Cocompact な双曲 Coxeter 群の growth rate と 2-Salem 数

梅本 悠莉子 (大阪市立大学 大学院理学研究科 後期博士課程3年)*

1. イントロダクション

本稿では、[U]において発表予定の、4次元双曲空間 \mathbb{H}^n に作用する cocompact な双曲 Coxeter 群のうち、ある無限系列の growth rate が 2-Salem 数となるという結果について述べる。[U] においては、主結果の証明をすべて記述すると長くなるため省略している。本稿では、その省略部分について詳しく述べ、[U] の補足原稿としたい。

一方、群G とその有限生成系S に対して定まる、growth series、growth rate がある。ここでは、 $S=S^{-1}$ 、 $id \not\in S$ を仮定する。G の元g のS による語の長さを $l_S(g):=min$ $\{n\in\mathbb{N}\mid g=s_1\cdots s_n,\ s_i\in S\}$ と定め、(G,S) の growth series を

$$f_S(t) := \sum_{g \in G} t^{l_S(g)} = \sum_{k \ge 0} a_k t^k = 1 + (\#S)t + \cdots$$

と定める。ただし、 $l_S(id)=0$ とする。ここで、 a_k は語の長さがkとなるGの元の個数である。さらに、 $\tau:=\limsup_{k\to\infty}\sqrt[k]{a_k}$ を (G,S) の growth rate と呼ぶ。t を複素数とすれば、Cauchy-Hadamard の定理から、 τ は $f_S(t)$ の収束半径 R の逆数である。

実際、双曲 Coxeter 群とそのもとの生成系のペア (G,S) に対する growth series は、互いに素な \mathbb{Z} 係数多項式 P(t) と Q(t) を用いて $f_S(t) = P(t)/Q(t)$ と有理関数表示され ([S])、growth rate τ は Q(t) の絶対値最大の根の絶対値の逆数として表され、Q(0) = 1 より、 τ は実代数的整数となる。 $f_S(t) = P(t)/Q(t)$ は growth function と呼ばれる。

 \mathbb{H}^2 , \mathbb{H}^3 の cocompact な双曲 Coxeter 群の growth rate τ は Salem 数となることが知られており ([CW, P])、他方、Salem 数の一般化として j-Salem 数が定義されている [K]。ここでは、主定理に表れる 2-Salem 数の定義を述べておく。

定義 1. α が2–Salem 数であるとは、 α は代数的整数で $|\alpha| > 1$ を満たし、他の共役根 β で $|\beta| > 1$ を満たすものをただ一つ持ち、その他の共役根 ω はすべて $|\omega| \le 1$ を満たし、そのうち少なくとも一つは $|\omega| = 1$ を満たすことをいう。 α の最小多項式を 2–Salem 多項式という。

本研究は日本学術振興会特別研究員 (DC2) 奨励費科研費 (課題番号: 12J04747) ならびに日本学術振興会組織的な若手研究者等海外派遣プログラム「数学研究所がリードする数学・数理科学の国際的若手研究者の育成」の助成を受けたものである。

^{*〒558-8585} 大阪府大阪市住吉区杉本3-3-138 大阪市立大学 大学院理学研究科 e-mail: yuriko.ummt.77@gmail.com web: http://yurikoumemoto.web.fc2.com/

2. 主定理

主定理 1. (cf. [U, Corollary 1, Theorem 1, Theorem 3]) $T \subset \mathbb{H}^4$ を図 1 の Coxeter グラフで表される compact な Coxeter 多面体、 $T_{\ell,m,n} \subset \mathbb{H}^4$ をn+1 個の T を orthogonal facet A で ℓ 回、B で m 回、C で $n-\ell-m$ 回貼り合わせてできた compact な Coxeter 多面体とする。このとき、 $n \equiv 1 \pmod{3}$ ならば、 $T_{0,n,n}, T_{n,0,n}$ で定まる Coxeter 群の growth rate $\tau_{0,n,n}, \tau_{n,0,n}$ は 2-Salem 数である。

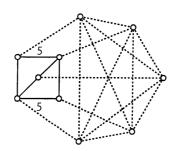
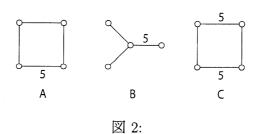


図 1:



ここで、orthogonal facet とは、それに交わる facet がすべて直交しているようなもののことをいう。T において Orthogonal facet は 3 種類あり、それぞれ、図 2 における Coxeter グラフ A、B、C で表される。実際、 $T_{\ell,m,n}$ から定まる Coxeter 群の growth function $W_{\ell,m,n}(t)=\frac{P_{\ell,m,n}(t)}{Q_{\ell,m,n}(t)}$ の分母多項式 $Q_{\ell,m,n}(t)$ は以下の 18 次の対称 (reciprocal) な多項式である:

 $Q_{\ell,m,n}(t) = t^{18} - (4n+6)t^{17} + (2n-m+3)t^{16} - (3n-m+\ell+5)t^{15} + (5n-3m+5)t^{14} - (n-4m+1)t^{13} + (8n-4m+\ell+9)t^{12} + (5m-\ell)t^{11} + (10n-5m+\ell+11)t^{10} - (2n-6m+2)t^9 + (10n-5m+\ell+11)t^8 + (5m-\ell)t^7 + (8n-4m+\ell+9)t^6 - (n-4m+1)t^5 + (5n-3m+5)t^4 - (3n-m+\ell+5)t^3 + (2n-m+3)t^2 - (4n+6)t + 1$ ただし、 $\ell+m \le n$ 、 $n-\ell-m \le (n+1)/2$ である。

主定理を証明するためには、以下の2つのことを示せば十分である。

- 1. $Q_{\ell,m,n}$ は 2 つの正の実根のペア $\alpha,1/\alpha,\beta,1/\beta$ を持ち、他の 14 個の複素根はすべて単位円周上にある。
- 2. $n \equiv 1 \pmod{3}$ のとき、 $Q_{0,n,n}$ 、 $Q_{n,0,n}$ は \mathbb{Z} 上既約である。

1については、[U, Theorem 2 (1), (2)]で述べている。2の証明については、 $Q_{0,n,n}$ 、 $Q_{n,0,n}$ が既約でないと仮定して矛盾を導く。その際、1から導かれる次の命題2が助けとなる。

命題 2. [U, Proposition 5] $Q_{\ell,m,n}$ は、既約でないならば、 \mathbb{Z} 係数で偶数次の対称な (reciprocal) 多項式の積で表される。

よって、 $Q_{0,n,n}$ 、 $Q_{n,0,n}$ は、既約でないならば、2次、4次、6次、8次の対称な \mathbb{Z} 係数多項式で割られる可能性しかない。2次の対称な多項式で割られないことは、 $[U, Theorem\ 2\ (3)\]$ で述べている。さらに、 $n\equiv 1\ (mod\ 3)$ ならば、4次、6次、8次の対称な数多項式で割られないことを、 $[U, Theorem\ 3]$ で述べている。ここでは、6次、8次の場合について説明する。

命題 3. $n \equiv 1 \pmod 3$ のとき、 $Q_{0,n,n}(t)$ と $Q_{n,0,n}(t)$ は6次の対称な多項式 $p(t) \in \mathbb{Z}[t]$ で割られない。

Proof. まず、 (ℓ,m,n) を(0,n,n), (n,0,n)の場合に制限せずに考える。 $Q_{\ell,m,n}(t)$ が6次の対称な多項式 $p(t):=1+at+bt^2+ct^3+bt^4+at^5+t^6\in\mathbb{Z}[t]$ で割られると 仮定すると、その商も対称な多項式となり、 $d_1,...,d_6\in\mathbb{Z}$ を用いて、 $Q_{\ell,m,n}(t)=(1+at+bt^2+at^3+t^4)(1+d_1t+d_2t^2+d_3t^3+d_4t^4+d_5t^5+d_6t^6+d_5t^7+d_4t^8+d_3t^9+d_2t^{10}+d_1t^{11}+t^{12})$ と表される。この両辺の係数を比較すると、係数に関する連立方程式を得る:

$$\begin{cases} d_1 + a = -6 - 4n \\ d_2 + ad_1 + b = 3 - m + 2n \\ d_3 + ad_2 + bd_1 + c = -5 - \ell + m - 3n \\ d_4 + ad_3 + bd_2 + cd_1 + b = 5 - 3m + 5n \\ d_5 + ad_4 + bd_3 + cd_2 + bd_1 + a = -1 + 4m - n \\ d_6 + ad_5 + bd_4 + cd_3 + bd_2 + ad_1 + 1 = 9 + \ell - 4m + 8n \\ d_5 + ad_6 + bd_5 + cd_4 + bd_3 + ad_2 + d_1 = -\ell + 5m \\ d_4 + ad_5 + bd_6 + cd_5 + bd_4 + ad_3 + d_2 = 11 + \ell - 5m + 10n \\ d_3 + ad_4 + bd_5 + cd_6 + bd_5 + ad_4 + d_3 = -2 + 6m - 2n. \end{cases}$$

変形すると、

$$\begin{cases} d_1 = -a + (-6 - 4n) \\ d_2 = -ad_1 - b + (3 - m + 2n) \\ d_3 = -ad_2 - bd_1 - c + (-5 - \ell + m - 3n) \\ d_4 = -ad_3 - bd_2 - cd_1 - b + (5 - 3m + 5n) \\ d_5 = -ad_4 - bd_3 - cd_2 - bd_1 - a + (-1 + 4m - n) \\ d_6 = -ad_5 - bd_4 - cd_3 - bd_2 - ad_1 - 1 + (9 + \ell - 4m + 8n) \\ d_5 = -ad_6 - bd_5 - cd_4 - bd_3 - ad_2 - d_1 + (-\ell + 5m) \\ d_4 = -ad_5 - bd_6 - cd_5 - bd_4 - ad_3 - d_2 + (11 + \ell - 5m + 10n) \\ d_3 = -ad_4 - bd_5 - cd_6 - bd_5 - ad_4 - d_3 + (-2 + 6m - 2n) \end{cases}$$

となり、はじめの6式から、 $d_1,d_2,...,d_6$ の順にこれらは帰納的に a,b,c,n,m,ℓ の式で表すことができる。 $d_1,d_2,...,d_6$ を a,b,c,n,m,ℓ の式で表したものを上の連立方程式の

最後の3式

$$\begin{cases} ad_6 + (1+b)d_5 + cd_4 + bd_3 + ad_2 + d_1 - (-\ell + 5m) = 0\\ bd_6 + (a+c)d_5 + (1+b)d_4 + ad_3 + d_2 - (11+\ell - 5m + 10) = 0\\ cd_6 + 2bd_5 + 2ad_4 + 2d_3 - (-2 + 6m - 2n) = 0. \end{cases}$$

に代入すると、以下の方程式を得る

 $f_{\ell,m,n}(a,b,c)$

 $= -7 + a^7 + \ell - m + b^3(-6 - 4n) + a^4(-1 + 5c + \ell - m + b(-30 - 20n) - n) - 5n + a^5(2 - 6n) + a$ $6b - m + 2n) + c(2 - 2m + 3n) + b(5 + 4m + c(-6 + 2m - 4n) + 3n) + a^{6}(6 + 4n) + c^{2}(6 + 4n) + a^{2}(6 +$ $b^2(11+3c+\ell-m+7n) + a(4-4b^3+3c^2+\ell-2m+b(-10+6m+c(-36-24n)-10n) + c(-2+1)c(-10+6m+c(-36-24n)-10n) + c(-2+1$ $2\ell - 2m - 2n) + 5n + b^2(12 - 3m + 6n)) + a^3(5 + 10b^2 - 2m + b(-12 + 4m - 8n) + 3n + c(24 + 2m - 8n) + 3n + b(2n - 2m + 6n)) + a^3(5 + 10b^2 - 2m + b(-12 + 4m - 8n) + 3n + c(24 + 2m - 8n)) + a^3(5 + 10b^2 - 2m + b(-12 + 4m - 8n)) + a^3(5$ $16n)) + a^{2}(8 - \ell - 3m + b(-15 - 12c - 3\ell + 3m - 9n) + 6n + c(6 - 3m + 6n) + b^{2}(36 + 24n))$ = 0,

 $g_{\ell,m,n}(a,b,c)$

 $:= -3 + a^{6}(-1+b) - b^{4} - \ell + m + b^{2}(-11 + 5m + c(-18 - 12n) - 9n) + c^{2}(-3 + m - 12n) + c^{2}(-3 +$ (2n) $-3n + b^3(6-m+2n) + c(5+4m+3n) + a^4(-3-5b^2+m+c(-6-4n)-2n+b(8-2n)) + a^4(-3-5b^2+m+c(-6-4n)-2n+b(8-2n)) + a^4(-3-5b^2+m+c(-6-4n)-2n+b(8-2n)) + a^4(-3-5b^2+m+c(-6-4n)-2n+b(8-2n)-2n+b(8-2n)) + a^4(-3-5b^2+m+c(-6-4n)-2n+b(8-2n)-2n+b(8$ $m+2n))+a^5(-6-c-4n+b(6+4n))+b(8+3c^2+\ell-6m+11n+c(22+2\ell-2m+12n))+a^5(-6-c-4n+b(6+4n))+b(8+3c^2+\ell-6m+11n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+11n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+11n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+4\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+4\ell-6m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+4m+12n+c(22+2\ell-2m+12n))+b(8+3c^2+4m+12n+c(2n+2m+12n+c(2n+2m+12n))+b(8+3c^2+4m+12n+c(2n+2m+12n))+b(8+3c^2+4m+12n+c(2n+2m+12n+2m+12n))+b(8+3c^2+4m+12n+c(2n+2m+12n+6m+12n+c(2n+2m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+6m+12n+$ (14n) + a^3 (-5 - ℓ + m + b^2 (-24 - 16n) + c (-6 + m - 2n) - 3n + b (29 + 8c + ℓ - m + (19n) + $a(5+4m+b^2(-40-9c-2\ell+2m-26n)+c^2(-12-8n)+c(-8+4m-7n)+c$ $3n + b^3(18 + 12n) + b(17 + 2\ell - 6m + 11n + c(18 - 4m + 8n))) + a^2(-5 + 6b^3 - 3c^2 + 6n)$ $3m + c(-17 - \ell + m - 11n) + b^2(-18 + 3m - 6n) - 5n + b(17 - 6m + 11n + c(36 + 24n)))$ = 0,

 $h_{\ell,m,n}(a,b,c)$

 $:= -8 + a^{6}c + c^{3} - 2\ell - 4m + b^{3}(-12 - c - 8n) - 4n + c^{2}(5 + \ell - m + 3n) + b(10 + 8m + 6n) + b(10 + 8m + 6n$ $c(-14+6m-11n)+c^2(-12-8n)+6n)+c(6+\ell-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(12+b(-12-5c-4m+8n)+a^4(-12-5c-4m+8n)+a^5(-12-$ 8n) + 8n + c(3 - m + 2n)) + $b^2(22 + 2\ell - 2m + 14n + c(9 - m + 2n)) + a^3(4 + 8b^2 + 4c^2 - m + 2n)$ $2m+b(-12+2m+c(-24-16n)-4n)+4n+c(5+\ell-m+3n))+a^5(2-2b+c(6+4n))+a^5$ $a^2(-2+2\ell-2m+b(-34-2\ell+2m+c(-18+3m-6n)-22n)-2n+c(11-3m+5n)+(-18+3m-6n)-22n)-2n+c(11-3m+5n)+(-18+3m-6n)-22n+c(11-3m+5n)+(-18+3m+6n)+($ $c^2(18+12n) + b^2(36+6c+24n)) + a(4-6b^3-4m+b(-16-6c^2+8m+c(-46-2\ell+2m-6c^2+8m+c(-46-2\ell+4m+c(-46-2\ell+4m+6c^2+4m+c(-46-2\ell+4m+6c^2+4m+c(-46-2\ell+4m+6c^2+4m+c(-46-2\ell+4m+6c^2+4m+c(-46-2\ell+4m+6c^2+4m+6c^2+4m+c(-46-2\ell+4m+6c^2+4$ 30n) -14n) $+6n+c^2(6-2m+4n)+c(19-4m+13n)+b^2(18-4m+8n+c(18+12n))$) = 0.

 $egin{aligned} m{Q}_{0,n,n}(t)\, & \mbox{について} \ \hline &(\ell,m,n)=(0,n,n)\, \mbox{\emph{o}} \end{array}$ 場合、つまり $Q_{0,n,n}(t)\, \mbox{について考える。まず、} \end{aligned}$ $f_{0,n,n}(a,b,c)$

 $= -7 + a^7 + b^3(-6 - 4n) + a^4(-1 + 5c + b(-30 - 20n) - 2n) - 6n + c(2 + n) + a^5(2 - 6b + a^2)$ $a^{6}(6+4n) + c^{2}(6+4n) + b^{2}(11+3c+6n) + b(5+c(-6-2n)+7n) + a(4-4b^{3}+3c^{2}+6n) + a(4-4b^{3}+6n) + a($ $c(-2-4n) + b(-10 + c(-36 - 24n) - 4n) + 3n + b^{2}(12 + 3n)) + a^{3}(5 + 10b^{2} + b(-12 - 24n) + b(-10 + 24n$ 4n) + n + c(24 + 16n)) + $a^2(8 + b(-15 - 12c - 6n) + 3n + c(6 + 3n) + b^2(36 + 24n))$, $g_{0,n,n}(a,b,c)$

 $= -3 + a^{6}(-1+b) - b^{4} + b^{2}(-11+c(-18-12n)-4n) + c^{2}(-3-n) - 2n + b^{3}(6+n) + c(5+n) + c(5$ $(7n) + a^4(-3 - 5b^2 + c(-6 - 4n) - n + b(8 + n)) + a^5(-6 - c - 4n + b(6 + 4n)) + b(8 + 3c^2 + a^2) + a^4(-3 - 5b^2 + c(-6 - 4n) - n + b(8 + n)) + a^5(-6 - c - 4n + b(6 + 4n)) + b(8 + 3c^2 + a^2) + a^5(-6 - c - 4n + b(6 + 4n)) + a^5(-6 - c - 4n) + a^5(-6$ $5n + c(22 + 12n) + a^3(-5 + b^2(-24 - 16n) + c(-6 - n) - 2n + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(29 + 8c + 18n) + a(5 + 16n) + b(6 + 16n) + b(6$ $b^2(-40 - 9c - 24n) + c^2(-12 - 8n) + c(-8 - 3n) + 7n + b^3(18 + 12n) + b(17 + 5n + c(18 + 4n))) + a^2(-5 + 6b^3 - 3c^2 + c(-17 - 10n) + b^2(-18 - 3n) - 2n + b(17 + 5n + c(36 + 24n))) = 0,$

 $h_{0,n,n}(a,b,c)$

 $= -8 + a^6c + c^3 + b^3(-12 - c - 8n) - 8n + c^2(5 + 2n) + c(6 + 4n) + b(10 + c^2(-12 - 8n) + c(-14 - 5n) + 14n) + a^4(12 + b(-12 - 5c - 8n) + 8n + c(3 + n)) + b^2(22 + 12n + c(9 + n)) + a^3(4 + 8b^2 + 4c^2 + b(-12 + c(-24 - 16n) - 2n) + 2n + c(5 + 2n)) + a^5(2 - 2b + c(6 + 4n)) + a^2(-2 + b(-34 + c(-18 - 3n) - 20n) - 4n + c(11 + 2n) + c^2(18 + 12n) + b^2(36 + 6c + 24n)) + a(4 - 6b^3 + b(-16 - 6c^2 + c(-46 - 28n) - 6n) + 2n + c^2(6 + 2n) + c(19 + 9n) + b^2(18 + 4n + c(18 + 12n))) = 0$

となる。つまり、これらは $(\ell,m,n)=(0,n,n)$ のときに $a,b,c\in\mathbb{Z},n\in\mathbb{N}\cup\{0\}$ が満たしている方程式である。

以下の表は、(a,b,c) のすべての組み合わせについての $f_{0,n,n}(a,b,c)$, $g_{0,n,n}(a,b,c)$, $h_{0,n,n}(a,b,c)$ の値と、 $f_{0,n,n}(a,b,c)=g_{0,n,n}(a,b,c)=h_{0,n,n}(a,b,c)=0$ を満たすという条件のもとでそのような(a,b,c)が可能かどうかを調べたものである。

(a,b,c)	$f_{0,n,n}$	$g_{0,n,n}$	$h_{0,n,n}$	
(0, 0, 0)	-1			不可能
(1,0,0)	n	-n	0	$n \equiv 0$ のときのみ可能
(-1,0,0)	0	0	1+n	$n \equiv -1$ のときのみ可能
(0, 1, 0)		-1		不可能
(0, -1, 0)	-1			不可能
(0, 0, 1)	1-n	-1 + n	1+n	不可能
(0,0,-1)	0	1-n	-1 - n	不可能
(1, 1, 0)		-1		不可能
(-1, 1, 0)	-1			不可能
(1, -1, 0)		1		不可能
(-1, -1, 0)		-1		不可能
(1,0,1)	-1			不可能
(-1,0,1)	-n	n	-n	$n \equiv 0$ のときのみ可能
(1,0,-1)			-1	不可能
(-1,0,-1)			1	不可能
(0, 1, 1)	-1			不可能
(0, -1, 1)		-1		不可能
(0, 1, -1)	1-n		1+n	不可能
(0, -1, -1)	n	n	-1 + n	不可能
(1,1,1)	-1			不可能
(-1, 1, 1)	-1			不可能
(1, -1, 1)	-1			不可能
(1, 1, -1)	1-n	-1 + n	-1-n	不可能
(-1, -1, 1)	n	-n	0	$n \equiv 0$ のときのみ可能
(-1, 1, -1)			1	不可能

(1, -1, -1)	1		不可能
(-1, -1, -1)		1	不可能

以上のことから、 $n \equiv 1 \pmod{3}$ に対しては可能な $a,b,c \in \mathbb{Z}$ がない、よってこのとき $Q_{0,n,n}(t)$ は $p(t) = 1 + at + bt^2 + ct^3 + bt^4 + at^5 + t^6$ で割られない。

$Q_{n,0,n}(t)$ について

 $\overline{(\ell,m,n)=(n,0,n)}$ の場合、つまり $Q_{n,0,n}(t)$ を考える。まず、 $f_{n,0,n}(a,b,c)$

 $= -7 + a^{7} + a^{4}(-1 + 5c + b(-30 - 20n)) + b^{3}(-6 - 4n) - 4n + a^{5}(2 - 6b + 2n) + c(2 + 3n) + b(5 + c(-6 - 4n) + 3n) + a^{6}(6 + 4n) + c^{2}(6 + 4n) + b^{2}(11 + 3c + 8n) + a(4 - 4b^{3} - 2c + 3c^{2} + b(-10 + c(-36 - 24n) - 10n) + 6n + b^{2}(12 + 6n)) + a^{3}(5 + 10b^{2} + b(-12 - 8n) + 3n + c(24 + 16n)) + a^{2}(8 + b(-15 - 12c - 12n) + 5n + c(6 + 6n) + b^{2}(36 + 24n)),$ $g_{n,0,n}(a,b,c)$

 $=-3+a^{6}(-1+b)-b^{4}+b^{2}(-11+c(-18-12n)-9n)+c^{2}(-3-2n)-4n+b^{3}(6+2n)+c(5+3n)+a^{4}(-3-5b^{2}+c(-6-4n)-2n+b(8+2n))+a^{5}(-6-c-4n+b(6+4n))+b(8+3c^{2}+12n+c(22+16n))+a^{3}(-5+b^{2}(-24-16n)+c(-6-2n)-4n+b(29+8c+20n))+a(5+b^{2}(-40-9c-28n)+c^{2}(-12-8n)+c(-8-7n)+3n+b^{3}(18+12n)+b(17+13n+c(18+8n)))+a^{2}(-5+6b^{3}-3c^{2}+c(-17-12n)+b^{2}(-18-6n)-5n+b(17+11n+c(36+24n)))=0,$

 $h_{n,0,n}(a,b,c)$

 $= -8 + a^6c + c^3 + b^3(-12 - c - 8n) - 6n + c^2(5 + 4n) + b(10 + c(-14 - 11n) + c^2(-12 - 8n) + 6n) + c(6 + 9n) + a^4(12 + b(-12 - 5c - 8n) + 8n + c(3 + 2n)) + b^2(22 + 16n + c(9 + 2n)) + a^3(4 + 8b^2 + 4c^2 + b(-12 + c(-24 - 16n) - 4n) + 4n + c(5 + 4n)) + a^5(2 - 2b + c(6 + 4n)) + a^2(-2 + b(-34 + c(-18 - 6n) - 24n) + c(11 + 5n) + c^2(18 + 12n) + b^2(36 + 6c + 24n)) + a(4 - 6b^3 + b(-16 - 6c^2 + c(-46 - 32n) - 14n) + 6n + c^2(6 + 4n) + c(19 + 13n) + b^2(18 + 8n + c(18 + 12n))) = 0$

となる。つまり、これらは $(\ell, m, n) = (n, 0, n)$ のときに $a, b, c \in \mathbb{Z}, n \in \mathbb{N} \cup \{0\}$ が満たしている方程式である。

 $Q_{0,n,n}(t)$ のときと同様にして以下の表を得た。

(a,b,c)	$f_{n,0,n}$	$g_{n,0,n}$	$h_{n,0,n}$	
(0,0,0)			1	不可能
(1,0,0)	n	-n	0	n ≡ 0のときのみ可能
(-1,0,0)	0	0	1+n	$n \equiv -1$ のときのみ可能
(0, 1, 0)	0	-1 + n	-n	不可能
(0, -1, 0)		1		不可能
(0, 0, 1)	1			不可能
(0,0,-1)		1		不可能
(1, 1, 0)	0	-1 + n	-n	不可能
(-1, 1, 0)	-1-n	-1 + n	-n	不可能
(1, -1, 0)	0	1-n	n	不可能

(-1, -1, 0)		-1		不可能
(1,0,1)	-1			不可能
(-1, 0, 1)	0	-n	-n	$n \equiv 0$ のときのみ可能
(1,0,-1)	1+n	-n		不可能
(-1,0,-1)			1	不可能
(0, 1, 1)	-1			不可能
(0, -1, 1)		-1		不可能
(0,1,-1)	1-n		1+n	不可能
(0, -1, -1)	-n	-n	-1 - n	不可能
(1, 1, 1)			1	不可能
(-1, 1, 1)	-1 + n	1-n	1+n	不可能
(1, -1, 1)	-1			不可能
(1, 1, -1)	1+n	-1 + n		不可能
(-1, -1, 1)	0	0	-n	$n \equiv 0$ のときのみ可能
(-1, 1, -1)	-1 - n	0	1-n	不可能
(1, -1, -1)			-1	不可能
(-1, -1, -1)		1		不可能

以上のことから、 $n\equiv 1\pmod 3$ に対しては可能な $a,b,c\in\mathbb{Z}$ がない、よってこのとき $Q_{n,0,n}(t)$ は $p(t)=1+at+bt^2+ct^3+bt^4+at^5+t^6$ で割られない。

命題 4. $n\equiv 1\pmod 3$ のとき、 $Q_{0,n,n}(t)$ と $Q_{n,0,n}(t)$ は8次の対称な多項式 $p(t)\in\mathbb{Z}[t]$ で割られない。

Proof. まず、 (ℓ,m,n) を (0,n,n), (n,0,n) の場合に制限せずに考える。 $Q_{\ell,m,n}(t)$ が 8 次の対称な多項式 $p(t):=1+at+bt^2+ct^3+dt^4+ct^5+bt^6+at^7+t^8\in\mathbb{Z}[t]$ で割られると仮定すると、その商も対称な多項式となり、 $e_1,...,e_5\in\mathbb{Z}$ を用いて、 $Q_{\ell,m,n}(t)=(1+at+bt^2+ct^3+dt^4+ct^5+bt^6+at^7+t^8)(1+e_1t+e_2t^2+e_3t^3+e_4t^4+e_5t^5+e_4t^6+e_3t^7+e_2t^8+e_1t^9+t^{10})$ と表される。この両辺の係数を比較すると、係数に関する連立方程式を得る:

$$\begin{cases} e_1 = -a + (-6 - 4n) \\ e_2 = -ae_1 - b + (3 - m + 2n) \\ e_3 = -ae_2 - be_1 - c + (-5 - \ell + m - 3n) \\ e_4 = -ae_3 - be_2 - ce_1 - d + (5 - 3m + 5n) \\ e_5 = -ae_4 - be_3 - ce_2 - de_1 - c + (-1 + 4m - n) \\ e_4 = -ae_5 - be_4 - ce_3 - de_2 - ce_1 - b + (9 + \ell - 4m + 8n) \\ e_3 = -ae_4 - be_5 - ce_4 - de_3 - ce_2 - be_1 - a + (-\ell + 5m) \\ e_2 = -ae_3 - be_4 - ce_5 - de_4 - ce_3 - be_2 - ae_1 - 1 + (11 + \ell - 5m + 10n) \\ e_1 = -ae_2 - be_3 - ce_4 - de_5 - ce_4 - be_3 - ae_2 - e_1 + (-2 + 6m - 2n) \end{cases}$$

はじめの5式から、 $e_1,e_2,...,e_5$ の順にこれらは帰納的に a,b,c,d,n,m,ℓ の式で表すことができる。 $e_1,e_2,...,e_5$ を a,b,c,d,n,m,ℓ の式で表したものを上の連立方程式の最後

の4式

$$\begin{cases} ae_5 + (1+b)e_4 + ce_3 + de_2 + ae_1 + b - (9+\ell-4m+8n) = 0\\ be_5 + (a+c)e_4 + (d+1)e_3 + ce_2 + be_1 + a - (-\ell+5m) = 0\\ ce_5 + (b+d)e_4 + (a+c)e_3 + (1+b)e_2 + ae_1 + 1 - (11+\ell-5m+10n) = 0\\ de_5 + 2ce_4 + 2be_3 + 2ae_2 + 2e_1 - (-2+6m-2n) = 0 \end{cases}$$

に代入すると、以下の方程式を得る:

 $f_{\ell,m,n}(a,b,c,d)$

 $:= -4 - a^6 + b^3 - c^2 - \ell + m + a^5 (-6 - 4n) + c (-5 - \ell + m - 3n) + b^2 (-2 + m - 2n) + a^4 (-2 + 5b + m - 2n) - 3n + d(2 - m + 2n) + a^2 (-2 - 6b^2 + 3d + 2m + c(-18 - 12n) - 3n + b(6 - 3m + 6n)) + b(3 - 2d - 2m + 3n + c(12 + 8n)) + a(4 + \ell + 3m + b^2 (-18 - 12n) + c(-6 + 2m - 4n) + b(-2 + 6c + 2\ell - 2m - 2n) + 2n + d(12 + 8n)) + a^3 (1 - 4c - \ell + m + n + b(24 + 16n)) = 0,$

 $g_{\ell,m,n}(a,b,c,d)$

 $:= -5 + a^5 (1 - b) - 4m + b^3 (-6 - 4n) + d(-5 - \ell + m - 3n) - 3n + b^2 (5 + 3c + \ell - m + 3n) + c^2 (6 + 4n) + a^4 (6 + c + b(-6 - 4n) + 4n) + c(7 - 2d - 4m + 7n) + a^3 (2 + 4b^2 - d - m + b(-6 + m - 2n) + 2n + c(6 + 4n)) + b(-1 + 4m + c(-8 + 2m - 4n) - n + d(12 + 8n)) + a(3 - 3b^3 + 2c^2 - 2m + b(-7 + 4d + 4m + c(-24 - 16n) - 7n) + d(-4 + m - 2n) + 3n + b^2 (7 - 2m + 4n) + c(17 + \ell - m + 11n)) + a^2 (-1 + \ell - m + b(-17 - 6c - \ell + m - 11n) + d(-6 - 4n) - n + c(6 - m + 2n) + b^2 (18 + 12n)) = 0,$

 $h_{\ell,m,n}(a,b,c,d)$

 $:= -7 + b^3 - a^5c - d^2 - \ell + 4m + a^4(-1 + b + d + c(-6 - 4n)) + c^2(-5 + m - 2n) + b^2(-4 + d + m + c(-6 - 4n) - 2n) - 8n + d(5 - 3m + 5n) + a^3(-6 + c(-4 + m - 2n) - 4n + d(6 + 4n) + b(6 + 4c + 4n)) + c(-6 - \ell + 5m - 4n + d(12 + 8n)) + b(7 + 2c^2 - 4m + d(-4 + m - 2n) + 7n + c(17 + \ell - m + 11n)) + a(-5 - \ell + m + c^2(-12 - 8n) + b^2(-12 - 3c - 8n) + c(-9 + 4d + 4m - 7n) - 3n + d(5 + \ell - m + 3n) + b(17 + \ell - m + d(-12 - 8n) + 11n + c(10 - 2m + 4n))) + a^2(-3 - 3b^2 - 3c^2 + m + c(-11 - \ell + m - 7n) - 2n + d(3 - m + 2n) + b(6 - 3d - m + 2n + c(18 + 12n))) = 0.$

 $z_{\ell,m,n}(a,b,c,d)$

 $:= -10 - a^5d - 6m + a^4(2c + d(-6 - 4n)) + d(-1 + 4m - n) - 6n + d^2(6 + 4n) + c^2(12 + 8n) + b^2(12 + 2c + d(-6 - 4n) + 8n) + c(10 - 6m + d(-6 + m - 2n) + 10n) + b(-10 - 2l + 2m + c(-8 + 2d + 2m - 4n) - 6n + d(5 + l - m + 3n)) + a^3(2 + b(-2 + 4d) + d(-3 + m - 2n) + c(12 + 8n)) + a(4 + 4c^2 + b^2(4 - 3d) + 2d^2 - 2m + d(-5 + 3m - 5n) + 4n + c(10 + 2l - 2m + d(-12 - 8n) + 6n) + b(-8 + 2m + c(-24 - 16n) - 4n + d(6 - 2m + 4n))) + a^2(12 + d(-5 - l + m - 3n) + 8n + c(6 - 3d - 2m + 4n) + b(-12 - 6c - 8n + d(18 + 12n))) = 0$

$oldsymbol{Q}_{0,n,n}(t)$ について

 $f_{0,n,n}(a,b,c,d)$ 場合、つまり $Q_{0,n,n}(t)$ について考える。まず、 $f_{0,n,n}(a,b,c,d)$ $= -4-a^6+b^3-c^2+a^5(-6-4n)+c(-5-2n)+b^2(-2-n)+a^4(-2+5b-n)-2n+d(2+n)+a^2(-2-6b^2+3d+c(-18-12n)-n+b(6+3n))+b(3-2d+n+c(12+8n))+a(4+b^2(-18-12n)+b(-2+6c-4n)+c(-6-2n)+5n+d(12+8n))+a^3(1-4c+2n+b(24+16n)),$

$$\begin{split} g_{0,n,n}(a,b,c,d) &= -5 + a^5(1-b) + b^3(-6-4n) + d(-5-2n) - 7n + b^2(5+3c+2n) + c(7-2d+3n) + \\ c^2(6+4n) + a^4(6+c+b(-6-4n)+4n) + a^3(2+4b^2-d+b(-6-n)+n+c(6+4n)) + \\ b(-1+c(-8-2n)+3n+d(12+8n)) + a(3-3b^3+2c^2+b(-7+4d+c(-24-16n)-3n) + d(-4-n)+n+b^2(7+2n) + c(17+10n)) + a^2(-1+b(-17-6c-10n)+d(-6-4n)-2n+c(6+n)+b^2(18+12n)) \\ &= 0, \end{split}$$

 $h_{0,n,n}(a,b,c,d)$

 $= -7 + b^3 - a^5c - d^2 + a^4(-1 + b + d + c(-6 - 4n)) + c^2(-5 - n) + b^2(-4 + d + c(-6 - 4n) - n) - 4n + d(5 + 2n) + a^3(-6 + c(-4 - n) - 4n + d(6 + 4n) + b(6 + 4c + 4n)) + c(-6 + n + d(12 + 8n)) + b(7 + 2c^2 + d(-4 - n) + 3n + c(17 + 10n)) + a(-5 + c^2(-12 - 8n) + b^2(-12 - 3c - 8n) + c(-9 + 4d - 3n) - 2n + d(5 + 2n) + b(17 + d(-12 - 8n) + 10n + c(10 + 2n))) + a^2(-3 - 3b^2 - 3c^2 + c(-11 - 6n) - n + d(3 + n) + b(6 - 3d + n + c(18 + 12n))) = 0,$

 $z_{0,n,n}(a,b,c,d)$

 $= -10 - a^5d + a^4(2c + d(-6 - 4n)) - 12n + d(-1 + 3n) + d^2(6 + 4n) + c(10 + d(-6 - n) + 4n) + c^2(12 + 8n) + b^2(12 + 2c + d(-6 - 4n) + 8n) + b(-10 + c(-8 + 2d - 2n) - 4n + d(5 + 2n)) + a^3(2 + b(-2 + 4d) + d(-3 - n) + c(12 + 8n)) + a(4 + 4c^2 + b^2(4 - 3d) + 2d^2 + d(-5 - 2n) + 2n + c(10 + d(-12 - 8n) + 4n) + b(-8 + c(-24 - 16n) - 2n + d(6 + 2n))) + a^2(12 + d(-5 - 2n) + 8n + c(6 - 3d + 2n) + b(-12 - 6c - 8n + d(18 + 12n))) = 0$

となる。つまり、これらは $(\ell, m, n) = (0, n, n)$ のときに $a, b, c, d \in \mathbb{Z}, n \in \mathbb{N} \cup \{0\}$ が満たしている方程式である。

以下の表は、(a,b,c,d)のすべての組み合わせについての $f_{0,n,n}(a,b,c,d)$, $g_{0,n,n}(a,b,c,d)$, $h_{0,n,n}(a,b,c,d)$, $z_{0,n,n}(a,b,c,d)$ の値と、 $f_{0,n,n}(a,b,c,d) = g_{0,n,n}(a,b,c,d) = h_{0,n,n}(a,b,c,d) = z_{0,n,n}(a,b,c,d) = 0$ を満たすという条件のもとでそのような (a,b,c,d) が可能かどうか を調べたものである。

(a,b,c,d)	$f_{0,n,n}$	$g_{0,n,n}$	$h_{0,n,n}$	$z_{0,n,n}$	
(0,0,0,0)				-1	不可能
(1,0,0,0)	-1-n		-1 + n		不可能
(-1,0,0,0)				-1	不可能
(0, 1, 0, 0)		-1			不可能
(0, -1, 0, 0)	-1 - n	1-n			不可能
(0,0,1,0)		-1			不可能
(0,0,-1,0)	0	0	0	1+n	$n \equiv -1$ のときのみ可能
(0,0,0,1)		-1			不可能
(0,0,0,-1)			-1		不可能
(1, 1, 0, 0)		-1			不可能
(-1, 1, 0, 0)		-1			不可能
(1, -1, 0, 0)	-1				不可能
(-1, -1, 0, 0)			1		不可能

(1,0,1,0)		T		1	不可能
(-1,0,1,0)			1	1	不可能
	1		1		不可能
(1,0,-1,0)		1 1 00			不可能不可能
(-1,0,-1,0)	1-n	1+n			
(1,0,0,1)	1-n	-1-n			不可能
(-1,0,0,1)	n	0	n	$\frac{n}{n}$	n ≡ 0 のときのみ可能
(1,0,0,-1)	-n	1+n			不可能
(-1,0,0,-1)	-1				不可能
(0, 1, 1, 0)	1+n	1-n			不可能
(0,-1,1,0)	-1+n		-1-n		不可能
(0,1,-1,0)	-1+n			n	不可能
(0,-1,-1,0)		1+n	n		不可能
(0,1,0,1)				1	不可能
(0, -1, 0, 1)		-1 + n		n	不可能
(0,1,0,-1)	1				不可能
(0,-1,0,-1)	1+n		n		不可能
(0,0,1,1)	1				不可能
(0,0,-1,1)			1		不可能
(0,0,1,-1)	n			1-n	不可能
(0,0,-1,-1)	1-n	-n			不可能
(1, 1, 1, 0)	0	n	-n	0	$n \equiv 0$ のときのみ可能
(-1, 1, 1, 0)	-1 + n		\overline{n}		不可能
(1, -1, 1, 0)	1				不可能
(1, 1, -1, 0)				1	不可能
(-1, -1, 1, 0)	1+n		-n		不可能
(-1, 1, -1, 0)	1				不可能
(1, -1, -1, 0)		-1			不可能
(-1, -1, -1, 0)	-n	-n	0	n	n ≡ 0 のときのみ可能
(1, 1, 0, 1)	1-n			-n	不可能
(-1, 1, 0, 1)		1			不可能
(1,-1,0,1)		1-n		1+n	不可能
(1, 1, 0, -1)					
	1-n	-1-n			不可能
	1-n	-1-n	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	不可能 不可能
(-1, -1, 0, 1)	1-n	-1-n		1	
(-1, -1, 0, 1) (-1, 1, 0, -1)		-1-n		1	不可能
(-1, -1, 0, 1) (-1, 1, 0, -1) (1, -1, 0, -1)	1 1	-1-n $-n$		1	不可能不可能
(-1, -1, 0, 1) $(-1, 1, 0, -1)$ $(1, -1, 0, -1)$ $(-1, -1, 0, -1)$	$ \begin{array}{c} 1\\ 1\\ -1+n \end{array} $		1-n	1	不可能 不可能 不可能 不可能
(-1, -1, 0, 1) $(-1, 1, 0, -1)$ $(1, -1, 0, -1)$ $(-1, -1, 0, -1)$ $(1, 0, 1, 1)$	1 1	-n	1-n	1	不可能 不可能 不可能 不可能 不可能 不可能
(-1, -1, 0, 1) $(-1, 1, 0, -1)$ $(1, -1, 0, -1)$ $(-1, -1, 0, -1)$ $(1, 0, 1, 1)$ $(-1, 0, 1, 1)$	$ \begin{array}{c} 1\\ 1\\ -1+n \end{array} $	-n -1	1-n	1	不可能 不可能 不可能 不可能 不可能 不可能 不可能
(-1, -1, 0, 1) $(-1, 1, 0, -1)$ $(1, -1, 0, -1)$ $(-1, -1, 0, -1)$ $(1, 0, 1, 1)$	$ \begin{array}{c} 1\\ 1\\ -1+n \end{array} $	-n	1-n	1	不可能 不可能 不可能 不可能 不可能 不可能

1 /					
(-1,0,-1,1)	n		-1 - n		不可能
(-1,0,1,-1)		n		1-n	不可能
(1,0,-1,-1)	-1				不可能
(-1,0,-1,-1)	-1				不可能
(0,1,1,1)				-1	不可能
(0, -1, 1, 1)	-n		-1 + n		不可能
(0,1,-1,1)	-1-n		-1 + n		不可能
(0,1,1,-1)	1				不可能
(0,-1,-1,1)		1			不可能
(0,-1,1,-1)	1				不可能
(0,1,-1,-1)				1	不可能
(0,-1,-1,-1)			1		不可能
(1, 1, 1, 1)		1-n		1+n	不可能
(-1, 1, 1, 1)	-1				不可能
(1, -1, 1, 1)	-1				不可能
(1, 1, -1, 1)	n	1-n			不可能
(1, 1, 1, -1)		-1			不可能
(-1, -1, 1, 1)	-1				不可能
(-1,1,-1,1)				1	不可能
(-1,1,1,-1)	-1-n	1-n			不可能
(1,-1,-1,1)	-1				不可能
(1,-1,1,-1)			-1		不可能
(1, 1, -1, -1)	n		1-n		不可能
(-1, -1, -1, 1)				-1	不可能
(-1, -1, 1, -1)		-1			不可能
(-1, 1, -1, -1)		1			不可能
(1,-1,-1,-1)		-1			不可能
(-1, -1, -1, -1)	-1				不可能

以上のことから、 $n \equiv 1 \pmod 3$ に対しては可能な $a,b,c,d \in \mathbb{Z}$ がない。よってこのとき $Q_{0,n,n}(t)$ は $p(t) = 1 + at + bt^2 + ct^3 + dt^4 + ct^5 + bt^6 + at^7 + t^8$ で割られない。

$Q_{n,0,n}(t)$ について $\frac{Q_{n,0,n}(t)}{(\ell,m,n)=(n,0,n)}$ 場合、つまり $Q_{n,0,n}(t)$ について考える。まず、 $f_{n,0,n}(a,b,c,d) = -4-a^6+b^3-c^2+a^5(-6-4n)+c(-5-4n)+b^2(-2-2n)+a^4(-2+5b-2n)-4n+d(2+2n)+a^2(-2-6b^2+3d+c(-18-12n)-3n+b(6+6n))+b(3-2d+3n+c(12+8n))+a(4+b(-2+6c)+b^2(-18-12n)+c(-6-4n)+3n+d(12+8n))+a^3(1-4c+b(24+16n)), g_{n,0,n}(a,b,c,d) = -5+a^5(1-b)+b^3(-6-4n)+d(-5-4n)-3n+c^2(6+4n)+b^2(5+3c+4n)+a^4(6+c+b(-6-4n)+4n)+c(7-2d+7n)+a^3(2+4b^2-d+b(-6-2n)+2n+c(6+4n))+b(-1+c(-8-2n)+a^2(-2n)+a^3(-2$

$$\begin{array}{l} 4n) - n + d(12 + 8n)) + a(3 - 3b^3 + 2c^2 + b(-7 + 4d + c(-24 - 16n) - 7n) + d(-4 - 2n) + 3n + b^2(7 + 4n) + c(17 + 12n)) + a^2(-1 + b(-17 - 6c - 12n) + d(-6 - 4n) + c(6 + 2n) + b^2(18 + 12n)) \\ = 0, \end{array}$$

 $h_{n,0,n}(a,b,c,d)$

 $= -7 + b^3 - a^5c - d^2 + a^4(-1 + b + d + c(-6 - 4n)) + c^2(-5 - 2n) + b^2(-4 + d + c(-6 - 4n) - 2n) - 9n + d(5 + 5n) + a^3(-6 + c(-4 - 2n) - 4n + d(6 + 4n) + b(6 + 4c + 4n)) + c(-6 - 5n + d(12 + 8n)) + b(7 + 2c^2 + d(-4 - 2n) + 7n + c(17 + 12n)) + a(-5 + c^2(-12 - 8n) + b^2(-12 - 3c - 8n) + c(-9 + 4d - 7n) - 4n + d(5 + 4n) + b(17 + d(-12 - 8n) + 12n + c(10 + 4n))) + a^2(-3 - 3b^2 - 3c^2 + c(-11 - 8n) - 2n + d(3 + 2n) + b(6 - 3d + 2n + c(18 + 12n))) = 0,$

 $z_{n,0,n}(a,b,c,d)$

 $= -10 - a^5d + a^4(2c + d(-6 - 4n)) + d(-1 - n) - 6n + d^2(6 + 4n) + c^2(12 + 8n) + b^2(12 + 2c + d(-6 - 4n) + 8n) + c(10 + d(-6 - 2n) + 10n) + b(-10 + c(-8 + 2d - 4n) - 8n + d(5 + 4n)) + a^3(2 + b(-2 + 4d) + d(-3 - 2n) + c(12 + 8n)) + a(4 + 4c^2 + b^2(4 - 3d) + 2d^2 + d(-5 - 5n) + 4n + c(10 + d(-12 - 8n) + 8n) + b(-8 + c(-24 - 16n) - 4n + d(6 + 4n))) + a^2(12 + d(-5 - 4n) + 8n + c(6 - 3d + 4n) + b(-12 - 6c - 8n + d(18 + 12n))) = 0$

となる。つまり、これらは $(\ell,m,n)=(0,n,n)$ のときに $a,b,c,d\in\mathbb{Z},\,n\in\mathbb{N}\cup\{0\}$ が満たしている方程式である。

以下の表は、(a,b,c,d)のすべての組み合わせについての $f_{n,0,n}(a,b,c,d)$, $g_{n,0,n}(a,b,c,d)$, $h_{n,0,n}(a,b,c,d)$, $z_{n,0,n}(a,b,c,d)$ の値と、 $f_{n,0,n}(a,b,c,d)=g_{n,0,n}(a,b,c,d)=h_{n,0,n}(a,b,c,d)=z_{n,0,n}(a,b,c,d)=0$ を満たすという条件のもとでそのような (a,b,c,d) が可能かどうかを調べたものである。

		T			
(a,b,c,d)	$\int f_{n,0,n}$	$g_{n,0,n}$	$h_{n,0,n}$	$z_{n,0,n}$	
(0,0,0,0)		1			不可能
(1,0,0,0)				-1	不可能
(-1,0,0,0)	1+n	-n			不可能
(0,1,0,0)	1				不可能
(0,-1,0,0)	-1				不可能
(0,0,1,0)	-1 + n	-1-n			不可能
(0,0,-1,0)	0 .	0	0	1+n	n ≡ -1のときのみ可能
(0,0,0,1)				1	不可能
(0,0,0,-1)		n	-1 + n		不可能
(1, 1, 0, 0)				1	不可能
(-1, 1, 0, 0)				1	不可能
(1, -1, 0, 0)			-1		不可能
(-1, -1, 0, 0)				1	不可能
(1,0,1,0)	1				不可能
(-1,0,1,0)	-1+n		1+n		不可能
(1,0,-1,0)			1		不可能
(-1,0,-1,0)	1+n		1-n		不可能

(1,0,0,1)	1				不可能
(-1,0,0,1)	n	-n	-n	0	n ≡ 0のときのみ可能
(1,0,0,-1)	\overline{n}	1+n			不可能
(-1,0,0,-1)	-1 + n	-n			不可能
(0,1,1,0)		1			不可能
(0,-1,1,0)	-1				不可能
(0,1,-1,0)			1		不可能
(0,-1,-1,0)		1-n	n		不可能
(0,1,0,1)				-1	不可能
(0,-1,0,1)		-1			不可能
(0,1,0,-1)	1+n			-n	不可能
(0,-1,0,-1)	1+n		-n		不可能
(0,0,1,1)			1		不可能
(0,0,-1,1)			1		不可能
(0,0,1,-1)	-n			1+n	不可能
(0,0,-1,-1)	1+n	n			不可能
(1,1,1,0)	n	-n	-n	0	n ≡ 0のときのみ可能
(-1,1,1,0)	-1				不可能
(1,-1,1,0)		-1			不可能
(1,1,-1,0)	n	-1 + n			不可能
(-1, -1, 1, 0)	1+n	1-n			不可能
(-1, 1, -1, 0)	1-n			1+n	不可能
(1,-1,-1,0)	1				不可能
(-1, -1, -1, 0)	-n	n	0	n	$n \equiv 0$ のときのみ可能
(1, 1, 0, 1)		-1			不可能
(-1, 1, 0, 1)	1+n		n		不可能
(1, -1, 0, 1)		1-n		1+n	不可能
(1,1,0,-1)	1				不可能
(-1, -1, 0, 1)	1				不可能
(-1,1,0,-1)			1		不可能
(1,-1,0,-1)				1	不可能
(-1, -1, 0, -1)	-1				不可能
(1,0,1,1)	n		1+n		不可能
(-1,0,1,1)				1	不可能
(1,0,-1,1)				1	不可能
(1,0,1,-1)			1		不可能
(-1,0,-1,1)	n		-1-n		不可能
(-1,0,1,-1)	n			1+n	不可能
(1,0,-1,-1)	-1				不可能
(-1,0,-1,-1)	-1 + n			-n	不可能

	7				
(0,1,1,1)	1				不可能
(0,-1,1,1)	-n		-1 + n		不可能
(0,1,-1,1)	-1 + n	n			不可能
(0,1,1,-1)				-1	不可能
(0,-1,-1,1)	1-n			n	不可能
(0,-1,1,-1)		-1			不可能
(0,1,-1,-1)	-1				不可能
(0,-1,-1,-1)				-1	不可能
(1, 1, 1, 1)		1			不可能
(-1, 1, 1, 1)	-1				不可能
(1, -1, 1, 1)		1			不可能
(1,1,-1,1)				1	不可能
(1, 1, 1, -1)		-1 + n		-n	不可能
(-1, -1, 1, 1)			1		不可能
(-1,1,-1,1)			1		不可能
(-1,1,1,-1)	-1				不可能
(1,-1,-1,1)		-1			不可能
(1,-1,1,-1)			-1+n	-n	不可能
(1,1,-1,-1)			1		不可能
(-1, -1, -1, 1)	1-n	-n			不可能
(-1, -1, 1, -1)	n	-1 + n			不可能
(-1,1,-1,-1)	1-n			-n	不可能
(1,-1,-1,-1)		-1			不可能
(-1,-1,-1,-1)			1		不可能

以上のことから、 $n\equiv 1\ (\mathrm{mod}\ 3)$ に対しては可能な $a,b,c,d\in\mathbb{Z}$ がない、よってこのとき $Q_{n,0,n}(t)$ は $p(t)=1+at+bt^2+ct^3+dt^4+ct^5+bt^6+at^7+t^8$ で割られない。

参考文献

- [CW] J. W. Cannon, P. Wagreich, Growth functions of surface groups, Math. Ann. 293 (1992), 239–257.
- [K] M. Kerada, Une caractérisation de cetraines classes d'entiers algébriques généralisant les nombres de Salem, Acta Arithmetica 72 (1995), 55–65.
- [P] W. Parry, Growth series of Coxeter groups and Salem numbers, J. Algebra 154 (1993), 406–415.
- [S] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
- [U] Y. Umemoto, The growth function of Coxeter dominoes and 2-Salem numbers, to appear in Algebraic and Geometric Topology, available at arXiv:1306.3443.