for any z € R, we have

f(p(a) - z) = ag®(z) + a1 f(o-x) + -+ an f(a” - )
=ao f(z) +a1 8- f(z) + - +anB" - f(2)

= p(B) - f(=).
Hence, If p(a) = 0, then p(8) = 0 because f(x) # O for some . Similarly,
p(B) = 0 implies p(a) = 0. Thus, (i) or (ii) in the theorem holds. O

This problem has arisen from a research on stability of additive functions
(Oda et al. [6]). The problem was already studied in Aczél [2].

2 Continuous semi-(group) structures on R,

The following question is very naive:



Question 2.1. Is the multiplication only the continuous group operation on
the space R, of positive real numbers?

For a homeomorphism ¢ from R, onto R;. define an operation * on R4 by

zxy=¢""(4(z) - () ()

for z,y € Ry. Then, (R4, %) is a topological group. The following is a positive
answer to the question (Aczél [1]).

Theorem 2.2. The operation defined as (2) is the only way to make Ry a
topological group.

More generally we have

Theorem 2.3. There are exactly three essentially distinct continuous cancella-
tive semigroup operations on Ry. They are the ordinary multiplication -, the
ordinary addition +, and the operation x defined by

cxy=z+y+1

forz,y € Ry.

Let S = (R4, *) be a topological semigroup, that is, * is a continuous with
respect to the ordinary topology of Ry. Suppose that S is cancellative. Then,
for any x € S the left transformation L, (L;(y) =z *y for y € S) and the right
transformation R, (R.(y) = y * z) are monotone. L, cannot be decreasing,
otherwise, L, (y) = y for some y € S, which implies z = e (the identity element)
and L, is strictly increasing. Similarly R, is strictly increasing. This discussion
implies that .S is an ordered semigroup.

An element z € S is positive (resp. negative) if z* x> z (resp. T *xz < )
Let P (resp. Q) be the set of positive (resp. negative) elements of S. P and Q
are open subsets of .S because z * £ — = is a continuous function.

If S has no idempotent, then S = P U @, but since R, is connected, éither
S = P or S = Q@ holds. Suppose that S = P. Then any x € S is positive and
we have an increasing sequence {z™*} in S, where ™ is the n-th power of z
with respect *. If lim, oo 2™ = £ € S, then £ * & = lim,,00 2™ = £. But
this cannot happen because S has no idempotent. Hence, lim,, o 2™ = +00.
Thus, for another y € S, there is n > 0 such that 2™ > y. So, S is a positively
Archimedean semigroup.

For a positively Archimedean semigroup S and a fixed element a € S, we
define a function ¢, : S — R by

do(z) = inf{m/n|m,n > 0,a™ > z™*}

for z € §. Then, ¢ is a ordered homomorphism from S to the additive semigroup
of positive real numbers (see Fuchs [4], Holder [5]). Moreover, it is continuous
and injective (Craigen & Pales [3]).
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When S is negatively Archimedean, the function ¢/ defined by
¢ (z) = inf{m/n|m,n > 0,a™ < 2™}

for ¢ € S is an injective order-reversing continuous homomorphism from S to
(R-H +)

Let po = inf{¢p.(z)|z € S}. If ug = 0, then ¢, is an isomorphism from .S
to (R4, +) of ordered topological semigroups. If u, > 0, then @,/pa — 1 is an
isomorphism from S to (R4, %),

If S has an idempotent e, it is the identity element. Then we have S =
Pu{e}UQ, where P = {z € S|z > e} is a positively Archimedean semigroup
and Q = {z € S|z < e} is a negatively Archimedean semigroup. Let z € S.
Because limy,_, o Z * @™ = lim, 00 a™* = +00 for a € P and limp 0 T * 0™ =
lim,_yoo ™ = —o0 for b € Q, L, and R, are unbounded above and below. It

follows that S is a group.
Let a € P and a™* be the inverse of a. Define a function ® : S — R by

da(z) ifzeP
O(z)=<0 ifz=e
—-¢>;_*(m) if z€Q.

Then, ® is an isomorphism from S to (R, +), and expo® is an isomorphism
from S to (R4, "), where exp: R — R, is the exponential map.
In this way we get Theorems 2.2 and 2.3.

3 Subfields of R

Question 3.1. Is there a subfield K of R such that R is finite dimensional
over K7

Proposition 3.2. There is no subfield K of R such that dimg R = 2.
Proof. Suppose that a (> 0) € K, /a ¢ K and R = K(y/a). Then,

va=z+yva

for some z,y € K. Hence,

Vva = z? + 2zyv/a + ya.

It follows that
z? + yza =0, 2zy = 1.

But, this is impossible in R because a > 0. O

In view of this calculation, I suspect that the answer to the question might
be negative.
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