<table>
<thead>
<tr>
<th>Title</th>
<th>TANGENTIAL REPRESENTATIONS ON A SPHERE (Topology of transformation groups and its related topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sumi, Toshio</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2014: 127-135</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195564</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
1. Introduction

Let G be a finite group. The Smith problem is as follows. Let Σ be a homotopy sphere with smooth G-action such that Σ has just two fixed points, say a and b. Are tangential representations $T_a(\Sigma)$ and $T_b(\Sigma)$ isomorphic as real G-modules? Two real G-modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere Σ such that $S^G = \{a, b\}$, $T_a(\Sigma) \cong U$ and $T_b(\Sigma) \cong V$ as real G-modules. We know infinitely many Oliver groups possessing non-isomorphic Smith equivalent real modules. We consider about the subset $\text{Sm}(G)$ of the real representation ring $\text{RO}(G)$ of G consisting of all differences $U - V$ of Smith equivalent real G-modules. Recently we have several results corresponding to the Smith set. In this note, we study a sufficient condition for the Smith set to be an additive subgroup of the real representation ring $\text{RO}(G)$. This work is a continuous study from [24].

2. Smith Problem

The Smith problem asks whether the Smith set $\text{Sm}(G)$ is zero or not. There are many results corresponding to the Smith problem.

Atiyah and Bott [1] or Milnor [7] showed that for a homotopy sphere Σ with semi-free smooth compact Lie group with just two fixed points, the tangential representations are isomorphic. Thus, any Smith equivalent real modules over an abelian simple group are isomorphic, that is, $\text{Sm}(C) = 0$ for a prime order cyclic group C. Sanchez [18] generalized the result as follows by computing G-signature and using Franz-Bass’s theorem. For a cyclic group P of odd prime power order, Smith equivalent real P-modules are isomorphic. Therefore $\text{Sm}(P) = 0$ for any group P of odd prime power order by combining the Smith theory.

On the other hand, Cappell and Shaneson [2] showed that there exists non-isomorphic, Smith equivalent real module over a cyclic group C_{4n} of order $4n$ for $n \geq 2$, that is, $\text{Sm}(C_{4n}) \neq \{0\}$. Petrie [17] showed that the Smith set of an abelian group of odd order which has at least four non-cyclic subgroups is nontrivial, eg. $\text{Sm}(C_{pqrs} \times C_{pqrs}) \neq 0$.

2000 Mathematics Subject Classification. 57S17, 20C15.
Key words and phrases. real representation, Smith problem, Oliver group.
This work is partially supported by KAKENHI No. 24540083.
where p, q, r, s are distinct odd primes. And in 1980's, Dovermann, Suh, Masuda, etc. studied the Smith equivalent real modules.

Oliver [13] showed that G acts smoothly on a disk without fixed points if and only if there are no subgroups P and H such that P is a p-group, H/P is cyclic, G/H is a q-group for some primes p and q, possibly $p = q$. A group acting on a disk without fixed points is called an Oliver group. Laitinen and Morimoto [5] showed that G is an Oliver group if and only if there exists a one fixed point G-action on sphere. Laitinen and Pawafowski [6] showed that there exists Smith equivalent, non-isomorphic real G-modules for a perfect group G with $r_G \geq 2$ by connecting sum with a sphere with just one fixed point, where r_G is the number of real conjugacy classes of elements of G not of prime power order. After that, Pawafowski and Solomon [14] extended to that Sm$(G) \neq 0$ if G is a gap Oliver group with $r_G \geq 2$ except Aut(A_6) and $\text{P}S\text{L}(2,27)$. A group G is a gap group if there exists a real G-module V such that

- $\dim V^L = 0$ for any prime power index subgroup L of G and
- for any subgroups P of prime power order and H with $H > P$,

$$\dim V^P \geq 2 \dim V^H.$$

In particular, a perfect group G with $r_G \geq 2$ is a gap Oliver group. A study for gap groups is seen in [12, 19, 20, 22, 23].

Now we need some notations. A real conjugacy class $(x)^*$ of an element x of G is the union of the conjugacy class

$$(x) = \{g^{-1}xg \mid g \in G\}$$

of x and one of its inverse x^{-1}. We denote by NPP(G) the set of elements of G not of prime power order, by NNNP(G) the set of elements of the real conjugacy classes of elements of NPP(G). Then r_G is the cardinality of the set NNNP(G). For a prime p, let $N_p(G)$ be the set of normal subgroups N of G with $[G : N] \leq p$. We denote by RO(G) the real representation ring, by $P(G)$ the set of all subgroups of G of prime power, possibly 1, order, by $O^p(G)$ the Dress subgroup of type p for a prime p defined as

$$O^p(G) = \bigcap_{L \leq G, [G:L]=p^a} L,$$

and by $L(G)$ the set of all prime power, possible 1, index subgroups of G. Then for $L \in L(G), L$ contains $O^p(G)$ for some prime p. We put

$$\cap_p(G) = \cap_{N \leq N_p(G)} N$$

which quotient is an elementary abelian p-group and denote by G^{nil} the smallest normal subgroup of G by which quotient is nilpotent:

$$G^{\text{nil}} = \bigcap_p O^p(G).$$
Note that
\[G \supseteq \cap p(G) \supseteq O^p(G) \supseteq G^{nil}. \]

For families \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) of subgroups of \(G \) and a subset \(A \) of \(\text{RO}(G) \), we put
\[A_{\mathcal{F}_1} = \bigcap_{P \in \mathcal{F}_1} \ker(\text{Res}_P^G : \text{RO}(G) \to \text{RO}(P)) \cap A, \]
\[A_{\mathcal{F}_2} = \bigcap_{L \in \mathcal{F}_2} \ker(\text{Fix}^L : \text{RO}(G) \to \text{RO}(N_G(L)/L)) \cap A, \]
and
\[A_{\mathcal{F}_1}^{\mathcal{F}_2} = A_{\mathcal{F}_1} \cap A_{\mathcal{F}_2} = \bigcap_{P \in \mathcal{F}_1} \ker(\text{Res}_P^G) \cap \bigcap_{L \in \mathcal{F}_2} \ker(\text{Fix}^L) \cap A. \]

The automorphism group \(\text{Aut}(A_6) \) of the alternating group \(A_6 \) is not a gap group, \(r_{\text{Aut}(A_6)} = 2 \), and \(\text{Sm}(G) = 0 \) [8]. Morimoto [8] gave a condition
\[\text{Sm}(G) \subset \text{RO}(G)^{N_2(G)} = \text{RO}(G)^{O^2(G)} \]
for Smith equivalent real modules. The rank of \(\text{RO}(G)^{N_2(G)} \) is equal to
\[r_G - r_{G,\cap 2(G)}, \]
where \(r_{G,\cap 2(G)} \) is the cardinality of the set \(\pi(\overline{\text{bpp}}(G)) \) for a canonical projection \(\pi : G \to G/\cap 2(G) \) (cf. [14]). This condition implies that there are Oliver solvable groups \(G \) such that \(r_G \geq 2 \) and \(\text{Sm}(G) = 0 \) [15]. The group \(\text{PSL}(2, 27) \) is an extension of \(\text{PSL}(2, 27) \) by a field automorphism group of order 3 which is a gap non-solvable group, \(r_{\text{PSL}(2, 27)} = 2 \) and \(\text{Sm}(\text{PSL}(2, 27)) \neq 0 \) [9]. Moreover, putting together with [16], for an Oliver non-solvable group \(G \) with \(r_G \geq 2 \), \(\text{Sm}(G) = 0 \) if and only if \(G \) is isomorphic to \(\text{Aut}(A_6) \).

3. SUBSETS OF THE SMITH SET

Sanchez’s criterion and Petrie’s observation says that
\[\text{Sm}(G) \subset \text{RO}(G)^{[G]}_{\mathcal{P}_o(G)}, \]
where \(\mathcal{P}_o(G) \) is the set of subgroups of \(G \) of order 1, 2, 4, or odd prime power. Thus we have
\[\text{Sm}(G) \subset \text{RO}(G)^{N_2(G)}_{\mathcal{P}_o(G)}. \]

Note that if \(G \) has no element of order 8 then \(\mathcal{P}_o(G) = \mathcal{P}(G) \). Recall that two real \(G \)-modules \(U \) and \(V \) are Smith equivalent if there exists a smooth action of \(G \) on a sphere \(\Sigma \) such that \(S^G = \{a, b\}, T_a(\Sigma) \cong U \) and \(T_b(\Sigma) \cong V \) as real \(G \)-modules and put
\[\text{Sm}(G) = \{[U] - [V] \mid U \text{ and } V \text{ are Smith equivalent}\}. \]

Similarly we consider the sets \(\text{PSm}(G) \) (resp. \(\text{LSm}(G) \)) of all differences \([U] - [V]\) such that \(U \) and \(V \) are Smith equivalent and in addition the homotopy sphere \(\Sigma \) satisfies that \(\Sigma^p \) is connected for any prime power order subgroups \(P \) of \(G \) (resp. for any 2-groups of \(G \)).
The set $\text{PSm}^c(G)$ (resp. $\text{LSm}(G)$) is empty if and only if G is of order prime power (resp. 2-power). It holds the inclusions
$$\text{PSm}^c(G) \subset \text{LSm}(G) \subset \text{Sm}(G)$$
and
$$\text{LSm}(G) \subset \text{RO}(G)_{\mathcal{P}(G)}.$$
not have an example for an Oliver group \(G \) such that \(PSm^c(G) \neq Sm(G)_{\mathcal{P}(G)} \). It remains the problem whether \(PSm^c(G) = Sm(G)_{\mathcal{P}(G)} \) for an Oliver group.

4. CRITERION FOR THE SMITH SET TO BE A GROUP

We discuss for Oliver groups \(G \) such that \(PSm^c(G) \) is a subgroup of \(RO(G) \). We introduce two condition. One is a part of a sufficient condition to show \(Sm(G)_{\mathcal{P}(G)} \setminus Sm(G)_{\mathcal{P}(G)}^2 \neq \emptyset \) and the other is a sufficient condition so that \(Sm(G)_{\mathcal{P}(G)} \) is a group.

Let \(Q = \cap_{p^2 \leq 2} O^{p2}(G) \) be a normal subgroup of \(G \) with odd index and let \(N \) be a normal subgroup of \(G \) with \(G^{nil} \leq N \leq \cap 2(G) \cap Q \). Then

\[Q \geq \cap 2(G) \cap Q \geq N \geq G^{nil} \geq O^2(Q). \]

Definition 4.1. We say that \(G \) satisfies the quasi-\(N\)-\(\mathcal{P} \)-condition if there are real \(Q \)-modules \(U \) and \(V \) such that
- \(\dim U^{\cap 2(G) \cap Q} = \dim V^{N} = 0 \) and
- \([\mathbb{R} \oplus U] - [V] \in RO(Q)_{\mathcal{P}(Q)}. \)

In particular, the quasi-\(G^{nil} \)-\(\mathcal{P} \)-condition is simply called quasi-nil-\(\mathcal{P} \)-condition.

Definition 4.2. We say that \(G \) satisfies the weak-nil-\(\mathcal{P} \)-condition if there are real \(G \)-modules \(U \) and \(V \) such that
- \(\dim U^{\cap 2(G)} = \dim V^{G^{nil}} = 0 \) and
- \([\mathbb{R} \oplus U] - [V] \in RO(G)_{\mathcal{P}(G)}. \)

Lemma 4.3. If \(G \) satisfies the quasi-nil-\(\mathcal{P} \)-condition, then \(G \) satisfies the weak nil-\(\mathcal{P} \)-condition.

Proposition 4.4 (cf. [10, Lemma 15]). Let \(G \) be a finite group with \(O^2(G) = G \). The following statements are equivalent.

1. \(G^{nil} \) has a sub-quotient isomorphic to \(D_{2pq} \) for distinct primes \(p, q \).
2. \(G \) satisfies the quasi-nil-\(\mathcal{P} \)-condition.

Morimoto and Qi [11] obtained a sufficient condition for an Oliver group \(G \) to hold that \(Sm(G)_{\mathcal{P}(G)} \) is not equal to \(Sm(G)_{\mathcal{P}(G)}^{G(G)} \). This result supplies that \(Sm(G) = Sm(G)_{\mathcal{P}(G)} \cong \mathbb{Z} \) for \(G = SG(864, 2666) \) or \(SG(864, 4666) \). For \(G = SG(864, 2666) \) or \(SG(864, 4666) \), \(G/G^{nil} \) is a cyclic group of order 3 and \(RO(G)_{\mathcal{P}(G)} \) is generated by two element \(\mathbb{R}[G/G^{nil}] + X_1 \) and \(3(\mathbb{R}[G/G^{nil}] - \mathbb{R}) + X_2 \) for some elements \(X_1, X_2 \in RO(G)^{G^{nil}} \) and thus, \(G \) satisfies the weak-nil-\(\mathcal{P} \)-condition since \(G/G^{nil} \) is a cyclic group of order 3. We see it in the next section. Indeed, \(G \) has a sub-quotient isomorphic to \(D_{12} \) and \(G \) satisfies the quasi-nil-\(\mathcal{P} \)-condition.

Definition 4.5. For a normal subgroup \(N \) of \(G \), we say that \(G \) satisfies the \(N\)-\(\mathcal{P} \)-condition if there are real \(G \)-modules \(U \) and \(V \) such that \(U^N = V^N = 0 \) and \([\mathbb{R} \oplus U] - [V] \in RO(G)_{\mathcal{P}(G)}. \) If \(N = G^{nil} \) we say that \(G \) satisfies the nil-\(\mathcal{P} \)-condition.
Lemma 4.6 or Theorem 4.8 in [9] essentially yields us the following two theorems.

Theorem 4.6. If a gap Oliver group G satisfies the weak-Nil-\mathcal{P}-condition with $\text{NPP}(G) \cap G^{\text{nil}} \neq \emptyset$ and has an element of $\text{NPP}(G)$ outside $O^p(G)$ for some prime p, then

$$\text{PSm}^c(G) \setminus \text{RO}(G)^{L(G)}_{\mathcal{P}(G)} \neq 0.$$

Note that under the assumption that $\text{NPP}(G) \cap G^{\text{nil}} \neq \emptyset$ the inequality $\text{RO}(G)^{N_2(G)}_{\mathcal{P}(G)} \neq \text{RO}(G)^{L(G)}_{\mathcal{P}(G)}$ if and only if $\text{NPP}(G) \setminus O^p(G)$ is not empty for some prime p. By using the multiplication of RO(G), we get the following theorem.

Theorem 4.7. Let G be a gap Oliver group satisfying the Nil-\mathcal{P}-condition. Then

$$\text{PSm}^c(G) = \text{RO}(G)^{N_2(G)}_{\mathcal{P}(G)} = \text{Sm}(G)_{\mathcal{P}(G)}$$

and in particular $\text{Sm}(G)_{\mathcal{P}(G)}$ is an additive group.

If a Sylow 2-subgroup of G is normal, G does not satisfy the Nil-\mathcal{P}-condition. Although the Nil-\mathcal{P}-condition is a sufficient one for an Oliver group G such that $\text{Sm}(G)_{\mathcal{P}(G)}$ is an additive group, it is not a necessary condition. For example, $A_5 \times C_4$ does not satisfy the Nil-\mathcal{P}-condition but the following result holds.

Proposition 4.8. $\text{PSm}^c(A_5 \times C_4) = \text{Sm}(A_5 \times C_4) = \text{RO}(A_5 \times C_4)^{|A_5|}$.

Problem. $\text{PSm}^c(A_5 \times (C_4)^n) = \text{Sm}(A_5 \times (C_4)^n)$ holds. Is it true that $\text{PSm}^c(A_5 \times (C_4)^n) = \text{RO}(A_5 \times (C_4)^n)^{|A_5 \times (C_4)|}$ for $n \geq 2$?

5. Quasi-Nil-\mathcal{P}-Condition

In this section we study properties for the weak-Nil-\mathcal{P}-condition. Remark that there is an Oliver group which satisfies the weak-Nil-\mathcal{P}-condition but does not satisfy the Nil-\mathcal{P}-condition (eg. $\text{SG}(864, 2666)$, $\text{SG}(864, 4666)$).

Proposition 5.1. Let K be a subgroup of G such that $\cap 2(G) \cdot K = G$. If K satisfies the weak-$(G^{\text{nil}} \cap K)$-\mathcal{P}-condition, then G satisfies the weak-Nil-\mathcal{P}-condition.

Theorem 5.2. Let G be a gap Oliver group. Suppose that $\text{NPP}(G) \cap G^{\text{nil}}$ is not empty and that there is an element $\text{NPP}(G)$ outside of $O^p(G)$ for some prime p. If an odd index subgroup K of G satisfies the weak-$(G^{\text{nil}} \cap K)$-\mathcal{P}-condition, then

$$\text{PSm}^c(G) \setminus \text{RO}(G)^{L(G)}_{\mathcal{P}(G)} \neq 0.$$

Morimoto and Qi [10, Lemma 21 and Theorem 22] showed that $\text{Sm}(G)_{\mathcal{P}(G)} \neq \text{Sm}(G)^{L(G)}_{\mathcal{P}(G)}$ for an odd integer $n > 1$, an odd prime p, and $G = D_{2n} \int C_p$, the wreath product of the
dihedral group D_{2n} of order $2n$ by a cyclic group C_p of order p. The group G satisfies the assumption of Proposition 5.1 as follows. The group G has a presentation

$$a_i^2 = b_i^2 = (ab_i)^2 = 1, \ (\forall i),$$

$$\langle a_1, b_1, \ldots, a_p, b_p, c \mid a_i a_j = a_j a_i, a_i b_j = b_j a_i, b_i b_j = b_j b_i, \ (i \neq j), \rangle,$$

$$c^2 = 1, \ c^{-1}a_i c = a_{i+1}, \ c^{-1}b_i c = b_{i+1}, \ (\forall i)$$

where $a_{p+1} = a_1$ and $b_{p+1} = b_1$. The group G^{nil} is a subgroup of G generated by elements a_1, \ldots, a_p and b_1, b_j ($i < j$), and then $G/G^{\text{nil}} \cong C_{2p}$. Thus G is a gap Oliver group. Put $K = O^p(G)$. Let $f: D_{2n}^2 \to D_{2n}$ be the first projection and let \hat{U} and \hat{V} be $\mathcal{P}(D_{2n})$-matched real D_{2n}-modules such that $\hat{U}^{D_{2n}} = \mathbb{R}$ and $\hat{V}^{D_{2n}} = 0$. The real K-modules $f^* \hat{U}$ and $f^* \hat{V}$ implies that K satisfies the assumption of Proposition 5.1 since $f(G^{\text{nil}}) = D_{2n}$. (Or directly, two real G-modules $\text{Ind}_K^G f^* \hat{U}$ and $\text{Ind}_K^G f^* \hat{V}$ implies that G satisfies the weak-nil-\mathcal{P}-condition.)

Before closing this section, we should say the strongness of the weak-nil-\mathcal{P}-condition. Let G be a finite group such that G/G^{nil} is a nilpotent group of odd order and there are an element of G^{nil} not of prime power order and an element of G outside G^{nil} not of prime power order. Then

$$\text{RO}(G)^{G^{\text{nil}}}_{\mathcal{P}(G)} \neq \text{RO}(G)^{G}_{\mathcal{P}(G)}.$$

Note that if a Sylow 2-subgroup of G is normal then $\text{Sm}(G) \subset \text{RO}(G)^{N_{r}(G)|s}_{\mathcal{P}}$ (cf. [4]) and G does not satisfy the weak-nil-\mathcal{P}-condition. Otherwise, if G has a sub-quotient isomorphic to D_{2qr} for some distinct primes q and r, there are real G-modules U and V such that the equalities $U^{G^{\text{nil}}} = 0 = V^{G^{\text{nil}}}$ hold and that $\mathbb{R}[G/G^{\text{nil}}] \oplus U$ and V are $\mathcal{P}(G)$-matched:

$$\mathbb{R} + [(\mathbb{R}[G/G^{\text{nil}}] - \mathbb{R}) \oplus U] - [V] = \mathbb{R}[G/G^{\text{nil}}] + [U] - [V] \in \text{RO}(G)_{\mathcal{P}(G)}.$$

Thus, G satisfies the weak-nil-\mathcal{P}-condition and in addition if G is a gap Oliver group then

$$\text{PSm}^c(G)^{G^{\text{nil}}}_{\mathcal{P}(G)} \neq \text{PSm}^c(G).$$

6. Nil-\mathcal{P}-condition

In this section we study properties for the Nil-\mathcal{P}-condition.

Proposition 6.1. If G satisfies the Nil-\mathcal{P}-condition, then G satisfies the weak-Nil-\mathcal{P}-condition.

Proposition 6.2. If a quotient group of G satisfies the Nil-\mathcal{P}-condition, then G also satisfies the Nil-\mathcal{P}-condition.

Proposition 6.3. Let N be a normal subgroup of G. If there are a subgroup K of G and an epimorphism $f: K \to H$ such that $f(K \cap N) = H$, $KN = G$ and H has sub-quotient isomorphic to D_{2pq}, where p and q are distinct primes, then G satisfies the N-\mathcal{P}-condition.
For a perfect group G, the weak-Nil-\mathcal{P}-condition and Nil-\mathcal{P}-condition are equivalent and moreover equivalent to that G has a sub-quotient isomorphic to a dihedral group D_{2pq} for distinct primes p and q.

Proposition 6.4 (cf. [21]). *Simple groups except the following groups satisfy the Nil-\mathcal{P}-condition.*

1. Cyclic group
2. Projective special linear groups: $\text{PSL}(2,4) = \text{PSL}(2,5) = A_5$, $\text{PSL}(2,7) = \text{PSL}(3,2)$, $\text{PSL}(2,8)$, $\text{PSL}(2,9) = A_6$, $\text{PSL}(2,17)$, $\text{PSL}(3,4)$, $\text{PSL}(3,8)$
3. Suzuki groups $\text{Sz}(8), \text{Sz}(32)$
4. Projective unitary groups: $\text{PSU}(3,3), \text{PSU}(3,4), \text{PSU}(3,8)$

Theorem 6.5. Let $q > 1$ be a prime power. *The following groups are gap groups satisfying the Nil-\mathcal{P}-condition.*

1. Symmetric groups S_n, $n \geq 7$
2. Projective general linear groups $\text{PGL}(2,q)$, $q \neq 2,3,4,5,7,8,9,17$
3. Projective general linear groups $\text{PGL}(3,q)$, $q \neq 2,4,8$
4. Projective general linear groups $\text{PGL}(n,q)$, $n \geq 4$
5. General linear groups $\text{GL}(2,q)$, $q \neq 2,3,4,5,7,8,9,17$
6. General linear groups $\text{GL}(3,q)$, $q \neq 2,4,8$
7. General linear groups $\text{GL}(n,q)$, $n \geq 4$
8. The automorphism group of sporadic groups

The Smith sets of $\text{PGL}(2,q)$ and $\text{PGL}(3,q)$ have been already obtained in [24]. This can be proved by finding subgroups as in Proposition 6.3. The groups listed up in Theorem 6.5 are non-solvable gap group. Then we have the following theorem.

Theorem 6.6. Let G be a group which has quotient isomorphic to a group in Theorem 6.5. Then
\[
\text{PSm}^c(G) = \text{Sm}(G)_{\mathcal{P}(G)} = \text{RO}(G)_{\mathcal{P}(G)}^{N_{\mathcal{P}}(G)}.
\]

Corollary 6.7. Let K be a group in Theorem 6.5 and F any finite group. Then for $G = K \times F$,
\[
\text{PSm}^c(G) = \text{Sm}(G)_{\mathcal{P}(G)} = \text{RO}(G)_{\mathcal{P}(G)}^{N_{\mathcal{P}}(G)}.
\]

References

Faculty of Arts and Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819–0395, Japan
E-mail address: sumi@artsci.kyushu-u.ac.jp