Leray’s problem on D-solutions to the stationary Navier-Stokes equations past an obstacle

Horst Heck
Department of Engineering and Information Technology
Bern University of Applied Sciences
CH-3400 Burgdorf, Switzerland
horst.heck@bfh.ch

Hyunseok Kim
Department of Mathematics
Sogang University
Seoul, 121-742, Korea
kimh@sogang.ac.kr

Hideo KOZONO
Department of Mathematics
Waseda University
Tokyo 169-8555, Japan
kozono@waseda.jp

Introduction.

Let Ω be an exterior domain in \mathbb{R}^3 with smooth boundary $\partial\Omega \in C^\infty$. We consider the stationary Navier-Stokes equations in Ω:

\[
\begin{cases}
-\Delta u + u \cdot \nabla u + \nabla p = f \quad \text{in } \Omega, \\
\text{div } u = 0 \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial\Omega, \\
u(x) \to u^\infty \quad \text{as } |x| \to \infty,
\end{cases}
\]

(N-S)

where $u = u(x) = (u_1(x), u_2(x), u_3(x))$ and $p = p(x)$ denote the unknown velocity vector and the unknown pressure at $x = (x_1, x_2, x_3) \in \Omega$, while $f = f(x) = (f_1(x), f_2(x), f_3(x))$ is the given external force, and $u^\infty = (u_1^\infty, u_2^\infty, u_3^\infty)$ is the prescribed constant vector in \mathbb{R}^3 at infinity. In the pioneer work of Leray [14], it was shown that for every $f \in \dot{H}^{-1,2}(\Omega) \equiv \dot{H}_0^{1,2}(\Omega)^*$ and for every $u^\infty \in \mathbb{R}^3$, there exists at least one weak solution u of (N-S) with $\int_\Omega |\nabla u(x)|^2 dx < \infty$ such that

\[
\int_\Omega |u(x) - u^\infty|^q dx < \infty.
\]

Here and in what follows, $\dot{H}_0^{1,q}(\Omega)$ denotes the closure of $C_0^\infty(\Omega)$ with respect to the homogeneous norm $\|\nabla u\|_{L^q}$ for $1 < q < \infty$. Leray named such a weak solution u a D-solution of (N-S) because it has a finite Dirichlet integral in Ω. The asymptotic behavior of D-solution u at infinity had been improved by Finn [3], Fujita [4] and Ladyzhenskaya [13] in such a way that $u(x) \to u^\infty$ uniformly as $|x| \to \infty$.
provided f has a compact support in Ω. In his paper [14], Leray proposed the problem whether every D-solution u satisfies the energy identity

\[(EI) \quad \int_{\Omega} \nabla u \cdot \nabla (u - a) \, dx + \int_{\Omega} u \cdot \nabla a \cdot (u - a) \, dx = \langle f, u - a \rangle \]

for all $a \in C^1(\bar{\Omega})$ such that div $a = 0$ in Ω, $a|_{\partial \Omega} = 0$, $a(x) \equiv u^\infty$ for all $x \in \Omega$ satisfying $|x| \geq R$ with some large $R > 0$. Here $\langle \cdot, \cdot \rangle$ denotes the duality pairing of $H^{-1,2}(\Omega)$ and $H_0^{1,2}(\Omega)$. The second important question is a uniqueness problem of D-solutions. It is still an open question whether there exists a small constant δ such that if $\|f\|_{\dot{H}^{1,2}} + |u^\infty| \leq \delta$, then the D-solution u of (N-S) is unique. This is so-called a uniqueness theorem of D-solutions for arbitrary small given data $f \in \dot{H}^{-1,2}(\Omega)$ and $u^\infty \in \mathbb{R}^3$.

In this article, we shall give final affirmative answers to these two questions provided $u^\infty \neq 0$. It should be noted that the corresponding results to those in the case $u^\infty = 0$ are still open questions. See e.g., Nakatsuka [15]. There is another notion of physically reasonable(PR) solutions introduced by Finn [2], [3]. We call the solution u of (N-S) physically reasonable if it holds

\[(PR) \quad u(x) - u^\infty = O(|x|^{-\alpha}) \quad \text{as} \quad |x| \to \infty \]

for some $\alpha > 1/2$. If u is a PR-solution of (N-S) with $f \in C_0^\infty(\Omega)$, then u behaves like

\[(WR) \quad u(x) - u^\infty = O(|x|^{-1}(1 + s_x)^{-1}), \quad s_x \equiv |x| - \frac{x \cdot u^\infty}{|u^\infty|} \quad \text{as} \quad |x| \to \infty, \]

which exhibits a parabolic wake region behind the obstacle. It had been shown by Finn [3] that in the case when $f \in C_0^\infty(\Omega)$, every PR-solution u becomes necessarily a D-solution. The converse assertion was treated by Babenko [1] who proved that if $f \equiv 0$, then every D-solution u of (N-S) satisfies (PR) with $\alpha = 1$. As a result, it turns out that every D-solution with $f \equiv 0$ has a parabolic wake region such as (WR). Later on, Galdi [6], [7], [8], [9] and Farwig [5] succeeded to handle more general f by introducing anisotropic weight functions, and obtained more precise asymptotic behavior of u than (WR) in the class of PR-solutions. Furthermore, Kobayashi-Shibata [11] showed the stability of PR-solutions for small f and u^∞ in terms of the Oseen semi-group in L^p-spaces.

1 Results.

Before stating our results, let us introduce some notation and then give our definition of D-solutions of (N-S). $C_0^\infty(\Omega)$ is the set of all C^∞-vector functions $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ with compact support in Ω, such that div $\varphi = 0$. For $1 < q < \infty$, $L^q(\Omega)$ stands for all L^q-summable vector functions on Ω with the norm $\| \cdot \|_{L^q}$. We denote by $\langle \cdot, \cdot \rangle$ the duality paring between $L^q(\Omega)$ and $L^{q'}(\Omega)$, where $1/q + 1/q' = 1$. $\dot{H}_0^{1,q}(\Omega)$ denotes the closure of $C_0^\infty(\Omega)$ with respect to the homogeneous norm $\| \nabla \varphi \|_{L^q}$, where $\nabla \varphi = (\frac{\partial \varphi_i}{\partial x_j})$, $i, j = 1, 2, 3$. $\dot{H}^{1,q}(\Omega)$ is the dual space of $\dot{H}_0^{1,q}(\Omega)$, and $\langle f, \phi \rangle$ denotes the duality pairing between $f \in \dot{H}^{-1,q}(\Omega)$ and $\phi \in \dot{H}_0^{1,q}(\Omega)$. Finally, for $u^\infty \in \mathbb{R}^3$, we define the space $A(u^\infty)$ by

$$A(u^\infty) \equiv \{ a \in C^1(\bar{\Omega}); \text{div} \ a = 0, a|_{\partial \Omega} = 0, a(x) \equiv u^\infty \quad \text{for all} \quad x \in \mathbb{R}^3 \quad \text{satisfying} \quad |x| > R \}$$
Our definition of D-solutions to (N-S) reads as follows.

Definition. Let $f \in \dot{H}^{-1,2} (\Omega)$ and $u^\infty \in \mathbb{R}^3$. A measurable function u on Ω is called a D-solution of (N-S) if the following conditions (i), (ii) and (iii) are satisfied.

(i) $\nabla u \in L^2 (\Omega)$ with div $u = 0$ in Ω and $u = 0$ on $\partial \Omega$;
(ii) $u(\cdot) - u^\infty \in L^6 (\Omega)$;
(iii) it holds that

$$ (E) \quad (\nabla u, \nabla \varphi) + (u \cdot \nabla u, \varphi) = \langle f, \varphi \rangle \quad \text{for all } \varphi \in C^\infty_{0, \sigma} (\Omega). $$

Remark. For every D-solution u of (N-S), there exists a unique scalar function $p \in L_{loc}^2 (\Omega)$ up to an additive constant such that

$$ (E') \quad (\nabla u, \nabla \phi) + (u \cdot \nabla u, \phi) + (p, \text{div } \phi) = \langle f, \phi \rangle \quad \text{for all } \phi \in C^\infty (\Omega). $$

Our first result on the energy identity (EI) now reads:

Theorem 1.1 Assume that $f \in \dot{H}^{-1,2} (\Omega)$ and $u^\infty \in \mathbb{R}^3$ with $u^\infty \neq 0$. Then every D-solution u of (N-S) satisfies

$$ (1.1) \quad (\nabla u, \nabla u) - (\nabla u, \nabla a) + (u \cdot \nabla a, u - a) = \langle f, u - a \rangle \quad \text{for all } a \in A(u^\infty). $$

Moreover, if in addition $f \in H^{-1,2} (\Omega) \cap L^q (\Omega)$ for some $1 < q < 2$, then it holds that

$$ (1.2) \quad \int_\Omega |\nabla u|^2 \, dx + u^\infty \cdot \int_{\partial \Omega} T(u, p) \cdot \nu \, dS = \langle f, u - u^\infty \rangle, $$

where $T(u, p) \equiv \left(\frac{\partial u_k}{\partial x_j} + \frac{\partial u_j}{\partial x_k} - \delta_{ij} p \right)_{1 \leq i, j \leq 3}$ denotes the stress tensor and where ν is the unit outer normal to $\partial \Omega$.

Remarks. (i) Galdi [8] and Farwig [5] showed a similar result to that of Theorem 1.1 under the assumption that $f \in H^{-1,2} (\Omega) \cap L^3 (\Omega) \cap L^3 (\Omega)$. On the other hand, for the validity of the energy identity (1.1), we do not need any condition on f except for $f \in H^{-1,2} (\Omega)$.

(ii) The corresponding problem for $u^\infty = 0$ is still open. Indeed, up to the present, the energy identity (1.1) is shown under the hypothesis that $u \in \dot{H}^{1,2} (\Omega) \cap L^{3,\infty} (\Omega)$, where $L^{q,r} (\Omega)$ denotes the Lorentz space on Ω. For instance, see Kozono-Yamazaki [12].

Next, we consider the uniqueness of D-solutions under the smallness assumption on the given data.

Theorem 1.2 There is a constant $\delta_1 = \delta_1 (\Omega) > 0$ such that if $u^\infty \neq 0$ and $f \in L^{-1,2} (\Omega)$ satisfy

$$ (1.3) \quad \|f\|_{H^{-1,2}} + |u^\infty| \leq \delta_1 |u^\infty|^\frac{1}{2}, $$

with some $R > 0$.

then there exists a unique D-solution \(u \) of (N-S). Moreover, such a solution \(u \) is necessarily subject to the estimate

\[
|u^\infty|^\frac{1}{4} \|u - u^\infty\|_{L^4} + \|\nabla u\|_{L^2} \leq C(\|f\|_{H^{-1,2}} + |u^\infty|),
\]

where \(C = C(\Omega) \).

Remarks. (i) Galdi [8] showed that if \(u^\infty \neq 0 \) and \(f \in L^\frac{6}{5}(\Omega) \cap L^\frac{3}{2}(\Omega) \) satisfy

\[
\|f\|_{L^\frac{6}{5}} + |u^\infty| \leq \delta_1,
\]

then there exists a unique D-solution. Since \(L^\frac{6}{5}(\Omega) \subset \dot{H}^{-1,2}(\Omega) \), our result covers that of Galdi [8]. Furthermore, we do not need any redundant assumption such as \(f \in L^\frac{3}{2}(\Omega) \). Hence, Theorem 1.2 seems to be a final answer to Leray's question on uniqueness of D-solutions for small data.

(ii) The case when \(u^\infty = 0 \), such a uniqueness result as in Theorem 1.2 is known in more restrictive situations. For instance, Nakatsuka [15] treated the case \(u^\infty = 0 \), and proved that for every \(3 < r < \infty \) there is a constant \(\delta = \delta(r) > 0 \) such that if \(\{u, p\} \) and \(\{v, q\} \) with \(\nabla u, \nabla v, p, q \in L^\frac{3}{2,\infty}(\Omega) \) satisfy \((E')\) and if

\[
\|u\|_{L^3,\infty} \leq \delta, \quad v \in L^3(\Omega) + L^r(\Omega),
\]

then it holds that

\[
\{u, p\} = \{v, q\}.
\]

In his result, it is necessary to assume the smallness of one solution \(u \) and some redundant regularity on another solution \(v \). It is still an open question whether any norm of solutions \(u \) of (N-S) with \(u^\infty = 0 \) can be controlled by \(f \). For details, we refer to Kim-Kozono [10].

2 Oseen equations.

In this section, we investigate the following Oseen equations.

\[
(Os) \quad \begin{cases}
-\Delta v + u^\infty \cdot \nabla v + \nabla \pi = f & \text{in } \Omega, \\
\text{div } v = 0 & \text{in } \Omega, \\
v = 0 & \text{on } \partial \Omega, \\
v(x) \to 0 & \text{as } |x| \to \infty.
\end{cases}
\]

Let us introduce the two function spaces \(\tilde{H}^{1,q}(\Omega) \) and \(\tilde{H}^{2,q}(\Omega) \) defined by

\[
\tilde{H}^{1,q}(\Omega) \equiv \{v \in L^\frac{4q}{4q-4}(\Omega); \nabla v \in L^q(\Omega)\}, \quad 1 < q < 4,
\]

\[
\tilde{H}^{2,q}(\Omega) \equiv \{v \in \tilde{H}^{1,\frac{4q}{4q-4}}(\Omega); \nabla^2 v \in L^q(\Omega)\}, \quad 1 < q < 2.
\]

Then we have the following results on unique solvability of \((Os)\).

Lemma 2.1 Let \(u^\infty \neq 0 \). Assume that \(1 < q_1, q_2 < 4 \). The solution \(\{v, \pi\} \in \tilde{H}^{1,q_1}(\Omega) + \tilde{H}^{1,q_2}(\Omega) \times L^1_{loc}(\Omega) \) of \((Os)\) is unique.
Lemma 2.2 (i) For $f \in H^{-1,q}(\Omega)$ with $\frac{3}{2} < q < 4$, there exists a unique solution $\{v, \pi\} \in H^{1,q}(\Omega) \times L^q(\Omega)$ of (Os). Moreover, for every $\frac{3}{2} < q < 3$ and every $M > 0$ there is a constant $C = C(q, M, \Omega)$ such that if $\{v, \pi\} \in \tilde{H}^{1,q}(\Omega) \times L^q(\Omega)$ is a solution of (Os) with $|u^\infty| \leq M$, then it holds that

$$k_1||v||_{L^{\frac{4q}{4-q}}} + ||\nabla v||_{L^q} + ||\pi||_{L^q} \leq C||f||_{H^{-1,q}},$$

where $k_1 \equiv \min\{1, |u^\infty|^\frac{1}{4}\}$.

(ii) For every $f \in L^q(\Omega)$ with $1 < q < 2$, there exists a unique solution $\{v, \pi\} \in \tilde{H}^{2,q}(\Omega) \times L^{q^*}(\Omega)$ of (Os) with $\nabla \pi \in L^q(\Omega)$, where $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{3}$. Moreover, for every $1 < q < \frac{3}{2}$ and every $M > 0$ there is a constant $C = C(q, M, \Omega)$ such that if $\{v, \pi\} \in \tilde{H}^{1,q}(\Omega) \times L^q(\Omega)$ is a solution of (Os) with $|u^\infty| \leq M$, then it holds that

$$k_2||v||_{L^{2q}} + k_1||\nabla v||_{L^{\frac{4q}{4-q}}} + ||\nabla^2 v||_{L^q} + ||\pi||_{L^{q^*}} + ||\pi||_{L^q} \leq C||f||_{L^q},$$

where $k_2 = k_1^2 \equiv \min\{1, |u^\infty|^\frac{1}{2}\}$.

3 Proof of Theorems.

The following lemma is based on Lemma 2.2 and plays a key role for the proof of Theorem 1.1.

Lemma 3.1 Let $u^\infty \neq 0$ and $f \in \dot{H}^{-1,2}(\Omega)$. Let u be a D-solution of (N-S).

(i) If in addition $f \in \dot{H}^{-1,2}(\Omega) \cap \dot{H}^{-1,q}(\Omega)$ for $\frac{4}{3} < q < 4$, then it holds that

$$u - u^\infty \in L^{\frac{4q}{4-q}}(\Omega), \quad u^\infty \cdot \nabla u \in \dot{H}^{-1,q}(\Omega),$$

$$\nabla u \in L^q(\Omega), \quad p - p^\infty \in L^q(\Omega) \quad \text{for some constant } p^\infty.$$

(ii) If in addition $f \in \dot{H}^{-1,2}(\Omega) \cap L^q(\Omega)$ for $1 < q < 2$, then it holds that

$$u - u^\infty \in L^{\frac{4q}{4-q}}(\Omega), \quad \nabla u \in L^{\frac{4q}{4-q}}(\Omega) \cap L^{\frac{4q}{3q}}(\Omega),$$

$$p - p^\infty \in L^{\frac{3q}{3q-2}}(\Omega) \quad \text{for some constant } p^\infty,$$

$$\nabla^2 u, \nabla p, u^\infty \cdot \nabla u \in L^q(\Omega).$$

By taking $q = 2$ in this lemma, we have

Corollary 3.1 Every D-solution u of (N-S) with $u^\infty \neq 0$ and $f \in \dot{H}^{-1,2}(\Omega)$ satisfies

$$u - u^\infty \in L^4(\Omega), \quad u^\infty \cdot \nabla u \in \dot{H}^{-1,2}(\Omega), \quad p - p^\infty \in L^2(\Omega)$$

for some constant p^∞.

To deal with the nonlinear term, we need

Proposition 3.1 Let $u, w \in \dot{H}_0^{1,2}(\Omega) \cap L^4(\Omega)$.

(i) If $u \in L^4(\Omega)$ with $\text{div} u = 0$ in Ω, then it holds that

$$(u \cdot \nabla v, w) = -(u \cdot \nabla w, v).$$

(ii) If $u^\infty \cdot \nabla v \in \dot{H}^{-1,2}(\Omega)$ and $u^\infty \cdot \nabla w \in \dot{H}^{-1,2}(\Omega)$, then it holds that

$$(u^\infty \cdot \nabla v, w) = -(u^\infty \cdot \nabla w, v),$$

$$(a \cdot \nabla v, w) = -(a \cdot \nabla w, v) \quad \text{for all } a \in A(u^\infty).$$
3.1 Proof of Theorem 1.1.

By Definition of D-solutions, we have

$$\langle f, \phi \rangle = (\nabla u, \nabla \phi) + (u \cdot \nabla u, \phi) - (p, \text{div} \phi)$$

(3.1)

$$= (\nabla u, \nabla \phi) + ((u-a) \cdot \nabla u, \phi) + (a \cdot \nabla u, \phi) - (p - p_\infty, \text{div} \phi)$$

for all $\phi \in C_0^\infty(\Omega)$. Since $C_0^\infty(\Omega)$ is dense in $\dot{H}^{1,2}_0(\Omega) \cap L^4(\Omega)$, we have

$$\langle f, \phi \rangle = (\nabla u, \nabla \phi) + ((u-a) \cdot \nabla u, \phi) + (a \cdot \nabla u, \phi) - (p - p_\infty, \text{div} \phi)$$

(3.2)

for all $\phi \in \dot{H}^{1,2}_0(\Omega) \cap L^4(\Omega)$. By Corollary 3.1 it holds that $u - a = u - u^\infty + u^\infty - a \in \dot{H}^{1,2}_0(\Omega) \cap L^4(\Omega)$. Hence, taking $\phi = u - a$ in (3.2), we have

$$\langle f, u - a \rangle = (\nabla u, \nabla (u - a)) + ((u-a) \cdot \nabla u, u - a) + (a \cdot \nabla u, u - a).$$

Furthermore by Proposition 3.1, it holds that

$$((u-a) \cdot \nabla u, u - a) + (a \cdot \nabla u, u - a)$$

$$= ((u-a) \cdot \nabla(u - a), u - a) + (a \cdot \nabla(u - a), u - a)$$

$$+ ((u-a) \cdot \nabla a, u - a) + (a \cdot \nabla a, u - a)$$

$$= (u \cdot \nabla a, u - a),$$

from which and (3.3) we obtain

$$\|\nabla u\|_{L^2}^2 - (\nabla u, \nabla a) + (u \cdot \nabla a, u - a) = \langle f, u - a \rangle.$$

This proves (1.1).

Assume in addition that $f \in \dot{H}^{-1,2}(\Omega) \cap L^q(\Omega)$ for some $1 < q < 2$. By Lemma 3.1 (ii), we have

$$-\Delta u + u \cdot \nabla u + \nabla p = f \quad \text{a.e. in } \Omega.$$

Note that

$$a - u^\infty \in C_0^\infty(\mathbb{R}^3), \quad a - u^\infty = 0 \quad \text{on } \partial \Omega.$$

By integration by parts, we have

$$\langle f, a - u^\infty \rangle = (-\Delta u + u \cdot \nabla u + \nabla p, a - u^\infty)$$

$$= (-\text{div} \left(T(u, p), a - u^\infty\right)) + (u \cdot \nabla u, a - u^\infty)$$

(3.4)

$$= (\nabla u, \nabla a) + u^\infty \cdot \int_{\partial \Omega} T(u, p) \cdot \nu dS - (u \cdot \nabla a, u).$$

Addition of (3.4) and (1.1) yields that

$$\|\nabla u\|_{L^2}^2 + u^\infty \cdot \int_{\partial \Omega} T(u, p) \cdot \nu dS - (u \cdot \nabla a, a) = \langle f, u - u^\infty \rangle.$$

(3.5)

Since supp ∇a is compact, we see easily

$$u \cdot \nabla a, a = 0,$$

from which and (3.5) we obtain the desired identity (1.2). This proves Theorem 1.1.
3.2 Proof of Theorem 1.2.

Step 1. We first show that there are constants \(\delta_* = \delta_*(\Omega) \) and \(C_*(\Omega) > 0 \) such that if

\[
\|f\|_{H^{-1,2}} + |u^\infty| \leq \delta_* |u^\infty|^\frac{1}{2},
\]

then every \(D \)-solution \(u \) of (N-S) satisfies

\[
|u^\infty|^\frac{1}{4} \|u - a\|_{L^4} + \|\nabla u\|_{L^2} \leq C_*(\|f\|_{H^{-1,2}} + |u^\infty|)
\]

for some \(a \in A(u^\infty) \). Indeed, taking \(0 < R_0 < R_1 < \infty \) and \(a \in A(u^\infty) \) in such a way that

\[
\Omega^c = \mathbb{R}^3 \setminus \Omega \subset B_{R_0}(0), \quad \text{supp } \nabla a \subset \{R_0 < |x| < R_1\}.
\]

we have

\[
\|a\|_{L^\infty} + \|\nabla a\|_{L^1 \cap L^\infty} \leq C|u^\infty|
\]

with \(C = C(\Omega) \). By (1.1), we see that

\[
\|\nabla u\|_{L^2}^2 = \langle f, u - a \rangle + (\nabla u, \nabla a) + (u \cdot \nabla a, u - a),
\]

from which and (3.8) with the aid of the Young inequality it follows that

\[
\|\nabla u\|_{L^2}^2 \leq \left(\frac{1}{2} + C|u^\infty|\right) \|\nabla u\|_{L^2}^2 + C\|f\|_{H^{-1,2}}^2 + C(|u^\infty|^2 + |u^\infty|^4).
\]

Hence, under the assumption

\[
|u^\infty| \leq \delta_*(1) = \min\{1, \frac{1}{4C}\},
\]

we have

\[
\frac{1}{4}\|\nabla u\|_{L^2}^2 \leq C\|f\|_{H^{-1,2}}^2 + C(|u^\infty|^2 + |u^\infty|^4)
\]

\[
\leq C(\|f\|_{H^{-1,2}}^2 + |u^\infty|^2),
\]

which yields that

\[
\|\nabla u\|_{L^2} \leq C(\|f\|_{H^{-1,2}} + |u^\infty|).
\]

Next, we show the bound of \(\|u - a\|_{L^4} \). Define \(v = u - a \), and we have by (3.8) and (3.9) that

\[
v \in H^1_0(\Omega), \quad \|\nabla v\|_{L^2} \leq C(\|f\|_{H^{-1,2}} + |u^\infty|),
\]

and that

\[
\begin{cases}
-\Delta v + u^\infty \cdot \nabla v + \nabla \pi = f - Q(v) \quad \text{in } \Omega, \\
\text{div } v = 0 \quad \text{in } \Omega, \\
v = 0 \quad \text{on } \partial \Omega, \\
v(x) \to 0 \quad \text{as } |x| \to \infty,
\end{cases}
\]

where

\[
Q(v) \equiv v \cdot \nabla v + (a - u^\infty) \cdot \nabla v + v \cdot \nabla a - \Delta a + a \cdot \nabla a.
\]
By (3.8) and (3.11), it holds that
\[
\|v \cdot \nabla v\|_{L^4} \leq \|v\|_{L^4} \|\nabla v\|_{L^2} \leq C(\|f\|_{H^{-1,2}} + |u^\infty|)\|v\|_{L^4}
\]
\[
\|Q(v) - v \cdot \nabla v\|_{H^{-1,2}}
= \|(a - u^\infty) \cdot \nabla v + v \cdot \nabla a - \Delta a \cdot \nabla v\|_{H^{-1,2}}
\leq C(\|\nabla v\|_{L^2} + |u^\infty|)
\leq C(\|f\|_{H^{-1,2}} + |u^\infty|).
\]

Hence, it follows from Lemma 2.1 and Lemma 2.2 with \(q = 2\) in (i) and with \(q = \frac{4}{3}\) in (ii) that
\[
\|v\|_{L^4} \leq C \left(\frac{1}{k_1} \|f - Q(v) - v \cdot \nabla v\|_{H^{-1,2}} + \frac{1}{k_2} \|v \cdot \nabla v\|_{L^4} \right)
\]
\[
\leq C \left(\frac{1}{k_1} (\|f\|_{H^{-1,2}} + |u^\infty|) + \frac{1}{k_2} (\|f\|_{H^{-1,2}} + |u^\infty|)\|v\|_{L^4} \right).
\]

Hence, under the assumption
\[
\frac{1}{k_2} (\|f\|_{H^{-1,2}} + |u^\infty|) \leq \delta_* \equiv \min\{\delta^{(1)}_*, \frac{1}{2C}\},
\]
we have
\[
\|u - a\|_{L^4} = \|v\|_{L^4} \leq C \left(\frac{1}{k_1} (\|f\|_{H^{-1,2}} + |u^\infty|) \right).
\]

Since the assumption (3.13) necessarily implies the assumption (3.9), we see by (3.10) and (3.14) that if
\[
\|f\|_{H^{-1,2}} + |u^\infty| \leq \delta_* |u^\infty|^\frac{1}{2},
\]
then it holds that
\[
|u^\infty|^\frac{1}{4} \|u - a\|_{L^4} + \|\nabla u\|_{L^4} \leq (\|f\|_{H^{-1,2}} + |u^\infty|),
\]
which implies (3.7)

Step 2. We next show uniqueness. Let \(u_1\) and \(u_2\) be two \(D\)-solutions of (N-S). Define \(v_1 = u_1 - a\) and \(v_2 = u_2 - a\) with \(a \in A(u^\infty)\) as in Step 1. Then \(v \equiv v_1 - v_2 = u_1 - u_2\) fulfills
\[
\begin{aligned}
-\Delta v + u^\infty \cdot \nabla v + \nabla \pi = & -v_1 \cdot \nabla v - v \cdot \nabla u_2 \quad \text{in } \Omega, \\
\text{div } v = & 0 \quad \text{in } \Omega, \\
v = & 0 \quad \text{on } \partial \Omega, \\
v(x) \to & 0 \quad \text{as } |x| \to \infty,
\end{aligned}
\]

Hence it follows from Lemmata 2.1 and 2.1 with
\[
f = -v_1 \cdot \nabla v = \text{div} (v_1 \otimes v) \quad \text{for } q = 2 \text{ in (i)},
\]
\[
f = -v \cdot \nabla u_2 \quad \text{for } q = \frac{4}{3} \text{ in (ii)}
\]
that
\[\|v\|_{L^4} \leq C \left(\frac{1}{k_1} \| \text{div} (v_1 \otimes v) \|_{H^{-1,2}} + \frac{1}{k_2} \| v \cdot \nabla u_2 \|_{L^4} \right) \]
\[\leq C \left(\frac{1}{k_1} \| v_1 \otimes v \|_{L^2} + \frac{1}{k_2} \| v \|_{L^4} \| \nabla u_2 \|_{L^2} \right) \]
\[\leq C \left(\frac{1}{k_1} \| v_1 \|_{L^4} + \frac{1}{k_2} \| \nabla u_2 \|_{L^2} \right) \| v \|_{L^4}. \]
(3.15)

By Step 1, under the assumption
\[\| f \|_{H^{-1,2}} + |u^\infty| \leq \delta_* |u^\infty|^\frac{1}{2}, \]
we have
\[\| v_1 \|_{L^4} \leq \frac{C}{k_1} (\| f \|_{H^{-1,2}} + |u^\infty|), \quad \| \nabla u_2 \|_{L^2} \leq C (\| f \|_{H^{-1,2}} + |u^\infty|), \]
from which and (3.15) with \(k_1^2 = k_2 \) it follows that
\[\| v \|_{L^4} \leq \frac{C}{k_2} (\| f \|_{H^{-1,2}} + |u^\infty|) \| v \|_{L^4}. \]
(3.16)

Now, define \(\delta_1 = \delta_1(\Omega) \) so that
\[\delta_1 = \min \{ \delta_*, \frac{1}{2C} \} . \]

Then under the assumption
\[\| f \|_{H^{-1,2}} + |u^\infty| \leq \delta_1 |u^\infty|^\frac{1}{2}, \]
it follows from (3.16) with the aid of the relation \(k_2 = \min \{ 1, |u^\infty|^\frac{1}{2} \} \) that
\[\| v \|_{L^4} \leq 0, \]
which yields the desired uniqueness result. This completes the proof of Theorem 1.2.

References

