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1. INTRODUCTION AND STATEMENT OF THE RESULT

This is a survey the paper [KKTh] written with Akira Kono and Stephen Theriault.

Throughout the paper, we only consider the Lie group $G=$ $SU$ $(n)$ for simplicity, while most

results hold for other simply connected, simple Lie groups. Let us recall -local properties of $G.$

Theorem 1.1 (Mimura, Nishida and Toda [MNT]). There exist $p$ -local spaces $B_{1},$
$\ldots,$

$B_{p-1}$ sat-
isfying

$G_{(p)}\simeq B_{1}\cross\cdots\cross B_{p-1},$

where the mod $p$ cohomology of $B_{i}$ is given by

$H^{*}(B_{i}; \mathbb{Z}/p)=\Lambda(x_{2i+1+2k(p-1)}|0\leq k<\frac{n-i-1}{p-1}) , |x_{j}|=j.$

This is called the $mod p$ decomposition of $G$ . Observe that if $p\geq n$ , each $B_{i}$ has the homotopy

type of $S_{(p)}^{2i+1}$ or a point. Then we can say that the p–local homotopy type of $G$ degenerates as $p$

gets larger. So it is natural to consider degeneration of the $H$-structure of $G_{(p)}$ as $p$ gets larger.

As for homotopy commutativity, the complete answer was given by McGibbon [M] as:

Theorem 1.2 (McGibbon [M]). $G_{(p)}$ is homotopy commutative if and only if $p>2n.$

Later, this result was generalized by Kaji and Kishimoto $[KaKi]$ and Kishimoto [Ki] to homotopy

nilpotency.
Our object to study is a gauge group which is the topological group of all automorphisms of a

principal bundle, i.e. self-maps of the total space which are compatible with the action of the fiber

and cover the identity map of the base space. Recall that principal $G$-bundles over $S^{4}$ are classified
by $\pi_{4}(BG)\cong \mathbb{Z}$ . We write the gauge group of the principal $G$-bundle over $S^{4}$ corresponding to the

integer $k\in \mathbb{Z}\cong\pi_{4}(BG)$ by $\mathcal{G}_{k}$ . The homotopy theory of gauge groups has been studied in many

directions $(cf. [CS, Ko, KiKo])$ . In each work, we have seen that $\mathcal{G}_{k}$ has a close relation with $G$

ae is expected from definition. So we may expect that $\mathcal{G}_{k}$ possesses -local properties analogous

to $G$ . As for the $mod p$ decomposition, our expectation has been proved to be true.
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Theorem 1.3 (Kishimoto, Kono and Tsutaya [KKTs]). There exist $p$ -local spaces $\mathcal{B}_{1},$

$\ldots,$
$\mathcal{B}_{p-1}$

satisfying
$\mathcal{G}_{k(p)}\simeq \mathcal{B}_{1}\cross\cdots\cross \mathcal{B}_{p-1}$

and homotopy fibrations
$\Omega(\Omega_{0}^{3}B_{i})arrow \mathcal{B}_{i}arrow B_{i-2},$

where we regard the spaces $B_{i}$ of Theorem 1.1 are indexed by $\mathbb{Z}/(p-1)$ . Moreover, the homotopy
fibrations are trivial if $p\geq n+2.$

In particular, we can say that the $p$-local homotopy type of $\mathcal{G}_{k}$ degenerates as $p$ gets larger,
analogously to $G$ . Now we naturally ask whether there is a gauge group version of Theorem 1.2.
Let us state our main result,

Theorem 1.4. Suppose $n\geq 4.$

(1) For $p<2n+1,$ $\mathcal{G}_{k(p)}$ is not homotopy commutative.
(2) For $p>2n+1,$ $\mathcal{G}_{k(p)}$ is homotopy commutative.
(3) For $p=2n+1,$ $\mathcal{G}_{k(p)}$ is homotopy commutative if and only if $p$ divides $k.$

Remark 1.5. Note that the integer $k$ only appears in the border case $p=2n+1.$

2. NONCOMMUTATIVITY

In this section, we give a sketch of the proof of the noncommutativity result on $\mathcal{G}_{k(p)}$ . We first
recall basic facts of gauge groups briefly. Let $\epsilon_{i}$ be a generator of $\pi_{2i-1}(G)\cong \mathbb{Z}$ for $i=2,$ $\ldots,$

$n.$

Recall that there is a natural homotopy equivalence

$B\mathcal{G}_{k}\simeq map(S^{4}, BG;k\overline{\epsilon}_{2})$,

where map$(X, Y;f)$ stands for the connected component of the space of maps from $X$ to $Y$

containing a map $f$ : $Xarrow Y$ and $\overline{\epsilon}_{2}$ : $S^{4}arrow BG$ is the adjoint of $\epsilon_{2}$ . See [AB]. Then the
evaluation map map $(S^{4}, BG;k\overline{\epsilon}_{2})arrow BG$ induces a homotopy fibration

(2.1) $\mathcal{G}_{k}arrow\pi Garrow\delta\Omega_{0}^{3}G,$

where $\pi$ is a loop map. The map $\delta$ is identified as:

Lemma 2.1 (Whitehead [W]). The map $\delta$ is the adjoint of the Samelson product $\langle\epsilon_{2},1_{G}\rangle.$

Hereafter, everything will be localized at the prime $p.$

We now sketch the proof of noncommutativity of $\mathcal{G}_{k}$ . Suppose that there are $2\leq i,$ $j,$ $\leq n$ such
that

(2.2) $\langle\epsilon_{2}, \epsilon_{i}\rangle=0, \langle\epsilon_{2}, \epsilon_{j}\rangle=0, \langle\epsilon_{i}, \epsilon_{j}\rangle\neq 0.$
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Since $\delta 0\epsilon_{\ell}$ is the adjoint of $\langle\epsilon_{2},$ $\epsilon_{\ell}\rangle$ by Lemma 2.1, $\delta\circ\epsilon_{\ell}$ is null homotopic for $\ell=i,j$ . Then for
$\ell=i,j,$ $\epsilon_{\ell}$ lifts to $\tilde{\epsilon}_{\ell}$ : $S^{2\ell-1}arrow \mathcal{G}_{k}$ through $\pi$ : $\mathcal{G}_{k}arrow G$ . Consider the Samelson product $\langle\tilde{\epsilon}_{i},\tilde{\epsilon}_{j}\rangle.$

Since $\pi$ is an $H$-map, we have

$\pi\circ\langle\tilde{\epsilon}_{i},\tilde{\epsilon}_{j}\rangle=\langle\pi\circ\tilde{\epsilon}_{i}, \pi\circ\tilde{\epsilon}_{j}\rangle=\langle\epsilon_{i}, \epsilon_{j}\rangle$

which is nontrivial by assumption. Then in particular, we obtain that $\mathcal{G}_{k}$ is not homotopy com-
mutative. So our task is to find $2\leq i,j\leq n$ satisfying (2.2), which is easily done by the following
classical result if $n\geq 4.$

Theorem 2.2 (Bott [B]). If $2\leq i,j\leq n$ and $i+j>n$ , the order of the Samelson product $\langle\epsilon_{i},$ $\epsilon_{j}\rangle$

is a nonzero multiple of
$\frac{(i+j-1)!}{(i-1)!(j-1)!}.$

3. COMMUTATIVITY

In this section, we give a brief sketch of the proof of the commutativity result on $\mathcal{G}_{k}$ . If the map
$\pi$ in the homotopy fibration (2.1) has a homotopy section, we have a decomposition

$\mathcal{G}_{k}\simeq G\cross\Omega(\Omega_{0}^{3}G)$

as spaces. If this decomposition is as $H$-spaces and $G$ is homotopy commutative (i.e. $p>2n$ by

Theorem 1.2), we obtain that $\mathcal{G}_{k}$ is homotopy commutative as desired. Then we give a criterion
for the decomposition being as $H$-spaces, where we omit the proof.

Lemma 3.1 $(cf. [KiKo])$ . If there is an $H$-map $\hat{s}$ : $Garrow \mathcal{G}_{k}$ such that $\pi 0\hat{s}$ is a homotopy

equivalence, then there is a homotopy equivalence as $H$-spaces

$\mathcal{G}_{k}\simeq G\cross\Omega(\Omega_{0}^{3}G)$ .

In particular, if moreover $p>2n,$ $\mathcal{G}_{k}$ is homotopy commutative.

For the rest of this section, we assume $p>2n$ . Then in particular, $G\simeq S^{3}\cross S^{5}\cross\cdots\cross S^{2n-1}$

Since $G$ is homotopy commutative, it follows from Lemma 2.1 that $\pi$ has a homotopy section
$s:Garrow \mathcal{G}_{k}$ , not necessarily an $H$-map. We replace this homotopy section with an $H$-map. To this

end, we employ the loop-suspension technique.

Theorem 3.2 (James [J]). Consider a map $f$ : $Xarrow Y$ where $Y$ is a homotopy associative $H$-

space. There is a unique (up to homotopy) $H$-map $\overline{f}:\Omega\Sigma Xarrow Y$ satisfying $\overline{f}\circ E\simeq f$ for the

suspension map $E:Xarrow\Omega\Sigma X$ , where $\overline{f}$ is called the extension of $f.$

We put $A=S^{3}\vee S^{5}\vee\cdots\vee S^{2n-1}$ and let $i:Aarrow G$ be the inclusion of a wedge into a product.

Let $F$ be the homotopy fiber of the extension $\overline{i}$ : $\Omega\Sigma Aarrow G$ , and let $\lambda$ : $Farrow\Omega\Sigma$ be the fiber

inclusion. By an easy diagram chasing, we can prove:
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Lemma 3.3. Consider a map $f$ : $Garrow Z$ where $Z$ is a homotopy associative $H$-space. If the
composite $Farrow\lambda\Omega\Sigma Aarrow^{\overline {}f\circ i}Z$ is null homotopic, there is an $H$-map $\hat{f}$ $Garrow Z$ satisfying the
homotopy commutative square

$\Omega\Sigma Aarrow^{\overline {}i}G$

$\downarrow\overline{f\circ i} \downarrow f$

$Z-Z.$
Suppose now that the composite $Farrow\lambda\Omega\Sigma Aarrow^{\overline {}s\circ i}\mathcal{G}_{k}$ is null homotopic. Then it follows from

Lemma 3.3 that there is an $H$-map $\hat{s}$ : $Garrow \mathcal{G}_{k}$ satisfying the homotopy commutative diagram

$\Omega\Sigma Aarrow^{\overline {}i}G$

$\downarrow\overline{soi} \downarrow\hat{s}$

$\mathcal{G}_{k}-\mathcal{G}_{k}.$

In particular, there is a chain of homotopies

$\pi 0\hat{s}\circ i\simeq\pi\circ\hat{s}\circ\overline{i}\circ E\simeq\pi\circ(\overline{s\circ i})\circ E\simeq\pi\circ s\circ i\simeq i.$

In the $mod p$ homology, the map $i$ : $Aarrow G$ induces the inclusion of ring generators. Then $\pi 0\hat{s}$

turns out to be the identity map on ring generators in the $mod p$ homology, hence since $\pi\circ\hat{s}$

is an $H$-map, it is an isomorphism in the $mod p$ homology. So we obtain that $\pi 0\hat{s}$ is a $p$-local
homotopy equivalence. Then all we have to do is prove that the composite $Farrow\lambda\Omega\Sigma Aarrow^{s\circ i}\mathcal{G}_{k}$ is
null homotopic. To this end, we analyze the fiber inclusion $\lambda.$

Let $F’$ be the homotopy fiber of the adjoint $\Sigma Aarrow BG$ of the inclusion $i$ : $Aarrow G$ . Since the
extension $\overline{i}:\Omega\Sigma Aarrow G$ is the loop of the above adjoint, we get:

Lemma 3.4. $F\simeq\Omega F’$ and the fiber inclusion $\lambda$ : $\Omega F’arrow\Omega\Sigma A$ is a loop map.

Let $L$ be the free Lie algebra generated by $\tilde{H}_{*}(A;\mathbb{Z}/p)$ . Then as in [CN], the induced map
$\overline{i}_{*}:H_{*}(\Omega\Sigma A;\mathbb{Z}/p)arrow H_{*}(G;\mathbb{Z}/p)$ is identified with the map between universal envelopes

$U(L)arrow U(L/[L, L])$

induced from the abelianization $Larrow L/[L, L]$ . Moreover, there is a splitting

$U(L)\cong U([L, L])\otimes U(L/[L, L])$ ,

hence the image of $\lambda_{*}:H_{*}(F;\mathbb{Z}/p)arrow H_{*}(\Omega\Sigma A;\mathbb{Z}/p)$ is identified with $U([L, L])\subset U(L)$ . $A$ little
more consideration shows that the Lie algebra generators of $[L, L]$ are spherical and lift to $F$ . So
we obtain:

Theorem 3.5. There is a wedge of spheres $R$ such that $F’\simeq\Sigma R$ , and the composite $Rarrow\Omega\Sigma REarrow\lambda$

$\Omega\Sigma A$ is a wedge of iterated Samelson products of
$\mu_{j}:S^{2j-1}arrow Ainclarrow\Omega\Sigma AE.$
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Corollary 3.6. If $p>2n+1$ , the composite $Farrow\lambda\Omega\Sigma Aarrow \mathcal{G}_{k}\overline{s\circ i}$ is null homotopic.

Proof. Put $\overline{\mu}_{j}=(\overline{s\circ i})\circ\mu_{j}$ . We consider the Samelson product $\langle\overline{\mu}_{i_{1}},\overline{\mu}_{i_{2}}\rangle$ . Since $\pi$ is an $H$-map
and $G$ is homotopy commutative, we have

$\pi\circ\langle\overline{\mu}_{i_{1}},\overline{\mu}_{i_{2}}\rangle=\langle\pi\circ\overline{\mu}_{i_{1}}, \pi\circ\overline{\mu}_{i_{2}}\rangle=0.$

Then $\langle\overline{\mu}_{i_{1}},\overline{\mu}_{i_{2}}\rangle$ lifts to a map $S^{2i_{1}+2i_{2}-2}arrow\Omega(\Omega_{0}^{3}G)$ by the homotopy fibration $\Omega(\Omega_{0}^{3}G)arrow \mathcal{G}_{k}arrow\pi G.$

Since $p>2n+1$ , we have $\pi_{2m}(\Omega(\Omega_{0}^{3}G))=0$ for $m\leq 2n-1$ by [To], implying that the above lift
is null homotopic. Then we obtain $\langle\overline{\mu}_{i_{1}},\overline{\mu}_{i_{2}}\rangle=0$ , hence

$0=\langle\overline{\mu}_{j_{1}}, \langle\cdots\langle\overline{\mu}_{j_{m-1}},\overline{\mu}_{j_{m}}\rangle\cdots\rangle\rangle=(\overline{s\circ i})\circ\langle\mu_{j_{1}}, \langle\cdots\langle\mu_{j_{m-1}}, \mu_{j_{m}}\rangle\cdots\rangle\rangle$

since $\overline{s\circ i}$ is an $H$-map. Thus by Theorem 3.5, the composite $Rarrow\Omega\Sigma REarrow\lambda\Omega\Sigma Aarrow \mathcal{G}_{k}\overline{s\circ i}$ is null
homotopic. Therefore we obtain the desired result by the uniqueness of the extension and Lemma
3.4. $\square$

4. THE CASE $p=2n+1$

Throughout this section, we assume $p=2n+1.$

As in the previous section, it is sufficient for proving the commutativity result to show that the
homotopy section $s:Garrow \mathcal{G}_{k}$ is an $H$-map. This is equivalent to show that the adjoint

$\overline{s}:\Sigma Garrow B\mathcal{G}_{k}\simeq map(S^{4}, BG : k\overline{\epsilon}_{2})$

extends to the projective plane $P^{2}G$ . By the exponential law, this is equivalent to existence of a
map $\mu:S^{4}\cross P^{2}Garrow BG$ satisfying a homotopy commutative diagram

$S^{4}\Sigma Garrow BGk\overline{\epsilon}_{2}\vee\overline{s}$

$\downarrow incl \Vert$

$S^{4}\cross P^{2}Garrow^{\mu}BG.$

Since $P^{2}G$ is the cofiber of the Hopf construction $\Sigma G\wedge Garrow\Sigma G$ and $\Sigma G\wedge G$ has the homotopy
type of a wedge of spheres of dimension $\leq 2n^{2}-1=\frac{(p-1)^{2}}{2}-1$ , we see that the obstruction for

existence of $\mu$ lies in $\pi_{*}(BG)$ for $* \leq\frac{(p-1)^{2}}{2}+3$ . Since the obstruction is torsion in $\pi_{*}(BG)$ , we
see from [To] that it is of order at most $p$ . Moreover, we also see that the obstruction is linear in
$k$ . Then we get:

Proposition 4.1. If $p$ divides $k$ , the homotopy section $s$ is an $H$-map, hence $\mathcal{G}_{k}$ is homotopy
commutative,

When $p$ does not divide $k$ , we can prove that the obstruction is nontrivial by looking at the

Steenrod operation on the $mod p$ cohomology of $BG$ . Then we have:

Proposition 4.2. If $p$ does not divide $k$ , the homotopy section $s$ cannot be an $H$-map.
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Corollary 4.3. If $p$ does not divide $k,$ $\mathcal{G}_{k}$ is not homotopy commutative,

Proof. Suppose that $\mathcal{G}_{k}$ is homotopy commutative. Then the argument in the previous section
ensures that there is an $H$-map $\hat{s}$ : $Garrow \mathcal{G}_{k}$ such that the composite $e=\pi 0\hat{s}$ is a homotopy
equivalence. If we put $s=\hat{s}oe^{-1},$ $s$ is a homotopy section of $\pi$ and is an $H$-map, which contradicts
to Proposition 4.2. $\square$
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