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1. INTRODUCTION

Let $G$ be a finite group. The Smith problem is as follows. Let $\Sigma$ be a homotopy sphere
with smooth $G$-action such that $\Sigma$ has just two fixed points, say $a$ and $b$ . Are tangen-
tial representations $T_{a}(\Sigma)$ and $T_{b}(\Sigma)$ isomorphic as real $G$-modules? Two real $G$ -modules
$U$ and $V$ are called Smith equivalent if there exists a smooth action of $G$ on a sphere $\Sigma$

such that $S^{G}=\{a, b\},$ $T_{a}(\Sigma)\cong U$ and $T_{b}(\Sigma)\cong V$ as real $G$ -modules. We know infin-
itely many Oliver groups possessing non-isomorphic Smith equivalent real modules. We
consider about the subset $Sm(G)$ of the real representation ring $RO$$(G)$ of $G$ consisting
of all differences $U-V$ of Smith equivalent real $G$-modules. Recently we have several
results corresponding to the Smith set. In this note, we study a sufficient condition for the
Smith set to be an additive subgroup of the real representation ring $RO$ $(G)$ . This work is
a continuous study from [24].

2. SMrrH PROBLEM

The Smith problem asks whether the Smith set $Sm(G)$ is zero or not. There are many
results corresponding to the Smith problem.

Atiyah and Bott $[1\rfloor$ or Milnor [7] showed that for a homotopy sphere $\Sigma$ with semi-free
smooth compact Lie group with just two fixed points, the tangential representations are
isomorphic. Thus, any Smith equivalent real modules over an abelian simple group are
isomorphic, that is, $Sm(C)=0$ for a prime order cyclic group $C$ . Sanchez [18] general-
ized the result as follows by computing $G$-signature and using Franz-Bass’s theorem. For
a cyclic group $P$ of odd prime power order, Smith equivalent real $P$-modules are isomor-
phic. Therefore $Sm(P)=0$ for any group $P$ of odd prime power order by combining the
Smith theory.

On the other hand, Cappell and Shaneson [2] showed that there exists non-isomorphic,
Smith equivalent real module over a cyclic group $C_{4n}$ of order $4n$ for $n\geq 2$ , that is,
$Sm(C_{4n})\neq\{0\}$ . Petrie [17] showed that the Smith set of an abelian group of odd order
which has at least four non-cyclic subgroups is nontrivial, eg. $Sm(C_{pqrs}\cross C_{pqrs})\neq 0,$
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where $p,$ $q,$ $r,$ $s$ are distinct odd primes. And in $1980’ s$ , Dovermann, Suh, Masuda, etc.
studied the Smith equivalent real modules.

Oliver $[13\rfloor$ showed that $G$ acts smoothly on a disk without fixed points if and only if
there are no subgroups $P$ and $H$ such that $P$ is a $p$-group, $H \int P$ is cyclic, $G/H$ is a $q$ -group
for some primes $p$ and $q$ , possibly $p=q.$ $A$ group acting on a disk without fixed points
is called an Oliver group. Laitinen and Morimoto [5] showed that $G$ is an Oliver group if
and only if there exists a one fixed point $G$-action on sphere. Laitinen and Pawafowski $[6|$

showed that there exists Smith equivalent, non-isomorphic real $G$-modules for a perfect
group $G$ with $r_{G}\geq 2$ by connecting sum with a sphere with just one fixed point, where $r_{G}$

is the number of real conjugacy classes of elements of $G$ not of prime power order. After
that, Pawafowski and Solomon [14] extended to that $Sm(G)\neq 0$ if $G$ is a gap Oliver group
with $r_{G}\geq 2$ except $Aut(A_{6})$ and $P\Sigma L(2,27)$ . $A$ group $G$ is a gap group if there exists a real
$G$-module $V$ such that

$\bullet$ $\dim V^{L}=0$ for any prime power index subgroup $L$ of $G$ and
$\bullet$ for any subgroups $P$ of prime power order and $H$ with $H>P,$

$\dim V^{P}\geq 2\dim V^{H}.$

In particular, a perfect group $G$ with $r_{G}\geq 2$ is a gap Oliver group. $A$ study for gap groups
is seen in [12, 19, 20, 22, 23].

Now we need some notations. $A$ real conjugacy class $(x)^{\pm}$ of an element $x$ of $G$ is the
union of the conjugacy class

$(x)=\{g^{-1}xg|g\in G\}$

of $x$ and one of its inverse $x^{-1}$ . We denote by $NPP(G)$ the set of elements of $G$ not of prime
power order, by $\overline{NPP}(G)$ the set of elements of the real $con\dot{\rfloor}$ ugacy classes of elements of
$NPP(G)$ . Then $r_{G}$ is the cardinality of the set $\overline{NPP}(G)$ . For a prime $p$ , let $N_{p}(G)$ be
the set of normal subgroups $N$ of $G$ with $[G : N]\leq p$ . We denote by $RO(G)$ the real
representation ring, by $\mathcal{P}(G)$ the set of all subgroups of $G$ of prime power, possibly 1,
order, by $O^{\rho}(G)$ the Dress subgroup of type $p$ for a prime $p$ defined as

$O^{p}(G)= \bigcap_{L\underline{\triangleleft}G,[G:L]=p^{a}}L,$

and by $\mathcal{L}(G)$ the set of all prime power, possible 1, index subgroups of $G$ . Then for
$L\in \mathcal{L}(G),$ $L$ contains $O^{p}(G)$ for some prime $p$ . We put

$\cap p(G)=\bigcap_{N\in N_{\rho}(G)}N$

which quotient is an elementary abelian $p$-group and denote by $G^{ni1}$ the smallest normal
subgroup of $G$ by which quotient is nilpotent:

$G^{ni1}= \bigcap_{p}O^{p}(G)$
.
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Note that
$G\underline{\triangleright}\cap p(G)\underline{\triangleright}O^{p}(G)\underline{\triangleright}G^{ni1}$

For families $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ of subgroups of $G$ and a subset $A$ of $RO(G)$ , we put

$A_{\mathcal{F}_{1}}= \bigcap_{P\in \mathcal{F}_{1}}ker({\rm Res}_{P}^{G}$
: $RO$$(G)arrow$ $RO$$(P))\cap A,$

$A^{\mathcal{F}_{2}}= \bigcap_{L\in \mathcal{F}_{2}}ker(Fix^{L}: RO(G)arrow RO(N_{G}(L)/L))\cap A,$

and
$A_{\mathcal{F}_{1}}^{\mathcal{F}}=A_{\mathcal{F}_{1}} \cap A^{\mathcal{F}}=\bigcap_{P\in \mathcal{F}_{1}}ker{\rm Res}_{P}^{G}\cap\bigcap_{L\in \mathcal{F}_{2}}kerFix^{L}\cap A.$

The automorphism group $Aut(A_{6})$ of the alternating group $A_{6}$ is not a gap group,
$r_{Aut(A_{(},)}=2$ , and $Sm(G)=0[8]$ . Morimoto [8] gave a condition

Sm $(G)\subset$ $RO$ $(G)^{N_{\underline{\gamma}}(G)}=$ $RO$ $(G)^{\cap 2(G)}$

for Smith equivalent real modules. The rank of $RO(G)^{A’\underline{\circ}(G)}$ is equal to

$r_{G}-r_{G,\cap 2(G)},$

where $r_{G,\cap 2(G)}$ is the cardinality of the set $\pi(\overline{NPP}(G))$ for a canonical projection $\pi:Garrow$

$G/\cap 2(G)$ (cf. [14]). This condition implies that there are Oliver solvable groups $G$ such
that $r_{G}\geq 2$ and Sm$(G)=0[15]$ . The group $P\Sigma L(2,27)$ is an extension of $PSL(2,27)$ by a
field automorphism group of order 3 which is a gap non-solvable group, $r_{P\Sigma\llcorner(2,27)}=2$ and
Sm$(P\Sigma L(2,27))\neq 0[9]$ . Moreover, putting together with [16], for an $OI$ iver $non-so$] $vable$

group $G$ with $r_{G}\geq 2,$ $Sm(G)=0$ if and only if $G$ is isomorphic to $Aut(A_{6})$ .

3. SUBSETS OF THE SMITH SET

Sanchez’s criterion and Petrie’s observation says that

Sm$(G)\subset$ $RO$ $(G)_{\mathcal{P}_{o}(G)}^{\{G\}},$

where $\mathcal{P}_{o}(G)$ is the set of subgroups of $G$ of order 1, 2, 4, or odd prime power. Thus we
have

Sm$(G)\subset$ $RO$ $(G)_{\mathcal{P}_{0}(G)}^{N_{2}(G)}.$

Note that if $G$ has no element of order 8 then $\mathcal{P}_{o}(G)=\mathcal{P}(G)$ . Recall that two real G-
modules $U$ and $V$ are Smith equivalent if there exists a smooth action of $G$ on a sphere $\Sigma$

such that $S^{G}=\{a, b\},$ $T_{a}(\Sigma)\cong U$ and $T_{b}(\Sigma)\cong V$ as real $G$-modules and put
$Sm(G)=$ {$[U]-[V]|U$ and $V$ are Smith equivalent}.

Similarly we consider the sets $PSm^{}$ $(G)$ $($ resp. $LSm(G))$ of all differences $[U]-[V]$ such
that $U$ and $V$ are Smith equivalent and in addition the homotopy sphere $\Sigma$ sati sfies that $\Sigma^{P}$

is connected for any prime power order subgroups $P$ of $G$ (resp. for any 2-groups of $G$ ).
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The set $PSm^{}$ $(G)$ $($ resp. $LSm(G))$ is empty if and only if $G$ is of order prime power (resp.
2-power). It holds the inclusions

$PSm^{}$ $(G)\subset LSm(G)\subset Sm(G)$

and
LSm$(G)\subset$ $RO$ $(G)_{\mathcal{P}(G)}.$

$PSm^{}$ $(G)$

$n\downarrow$

LSm$(G)$ $RO$ $(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$

$\cap\downarrow n\downarrow\exists\neq$

Sm$(G)_{\mathcal{P}(G)}arrow^{\subset}$ $RO$ $(G)_{\mathcal{P}(G)}^{N_{2}(G)}=$ $RO$ $(G)_{\mathcal{P}(G)}^{t\cap 2(G)\}}arrow^{\subset}$ $RO$ $(G)_{\mathcal{P}(G)}^{\{G\}}$

$\cap\downarrow\exists\neq \cap\downarrow\exists\neq =\downarrow$

Sm$(G)$
$arrow^{\subset}$ $RO$$(G)_{\mathcal{P}_{o}(G)}^{N\underline{\circ}(G)}$

$arrow^{\subset}$ $RO$ $(G)_{\mathcal{P}(G)}^{\{G|}$

TABLE 1. Diagram of $i$ nclusions

Theorem 3.1. Let $G$ be an Oliver group whose nil-quotient $G/G^{ni1}$ is not a 2-group. Then
$RO (G)_{\mathcal{P}(G)}^{\angle(G)}\subset PSm^{c}(G)$.

Moreover, we have

Theorem 3.2. Let $G$ be an Oliver non-gap group with $[G : O^{2}(G)]=2$ . Suppose that all
elements $x$ of $G\backslash O^{2}(G)$ oforder 2 such that $C_{G}(x)$ is not a 2-group. Then

$RO (G)_{\mathcal{P}(G)}^{L(G)}\subseteq PSm^{c}(G)$ .

We denote by $SG(m, n)$ the small group of order $m$ and type $n$ which is obtained
as SmallGroup(m, n) in the software GAP [3]. Morimoto studied (or is studying) the
set Sm$(G)_{\mathcal{P}(G)}\backslash$ Sm$(G)_{P(G)}^{\mathcal{L}(G)}$ . He [9] showed that for $G=P\Sigma L(2,27)$ , $SG$$(864, 2666)$ ,

$SG$$(864,4666)$ , $Sm(G)_{\mathcal{P}(G)}^{L(G)}=0$ but $Sm(G)_{\mathcal{P}(G)}=Sm(G)\cong$ Z. AIso he and his colleagues
[4] showed that if a Sylow 2-subgroup is normal, then

Sm$(G)\subset$ $RO$ $(G)^{N_{3}(G)}$

and in particular $Sm(G)=0$ holds for $G=SG(1176,220),$ $SG(1176,221)$ .
For an Oliver group, we see $PSm^{}$ $(G)\neq 0$ to show $Sm(G)_{\mathcal{P}(G)}\neq 0$ . We have no rich

examples so that $Sm(G)_{P(G)}\neq Sm(G)$ , whole $Sm(G)\backslash Sm(G)_{\mathcal{P}(G)}$ is a finite set. We do
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not have an example for an Oliver group $G$ such that $PSm^{}$ $(G)\neq Sm(G)_{\mathcal{P}(G)}$ . It remains
the problem whether $PSm^{}$ $(G)=$ Sm$(G)_{\mathcal{P}(G)}$ for an Oliver group.

4. CRITERION FOR THE SMITH SET TO BE A GROUP

We discuss for Oliver groups $G$ such that $PSm^{}$ $(G)$ is a subgroup of $RO$ $(G)$ . We
introduce two condition. One is a part of a sufficient condition to show $Sm(G)_{\mathcal{P}(G)}\backslash$

$Sm(G)^{\mathcal{L}(G)}\neq 0$ and the other is a sufficient condition so that $Sm(G)_{\mathcal{P}(G)}$ is a group.
Let $Q= \bigcap_{p\neq 2}O^{p}(G)$ be a normal subgroup of $G$ with odd index and let $N$ be a normal

subgroup of $G$ with $G^{ni1}\leq N\leq\cap 2(G)\cap Q$ . Then

$Q\geq\cap 2(G)\cap Q\geq N\geq G^{ni1}\geq O^{2}(Q)$ .
Definition 4.1. We say that $G$ satisfies the $quasi-N-\mathcal{P}$-condition if there are rea] $Q$ -

modules $U$ and $V$ such that
$\bullet$ $\dim U^{n2(G)\cap Q}=\dim V^{N}=0$ and
$\bullet[\mathbb{R}\oplus U]-[V]\in RO(Q)_{\mathcal{P}(Q)}.$

In particular, the $quasi-G^{ni1}-\mathcal{P}$-condition is simply called quasi $-Ni1-\mathcal{P}$-condition.
Definition 4.2. We say that $G$ satisfies the $weak-Nil-\mathcal{P}$-condition if there are real G-
modules $U$ and $V$ such that

$\bullet$ $\dim U^{n2(G)}=dimV^{G^{ni1}}=0$ and
$\bullet[\mathbb{R}\oplus U]-[V]\in RO(G)_{\mathcal{P}(G)}.$

Lemma 4.3. If $G$ satisfies the $quasi-Ni1-\mathcal{P}$-condition, then $G$ satisfies the weak $Ni1-\mathcal{P}-$

condition.

Proposition 4.4 (cf. [10, Lemma 15]). Let $G$ be a finite group with $O^{2}(G)=G.$ The
following statements are equivalent.

(1) $G^{ni1}$ has a sub-quotient isomorphic to $D_{2pq}$ for distinct primes $p,$ $q.$

(2) $G$ satisfies the $quasi-Ni1-\mathcal{P}$-condition.

Morimoto and Qi [11] obtained a sufficient condition for an Oliver group $G$ to hold that
$Sm(G)_{\mathcal{P}(G)}$ is not equal to $Sm(G)_{\mathcal{P}(G)}^{4j(G)}$ . This result supplies that $Sm(G)=Sm(G)_{\mathcal{P}(G)}\cong Z$ for
$G=$ $SG$$(864, 2666)$ or $SG$$(864, 4666)$ . For $G=$ $SG$$(864, 2666)$ or $SG$$(864, 4666)$ , $G/G^{ni1}$

is a cyclic group of order 3 and $RO(G)_{\mathcal{P}(G)}$ is generated by two element $\mathbb{R}[G/G^{ni1}]+X_{1}$

and $3(\mathbb{R}[G/G^{ni1}]-\mathbb{R})+X_{2}$ for some elements $X_{1},X_{2}\in RO(G)^{\{G^{n||}\}}$ and thus, $G$ satisfies
the $weak-Nil-\mathcal{P}$-condition since $G \int G^{ni1}$ is a cyclic group of order 3. We see it in the next
section. Indeed, $G$ has a sub-quotient isomorphic to $D_{12}$ and $G$ satisfies the quasi $-Ni1-\mathcal{P}-$

condition.

Definition 4.5. For a normal subgroup $N$ of $G$ , we say that $G$ satisfies the $N-\mathcal{P}$-condition if
there are real $G$-modules $U$ and $V$ such that $U^{N}=V^{N}=0$ and $[\mathbb{R}\oplus U]-[V]\in RO(G)_{\mathcal{P}(G)}.$

If $N=G^{ni1}$ we say that $G$ satisfies the Nil $-\mathcal{P}$-condition,
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Lemma 4.6 or Theorem 4.8 in [9] essentially yields us the following two theorems.

Theorem 4.6. $lf$a gap $Oli\nu er$ group $G$ satisfies the weak-Nil $-\mathcal{P}$-condition with $NPP(G)\cap$

$G^{ni1}\neq\emptyset$ and has an element of $NPP(G)$ outside $O^{p}(G)$ for some prime $p$ , then

$PSm^{c}$ $(G)\backslash$ $RO$ $(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}\neq 0.$

Note that under the assumption that $NPP(G)\cap G^{ni1}\neq\emptyset$ the inequality $RO$ $(G)_{\mathcal{P}(G)}^{N\underline{\circ}(G)}\neq$

$RO(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$ if and only if $NPP(G)\backslash O^{p}(G)$ is not empty for some prime $p$ . By using the
multiplication of $RO(G)$ , we get the following theorem.

Theorem 4.7. Let $G$ be a gap Oliver group satisfying the Nil $-\mathcal{P}$-condition. Then

$PSm^{}$ $(G)=$ $RO$ $(G)_{\mathcal{P}(G)}^{N_{2}(G)}=$ Sm$(G)_{\mathcal{P}(G)}$

and in particular Sm $(G)_{\mathcal{P}(G)}$ is an additive group.

If a Sylow 2-subgroup of $G$ is normal, $G$ does not satisfy the Nil $-\mathcal{P}$-condition. Although
the Nil $-\mathcal{P}$-condition is a sufficient one for an Oliver group $G$ such that $Sm(G)(P(G)$ is a
additive group, it is not a necessary condition. For example, $A_{5}\cross C_{4}$ does not satisfy the
Nil $-\mathcal{P}$-condition but the following result holds.

Proposition 4.8. $PSm^{}$ $(A_{5}\cross C_{4})=$ Sm$(A_{5}\cross C_{4})=$ $RO$ $(A_{5}\cross C_{4})^{\{A_{5}\}}.$

Problem. $PSm^{}$ $(A_{5}\cross(C_{4})^{n})=$ Sm$(A_{5}\cross(C_{4})^{n})$ holds. Is it true that $PSm^{}$ $(A_{5}\cross(C_{4})^{n})=$

$RO$ $(A_{5}\cross(C_{4})^{n})^{\{A_{5}\cross(C_{2})"\}}$ for $n\geq 2$ ?

5. $QUASI-Ni1-\mathcal{P}$-CONDm$ON$

In this section we study properties for the $weak-Nil-\mathcal{P}$-condition. Remark that there is
an Oliver group which satisfies the $weak-Nil-\mathcal{P}$-condition but does not satisfy the Nil $-\mathcal{P}-$

condition (eg. $SG$$(864, 2666)$ , $SG$$(864, 4666)$ ).

Proposition 5.1. Let $K$ be a subgroup of $G$ such $that\cap 2(G)\cdot K=G.$ If $K$ satisfies the
$weak-(G^{ni1}\cap K)-\mathcal{P}$ -condition, then $G$ satisfies the weak-Nil $-\mathcal{P}$-condition.

Theorem 5.2. Let $G$ be a gap Oliver group. Suppose that $NPP(G)\cap G^{ni1}$ is not empty
and that there is an element $NPP(G)$ outside of $O^{p}(G)$ for some prime $p.$ $lf$ an odd index
subgroup $K$ of $G$ satisfies the $weak-(G^{ni1}\cap K)-\mathcal{P}$-condition, then

$PSm^{c}$ $(G)\backslash$ $RO$ $(G)_{\mathcal{P}(G)}^{l(G)}\neq 0.$

Morimoto and Qi [10, Lemma 21 and Theorem 22] showed that $Sm(G)_{\mathcal{P}(G)}\neq$ Sm $(G)_{\mathcal{P}(G)}^{\angle(G)}$

for an odd integer $n>1$ , an odd prime $p$ , and $G=D_{2n} \int C_{p}$ , the wreath product of the
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dihedral group $D_{2n}$ of order $2n$ by a cyclic group $C_{p}$ of order $p$ . The group $G$ satisfies the
assumption of Proposition 5.1 as follows. The group $G$ has a presentation

$a_{i}^{n}=b_{i}^{2}=(a_{i}b_{i})^{2}=1, (\forall i)$ ,
$\langle a_{1}, b_{1}, \ldots, a_{p}, b_{p}, c|a_{i}a_{j}=a_{j}a_{i}, a_{i}b_{j}=b_{j}a_{i}, b_{i}b_{/}=b_{j}b_{i}, (i\neq]), \rangle,$

$c^{p}=1, c^{-1}a_{i}c=a_{i+1}, c^{-1}b_{i}c=b_{i+1}, (\forall i)$

where $a_{p+1}=a_{1}$ and $b_{p+1}=b_{1}$ . The group $G^{ni1}$ is a subgroup of $G$ generated by elements
$a_{1},$

$\ldots,$ $a_{p}$ and $b_{i}b_{j}(i<J)$ , and then $G/G^{ni1}\cong C_{2p}$ . Thus $G$ is a gap Oliver group. Put
$K=O^{\rho}(G)$ . Let $f:D_{2n}^{p}arrow D_{2n}$ be the first projection and let $\hat{U}$ and $\hat{V}$ be $\mathcal{P}(D_{2n})-$

matched real $D_{2n}$ -modules such that $\hat{U}^{D_{2t}\prime}=\mathbb{R}$ and $\hat{V}^{D_{\underline{\gamma}_{l}}},$ $=0$ . The real $K$-modules $f^{*}\hat{U}$

and $f^{*}\hat{V}$ implies that $K$ satisfies the assumption of Proposition 5.1 since $f(G^{ni1})=D_{2n}.$

(Or directly, two real $G$-modules $Ind_{K}^{G}f^{*}\hat{U}$ and $Ind_{K}^{G}f^{*}\hat{V}$ implies that $G$ satisfies the weak-
Nil $-\mathcal{P}$-condition.)

Before closing this section, we should say the strongness of the $weak-Nil-\mathcal{P}$-condition.
Let $G$ be a finite group such that $G/G^{ni1}$ is a nilpotent group of odd order and there are an
element of $G^{ni1}$ not of prime power order and an element of $G$ outside $G^{ni1}$ not of prime
power order. Then

$RO (G)_{\mathcal{P}(G)}^{\{G^{ni1}\}}\neq RO (G)_{\mathcal{P}(G)}^{\{G\}}.$

Note that if a Sylow 2-subgroup of $G$ is normal then $Sm(G)\subset RO(G)^{\{N_{s}(G)|s\}}$ (cf. [4]) and $G$

does not satisfy the $weak-Nil-\mathcal{P}$-condition. Otherwise, if $G$ has a sub-quotient isomorphic
to $D_{2qr}$ for some distinct primes $q$ and $r$ , there are rea] $G$-modules $U$ and $V$ such that the
equalities $U^{G^{ni1}}=0=V^{G^{n}}$

”
hold and that $\mathbb{R}[G/G^{ni1}]\oplus U$ and $V$ are $\mathcal{P}(G)$ -matched:

$\mathbb{R}+[(\mathbb{R}[G/G^{ni1}]-\mathbb{R})\oplus U]-[V]=\mathbb{R}[G/G^{ni1}]+[U]-[V]\in RO(G)_{\mathcal{P}(G)}.$

Thus, $G$ satisfies the $weak-Nil-\mathcal{P}$-condition and in addition if $G$ is a gap Oliver group then

$PSm^{}$ $(G)^{\{G^{ni1}\}}\neq PSm^{c}(G)$ .

6. $Ni1-\mathcal{P}$-CONDm$ON$

In this section we study properties for the Nil $-\mathcal{P}$-condition.

Proposition 6.1. If $G$ satisfies the Nil $-\mathcal{P}$-condition, then $G$ satisfies the weak-Nil $-\mathcal{P}-$

condition.

Proposition 6.2. Ifa quotient group of $G$ satisfies the Nil $-\mathcal{P}$-condition, then $G$ also satis-
fies the $Ni1-\mathcal{P}$-condition.

Proposition 6.3. Let $N$ be a normal subgroup ofG. If there are a subgroup $K$ of $G$ and
an epimorphism $f:Karrow H$ such that $f(K\cap N)=H,$ $KN=G$ and $H$ has sub-quotient
isomorphic to $D_{2pq}$ , where $p$ and $q$ are distinctprimes, then $G$ satisfies the $N-\mathcal{P}$-condition.
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For a perfect group $G$ , the $weak-Nil-\mathcal{P}$-condition and Nil $-\mathcal{P}$-conditionare equivalent
and moreover equivalent to that $G$ has a sub-quotient isomorphic to a dihedral group $D_{2pq}$

for distinct primes $p$ and $q.$

Proposition 6.4 (cf. [21]). Simple groups except the following groups satisfy the Nil $-\mathcal{P}-$

condition.
(1) Cyclic group
(2) Projective special linear groups: $PSL$$(2,4)$ $=PSL(2,5)=A_{5},$ $PSL$$(2,7)$ $=$

$PSL(3,2), PSL(2,8), PSL(2,9)=A_{6}, PSL(2,17) , PSL (3,4) , PSL(3,8)$

(3) Suzuki groups Sz(8), Sz(32)
(4) Projective unitary groups; $PSU$$(3, 3)$ , $PSU$$(3,4)$ , $PSU$ $(3, 8)$

Theorem6.5. Let $q>1$ be a prime power. Thefollowing groups are gap groups satisfying
the Nil $-\mathcal{P}$-condition.

(1) Symmetric groups $S_{n},$ $n\geq 7$

(2) Projective general linear groups $PGL(2, q),$ $q\neq 2,3,4,5,7,8,9,17$

(3) Projective general linear groups $PGL(3, q),$ $q\neq 2,4,8$

(4) Projective general linear groups $PGL(n, q),$ $n\geq 4$

(5) General linear groups $GL(2, q),$ $q\neq 2,3,4,5,7,8,9,17$

(6) General linear groups $GL(3, q),$ $q\neq 2,4,8$

(7) General linear groups $GL(n, q),$ $n\geq 4$

(8) The automorphism group ofsporadic groups

The Smith sets of $PGL(2, q)$ and $PGL(3, q)$ have been already obtained in [24]. This can
be proved by finding subgroups as in Proposition 6.3. The groups listed up in Theorem 6.5
are non-solvable gap group. Then we have the following theorem.

Theorem 6.6. Let $G$ be a group which has quotient isomorphic to a group in Theorem 6.5.
Then

$PSm^{}$ $(G)=$ Sm$(G)_{\mathcal{P}(G)}=$ $RO$ $(G)_{\mathcal{P}(G)}^{N_{-}(G)}.$

Corollary 6.7. Let $K$ be a group in Theorem 65 and $F$ any finite group. Then for $G=$

$K\cross F,$

$PSm^{}$ $(G)=Sm(G)_{\mathcal{P}(G)}=RO(G)_{\mathcal{P}(G)}^{N_{-}(G)}\circ.$
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