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HOMOTOPY COMMUTATIVITY IN LOCALIZED GAUGE GROUPS

DAISUKE KISHIMOTO

1. INTRODUCTION AND STATEMENT OF THE RESULT

This is a survey the paper [KKTh] written with Akira Kono and Stephen Theriault.

Throughout the paper, we only consider the Lie group G = SU(n) for simplicity, while most
results hold for other simply connected, simple Lie groups. Let us recall p-local properties of G.

Theorem 1.1 (Mimura, Nishida and Toda [MNT]). There ezist p-local spaces B, ..., By_1 sat-
isfying
Gy~ By X -+ X By,

where the mod p cohomology of B; is given by
H*(Bi; Z/p) = MZait142k(-1) |0 < k < np;i%l)u il =J.

This is called the mod p decomposition of G. Observe that if p > n, each B; has the homotopy
type of S(Z;)J' ! or a point. Then we can say that the p-local homotopy type of G degenerates as p
gets larger. So it is natural to consider degeneration of the H-structure of G(p) as p gets larger.

As for homotopy commutativity, the complete answer was given by McGibbon [M] as:
Theorem 1.2 (McGibbon [M]). Gy is homotopy commutative if and only if p > 2n.

Later, this result was generalized by Kaji and Kishimoto [KaKi] and Kishimoto [Ki] to homotopy
nilpotency.

Our object to study is a gauge group which is the topological group of all automorphisms of a
principal bundle, i.e. self-maps of the total space which are compatible with the action of the fiber
and cover the identity map of the base space. Recall that principal G-bundles over 54 are classified
by m4(BG) = Z. We write the gauge group of the principal G-bundle over 54 corresponding to the
integer k € Z = 74(BG) by Gx. The homotopy theory of gauge groups has been studied in many
directions (cf. [CS, Ko, KiKo]). In each work, we have seen that Gy has a close relation with G
as is expected from definition. So we may expect that G possesses p-local properties analogous
to G. As for the mod p decomposition, our expectation has been proved to be true.
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Theorem 1.3 (Kishimoto, Kono and Tsutaya [KKTs]). There ezist p-local spaces By, ..., By_y
satisfying

Orp) = B1 x -+ x Bpy
and homotopy fibrations

Q(QSBZ.) — B; — B;_,

where we regard the spaces B; of Theorem 1.1 are indezed by Z/(p — 1). Moreover, the homotopy
fibrations are trivial if p > n + 2.

In particular, we can say that the p-local homotopy type of Gy degenerates as p gets larger,
analogously to G. Now we naturally ask whether there is a gauge group version of Theorem 1.2.
Let us state our main result.

Theorem 1.4. Suppose n > 4.

(1) For p < 2n+1, Gy is not homotopy commutative.
(2) Forp>2n+1, Gy is homotopy commutative.
(3) Forp=2n+1, Gy is homotopy commutative if and only if p divides k.

Remark 1.5. Note that the integer k only appears in the border case p = 2n + 1.

2. NONCOMMUTATIVITY

In this section, we give a sketch of the proof of the noncommutativity result on Gy,. We first
recall basic facts of gauge groups briefly. Let ¢; be a generator of mg;_1(G) ¥ Z for i = 2,...,n.
Recall that there is a natural homotopy equivalence

BGy. ~ map(S5*, BG; ké,),

where map(X,Y; f) stands for the connected component of the space of maps from X to Y
containing a map f : X — Y and & : S* — BG is the adjoint of €;. See [AB]. Then the
evaluation map map(S*, BG; k€;) — BG induces a homotopy fibration

(2.1) G 5 G503,
where 7 is a loop map. The map 0§ is identified as:
Lemma 2.1 (Whitehead [W]). The map 6 is the adjoint of the Samelson product (e, 15).
Hereafter, everything will be localized at the prime p.
We now sketch the proof of noncommutativity of Gy. Suppose that there are 2 < i, 7, < n such
that
(2.2) (e2,€) =0, (e2,€) =0, (e,€5) #0.
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Since 4 o ¢, is the adjoint of (3, ;) by Lemma 2.1, § o ¢, is null homotopic for £ = 4, j. Then for
0 =1i,j, € lifts to & : S¥1 — G, through 7 : Gy — G. Consider the Samelson product (€:,€5).
Since 7 is an H-map, we have

™o <€‘i,€j> = <7T (o] gi,’ﬂ' 9] €]> = <€i, 6j>
which is nontrivial by assumption. Then in particular, we obtain that Gy is not homotopy com-

mutative. So our task is to find 2 < 4, j < n satisfying (2.2), which is easily done by the following
classical result if n > 4.

Theorem 2.2 (Bott [B]). If2 <4,j < n andi+j > n, the order of the Samelson product (e;, €;)

is a nonzero multiple of
(i+7—1)!
(-G -1

3. COMMUTATIVITY

In this section, we give a brief sketch of the proof of the commutativity result on Gi. If the map
7 in the homotopy fibration (2.1) has a homotopy section, we have a decomposition

as spaces. If this decomposition is as H-spaces and G is homotopy commutative (i.e. p > 2n by
Theorem 1.2), we obtain that G is homotopy commutative as desired. Then we give a criterion
for the decomposition being as H-spaces, where we omit the proof.

Lemma 3.1 (cf. [KiKo]). If there is an H-map 3 : G — Gy such that w o § is a homotopy
equivalence, then there is a homotopy equivalence as H-spaces

Gr~Gx Q(QgG’).
In particular, if moreover p > 2n, Gy is homotopy commutative.

For the rest of this section, we assume p > 2n. Then in particular, G ~ S% x S% x ... x §2~1

Since G is homotopy commutative, it follows from Lemma 2.1 that 7 has a homotopy section
s: G — Gy, not necessarily an H-map. We replace this homotopy section with an H-map. To this
end, we employ the loop-suspension technique.

Theorem 3.2 (James [J]). Consider a map f : X — Y where Y is a homotopy associative H-
space. There is a unique (up to homotopy) H-map f: QXX — Y satisfying foE ~ f for the
suspension map E : X — QXX, where f is called the extension of f.

We put A= 53V S®V..-vS™1andleti: A— G be the inclusion of a wedge into a product.
Let F be the homotopy fiber of the extension 7 : QXA — G, and let X : F' — QX be the fiber
inclusion. By an easy diagram chasing, we can prove:
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Lemma 3.3. Consider_a map f : G — Z where Z is a homotopy associative H-space. If the

composite F 2 054 L% 7 s null homotopic, there is an H-map f . G — Z satisfying the
homotopy commutative square

0S4 @
= b
[ —

so1

Suppose now that the composite F N0} )Y N G is null homotopic. Then it follows from
Lemma 3.3 that there is an H-map § : G — G satisfying the homotopy commutative diagram

OXA @
Gr === Gi.

In particular, there is a chain of homotopies
mo§oi~moioioE~no(soi)oFE~mosoiri.

In the mod p homology, the map ¢ : A — G induces the inclusion of ring generators. Then 7 o §
turns out to be the identity map on ring generators in the mod p homology, hence since 7 o §
is an H-map, it is an isomorphism in the mod p homology. So we obtain that 7 o 5 is a p-local

homotopy equivalence. Then all we have to do is prove that the composite F ENY0) )Y PN Gy is

null homotopic. To this end, we analyze the fiber inclusion \.
Let F’ be the homotopy fiber of the adjoint ¥ A — BG of the inclusion 7 : A — G. Since the
extension 7 : QA — G is the loop of the above adjoint, we get:

Lemma 3.4. F ~ QF’ and the fiber inclusion X : QF' — QYA is a loop map.

Let L be the free Lie algebra gencrated by H,(A; Z/p). Then as in [CN], the induced map
i H(QXA;Z/p) — H.(G;Z/p) is identified with the map between universal envelopes
U(L) = U(L/[L, L)
induced from the abelianization L — L/[L, L]. Moreover, there is a splitting
U(L) = U([L, L)) @ U(L/[L, L),

hence the image of A, : H.(F;Z/p) — H.(QLA;Z/p) is identified with U([L, L]) C U(L). A little
more consideration shows that the Lie algebra generators of [L, L] are spherical and lift to F. So
we obtain:

Theorem 3.5. There is a wedge of spheres R such that F' ~ ¥R, and the composite R SN 9) 3 AN
QXA is a wedge of iterated Samelson products of

o S EL 4 5 oxa,
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Corollary 3.6. If p > 2n + 1, the composite F' 2054 2 G 1s null homotopic.

Proof. Put i; = (s04) o u;. We consider the Samelson product (i, fi;,). Since 7 is an H-map
and G is homotopy commutative, we have

70 (g, Big) = (0 © fliy, T 0 [hip) = 0.
Then (G, , fii,) lifts to a map $%1722-2 — Q(Q3G) by the homotopy fibration Q(Q3G) — Gx = G.
Since p > 2n + 1, we have 7, (QUQ3G)) = 0 for m < 2n — 1 by [To|, implying that the above lift
is null homotopic. Then we obtain (f;,, fi;;) = 0, hence

0= <ﬂju ( e <p'jm—l’ﬁjm> e >) = (m) ° <:“'.1'1) < o <:ujm—1’/’t.‘iM> e >>

since s 01 is an H-map. Thus by Theorem 3.5, the composite R Z Q8RS Q84 2 G, is null
homotopic. Therefore we obtain the desired result by the uniqueness of the extension and Lemma
3.4. !

4. THE CASEp=2n+1

Throughout this section, we assume p = 2n + 1.

As in the previous section, it is sufficient for proving the commutativity result to show that the
homotopy section s : G — Gy is an H-map. This is equivalent to show that the adjoint
5: XG — BG, ~ map(S*, BG : k&)
extends to the projective plane P2G. By the exponential law, this is equivalent to existence of a
map p: S* x P?G — BG satisfying a homotopy commutative diagram

kéaVs

StvEG— BG
oo |
S¢ x P2G —— BG.
Since P2G is the cofiber of the Hopf construction XG A G — %G and £G A G has the homotopy

type of a wedge of spheres of dimension < 2n? — 1 = (”_Tl)z — 1, we see that the obstruction for

2
existence of y lies in m,(BG) for * < (”;21)— + 3. Since the obstruction is torsion in m,(BG), we
see from [To] that it is of order at most p. Moreover, we also see that the obstruction is linear in

k. Then we get:

Proposition 4.1. If p divides k, the homotopy section s is an H-map, hence Gy is homotopy
commutative.

When p does not divide k, we can prove that the obstruction is nontrivial by looking at the
Steenrod operation on the mod p cohomology of BG. Then we have:

Proposition 4.2. If p does not divide k, the homotopy section s cannot be an H-map.



Corollary 4.3. If p does not divide k, Gy is not homotopy commutative.

Proof. Suppose that Gy is homotopy commutative. Then the argument in the previous section
ensures that there is an H-map § : G — G such that the composite e = 7 o § is a homotopy
equivalence. If we put s = §oe™!, s is a homotopy section of 7 and is an H-map, which contradicts
to Proposition 4.2. O
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