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ABSTRACT. Let $f$ be a complex function on a domain in the complex plane $\mathbb{C}$ . Then $f$ is
holomorphic or anti-holomorphic, if and only if $f$ is a conformal map. we are interested
in generalizing this to higher dimensional cases. In this paper, for a compact irreducible
Hermitian symmetric space $M$ , we determine the group $H^{\pm}(M)$ of all holomorphic and
anti-holomorphic automorphisms of $M$ , and we characterize the group $H^{\pm}(M)$ as the auto-
morphism group of a certain $G$-structure on $M$ , called the generalized conformal structure.
This paper is a short-cut version; the detailed one will appear elsewhere.

1. SIMPLE GRADED LIE ALGEBRAS AND COMPACT HERMITIAN SYMMETRIC SPACES

1.1.
$\bullet$ Let

$\tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{-1}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}$ . (1.1)
be a complex simple graded Lie algebra (abbrev. GLA).

$\bullet$ $Z\in\tilde{\mathfrak{g}}_{0}$ is the characteristic element of $\tilde{\mathfrak{g}}$ , that is, ad $Z=k1$ on $\tilde{\mathfrak{g}}_{k},$ $k=0,$ $\pm 1.$

$\bullet$ $\tau$ is the grade-reversing Cartan involution of $\tilde{\mathfrak{g}}$ , that is, $\tau(\tilde{\mathfrak{g}}_{k})=\tilde{\mathfrak{g}}_{-k}$ $k=0,$ $\pm 1,$

which is equivalent to $\tau(Z)=-Z$ . Note that $\tau$ is a conjugation of $\tilde{\mathfrak{g}}$ with respect to
a compact real form $\mathfrak{k}$ of $\tilde{\mathfrak{g}}.$

$\bullet$ Aut $\tilde{\mathfrak{g}}(\subset$ $GL$ $(\tilde{\mathfrak{g}}))$ : the automorphism group of the complex Lie algebra $\tilde{\mathfrak{g}}.$

$\bullet$
$\tilde{G}_{0}$

$:=Aut_{gr}\tilde{\mathfrak{g}}$ $:=\{g\in$ Aut $\tilde{\mathfrak{g}}$ : $g(\tilde{\mathfrak{g}}_{k})=\tilde{\mathfrak{g}}_{k},$ $k=0,$ $\pm 1\}$ : the group of grade-preserving
automorphisms of $\tilde{\mathfrak{g}}.$

$\tilde{G}_{0}$ coincides with the centralizer $C_{Aut\overline{\mathfrak{g}}}(Z)$ of $Z$ in Aut $\tilde{\mathfrak{g}}.$

Note that Lie $\tilde{G}_{0}=\tilde{\mathfrak{g}}_{0}.$

$\bullet\tilde{U}:=\tilde{G}_{0}\exp\tilde{\mathfrak{g}}_{-1}.$

$\bullet$

$\tilde{G}$ $:=\tilde{G}_{0}$ Int $\tilde{\mathfrak{g}}$ : an open subgroup of Aut $\tilde{\mathfrak{g}}.$

$\tilde{U}$ is a parabolic subgroup of $\tilde{G}$ , and $\tilde{G}_{0}$ is the Levi subgroup of $\tilde{U}.$

$\bullet$ We have the (complex) flag manifold $M=\tilde{G}/\tilde{U}$ . It can be shown that $\tilde{G}$ acts on $M$

effectively.. The symmetric space expression of $M.$

$\tilde{\tau}$ : the Cartan involution of $\tilde{G}$ defined by $\tilde{\tau}(g)=\tau g\tau,$ $g\in\tilde{G}.$

Then the set $K$ of all $\tilde{\tau}$-fiXed elements in $\tilde{G}$ is a compact real form of $\tilde{G}$ . Note that
Lie $K=\mathfrak{k}.$ $M$ is expressed as

$M=\tilde{G}/\tilde{U}=K/K_{0},$

where $K_{0}=K\cap\tilde{U}$ . Here $K/K_{0}$ is a compact irreducible Hermitian symmetric
space. $K/K_{0}$ has a $K$-invariant K\"ahler-Einstein metric (cf. [5]).

$\bullet$ The identity component of $K$ coincides with that of the isometry group $I(M)$ .
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Theorem 1.1. Let $Ho1^{+}(M)$ be the group of all holomorphic automorphisms of $M=\tilde{G}/\tilde{U}.$

Then we have
$Ho1^{+}(M)=\tilde{G}.$

Proof. (Sketch)
There are four steps. First of all, $Ho1^{+}(M)$ is a complex Lie group by a theorem of $Bo$chner-
Montgomery ([1, 2]).

(1) As was noted before, $\tilde{G}$ acts on $M$ effectively and holomorphically. Hence $\tilde{G}\subset$

$Ho1^{+}(M)$ .

(2) The existence of the $K$-invariant K\"ahler-Einstein metric on $M$ implies that

Lie $Ho1^{+}(M)=($Lie $I(M))^{\mathbb{C}}=\mathfrak{k}^{\mathbb{C}}=\tilde{\mathfrak{g}},$

by Matsushima [6]. Thus $\tilde{G}$ is an open subgroup of $Ho1^{+}(M)$ .

(3) One can show that the center of $Ho1^{+}(M)$ reduces to the identity. Therefore $Ho1^{+}(M)$

is realized as an open subgroup of Aut $\tilde{\mathfrak{g}}$ by taking the adjoint representation of $Ho1^{+}(M)$

on $\tilde{\mathfrak{g}}.$

(4) $M$ has the coset space expression in two ways:

$M=\tilde{G}/\tilde{U}=Ho1^{+}(M)/\hat{U},$

where $\hat{U}\supset\tilde{U}$ . It is easy to see that $\hat{U}=\tilde{U}$ , which shows the coincidence of the numerators.
$\square$

1.2. Here we consider the scalar restrictions of the objects in 1.1 to $\mathbb{R}.$. Let
$\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$

be the real simple GLA, which is the scalar restriction of the complex GLA (1.1) to
$\mathbb{R}.$

Let $I$ be the complex structure on $\mathfrak{g}$ corresponding to the $i$-multiplication on $\tilde{\mathfrak{g}}.$

$\tilde{\mathfrak{g}}$ can be expressed as the pair $(\mathfrak{g}, I)$ .
$\bullet$ $Z\in \mathfrak{g}$ and $\tau$ are the same as those for $\tilde{\mathfrak{g}}.$. Aut $\mathfrak{g}(\subset$ $GL$ $(\mathfrak{g}))$ : the automorphism group of the real Lie algebra $\mathfrak{g}.$

Note that Aut $\tilde{\mathfrak{g}}\subset$ Aut $\mathfrak{g}.$

$\bullet$ $G_{0}:=Aut_{gr}\mathfrak{g}$ . Note that the inclusion $\tilde{G}_{0}\subset G_{0}$ and Lie $G_{0}=\mathfrak{g}_{0}$ are valid.
$\bullet U:=G_{0}\exp \mathfrak{g}_{-1}\supset\tilde{U}.$

$\bullet$ The open subgroup $G$ of Aut $\mathfrak{g}$ :
Aut $\mathfrak{g}\supset G$ $:=G_{0}$ Int $\mathfrak{g}\supset\tilde{G}.$

$U$ is a parabolic subgroup of $G$ , and $G_{0}$ is the Levi subgroup of $U.$

$\bullet$ As a real manifold, $M$ is expressed as $a$ (real) flag manifold $G/U.$

This is non-trivial, and will be proved in Corollary 2.4.
The following theorem will be proved in the section 3.
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Theorem 1.2. Let $Ho1^{\pm}(M)$ be the group of all holomorphic or anti-holomorphic automor-
phisms of M. Then we have

$Ho1^{\pm}(M)=G.$

2. THE RELATION BETWEEN THE GROUPS $\tilde{G}$ AND $G$

Lemma 2.1. Let $\tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{-1}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}$ be a complex simple $GLA$ and let $Z$ and $\tau$ be as before.
Then there exists a unique normal real form $\mathfrak{g}^{N}$ of $\tilde{\mathfrak{g}}$ such that $Z\in \mathfrak{g}^{N}$ and that $\tau(\mathfrak{g}^{N})\subset \mathfrak{g}^{N}.$

$\mathfrak{g}^{N}$ can be expressed as a GLA

$\mathfrak{g}^{N}=\mathfrak{g}_{-1}^{N}+\mathfrak{g}_{0}^{N}+\mathfrak{g}_{1}^{N},$

where $\mathfrak{g}_{k}^{N}=\mathfrak{g}^{N}\cap\tilde{\mathfrak{g}}_{k}(k=0, \pm 1)$ .

Now let $\nu$ be the conjugation of $(\mathfrak{g}, I)$ with respect to $\mathfrak{g}^{N}$ . Then $v$ satisfies the following
equalities:

$\nu^{2}=1, \nu I=-I\nu.$

Since $\nu(Z)=Z,$ $\nu$ is grade-preserving on $\mathfrak{g}$ . Hence we have

$v\in G_{0}\backslash \tilde{G}_{0},$ $\nu\in$ Aut $\mathfrak{g}\backslash$ Aut $\tilde{\mathfrak{g}}.$

Let $\overline{\mathfrak{g}}$ be the complexification of $\mathfrak{g}$ . We extend $\nu \mathbb{C}$-linearly to $\overline{\mathfrak{g}}.$

Proposition 2.2.
Aut $\mathfrak{g}=(Aut\tilde{\mathfrak{g}})\cdot<\nu>$ . (2.1)

Proof. Let $\Pi$ be the Dynkin diagram of the complex simple Lie algebra $\tilde{\mathfrak{g}}$ . Then it is well-
known that

Aut $\tilde{\mathfrak{g}}/$ Int $\tilde{\mathfrak{g}}=$ Aut $(\Pi)$ . (2.2)
The Satake diagram of the real simple Lie algebra $\mathfrak{g}$ is given by the pair $(\overline{\Pi}, \nu)$ , where $\overline{\Pi}$

is the Dynkin diagram of $\overline{\mathfrak{g}}$ which is the pair of two copies of $\Pi.$ $v$ acts on $\overline{\Pi}$ as the Satake
involution. Now let us denote by $($ Aut $\mathfrak{g})^{z}$ the Zariski connected component of Aut $\mathfrak{g}$ . Then
we see that $($Aut $\mathfrak{g})^{z}=$ Int $\tilde{\mathfrak{g}}$ . Applying a result of H. Matsumoto ([7]) we conclude that

Aut $\mathfrak{g}/$ Int $\tilde{\mathfrak{g}}=$ Aut $\mathfrak{g}/($ Aut $\mathfrak{g})^{z}=$ Aut $(\overline{\Pi}, \nu)=<v>$ (Aut $(\Pi)$ ). (2.3)
(2.1) follows from (2.2) and (2.3). $\square$

$Rom$ Proposition 2.2 we have

Theorem 2.3. (1) $G_{0}=\tilde{G}_{0}\cdot<v>,$

(2) $U=\tilde{U}\cdot<\nu>,$

(3) $G=\tilde{G}\cdot<\nu>$ . In particular, $\tilde{G}$ is a normal subgroup of $G.$

Corollary 2.4. The complex flag manifold $M$ is expressed as the real flag manifold

$M=\tilde{G}/\tilde{U}=G/U.$

160



HOLOMORPHIC AND ANTI-HOLOMORPHIC AUTOMORPHISMS

Proof. By Theorem 2.3, we have $G=\tilde{G}$U. Consequently we get

$G/U=\tilde{G}U/U=\tilde{G}/\tilde{G}\cap U=\tilde{G}/\tilde{U}=M.$

$\square$

3. THE PROOF OF THEOREM 1.2

Definition 3.1. Let $X$ be a smooth manifold, $I$ a complex structure on $X$ and let $\sigma$ : $Xarrow X$

be a diffeomorphism. Then $\sigma$ is said to be an anti-holomorphic involution, if the following
conditions are satisfied on $X$

$\sigma^{2}=1, \sigma_{*}I=-I\sigma_{*},$

where $\sigma_{*}$ is the differential of $\sigma$ . The pair $(\sigma, I)$ is called an anti-holomorphic pair (shortly,
AHP).

3.1. The $AHP$ $(\tilde{v},\tilde{I})$ on $\tilde{G}$

We identify the Lie algebra $(\mathfrak{g}, I)$ with the Lie algebra of left-invariant vector fields on $\tilde{G}.$

The complex structure $I$ on $\mathfrak{g}$ and the left-invariant complex structure $\tilde{I}$ on $\tilde{G}$ are related
with each other by the equality

$\tilde{I}_{p}X_{p}=(IX)_{p}, p\in\tilde{G}, X\in \mathfrak{g},$

which is also expressed as

$\tilde{I}X=IX$ , (3.1)
where both sides are vector fields on $\tilde{G}.$

Next, noting that $v\tilde{G}v^{-1}\subset\tilde{G}$ , we define the automorphism $\tilde{\nu}:\tilde{G}arrow\tilde{G}$ as

$\tilde{v}(a)=vav^{-1}, a\in\tilde{G}$ . (3.2)
Then $\tilde{v}$ is naturally extended to the whole $G.$

Lemma 3.2. $(\tilde{v},\tilde{I})$ is an AHP on $\tilde{G}$

Proof. Note that $\tilde{v}_{*}=v$ . By using this equality, (3.1) and the anti-linearity of $v$ , we can
conclude the equality $\tilde{v}_{*}\tilde{I}=-\tilde{I}\tilde{v}_{*}.$ $\square$

3.2. The $AHP$ $(\nu_{M}, J)$ on $M$

First of all, note that

$\tilde{\nu}(\tilde{U})=v\tilde{U}v^{-1}=\tilde{U}$ . (3.3)
The left action of $v$ on $G/U$ at a point $gU(g\in G)$ can be expressed as

$v(gU)=vgU=vgv^{-1}vUv^{-1}=vgv^{-1}U=\tilde{v}(g)U.$

Restricting this equahty to $\tilde{G}/\tilde{U}$ , we have the following action of $v$ on $\tilde{G}/\tilde{U}$ :

$v(a\tilde{U})=\tilde{v}(a)\tilde{U}, a\in\tilde{G}$ . (3.4)
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In the following, the $\nu$ acting on $\tilde{G}/\tilde{U}$ will be denoted by $v_{M}.$

Let $\pi$ : $\tilde{G}arrow M=\tilde{G}/\tilde{U}$ be the natural projection. Then the following commutativity
follows from (3.4):

$\pi\tilde{\nu}=v_{M}\pi$ . (3.5)

Next we will define the invariant complex structure $J$ on $M=\tilde{G}/\tilde{U}$ , which is $\pi$-related to
I. We consider the following identification for the complex tangent space of $M$ at the origin
$o$ :

$T_{o}(M)=$ Lie $\tilde{G}/$ Lie $\tilde{U}=\tilde{\mathfrak{g}}_{1}=\mathfrak{g}_{1}^{N}+I\mathfrak{g}_{1}^{N}.$

The complex structure $J_{o}$ on $\tilde{\mathfrak{g}}_{1}$ is given by

$J_{o}=I|_{\tilde{g}_{1}}=ad_{\tilde{\mathfrak{g}}_{1}}(iZ)$ .

$J_{o}$ commutes with the linear isotropy representation of $\tilde{U}$ , that is,

$[Ad_{\overline{\mathfrak{g}}_{1}}\tilde{G}_{0}, J_{o}]=0.$

Therefore $J_{o}$ extends uniquely to a $\tilde{G}$-invariant almost complex structure $J$ on $M$ . It can
be seen from the construction that $\tilde{I}$ and $J$ are $\pi$-related, that is,

$\pi_{*}\tilde{I}=J\pi_{*}$ . (3.6)

It follows from (3.6) that the almost complex structure $J$ is integrable.

Proposition 3.3. $(v_{M}, J)$ is an AHP on $M.$

Proof. In view of (3.5), (3.6) and Lemma 3.2, we have

$v_{M*}J\pi_{*}=v_{M*}\pi_{*}\tilde{I}=\pi_{*}\tilde{\nu}_{*}\tilde{I}=-\pi_{*}\tilde{I}\tilde{\nu}_{*}=-J\pi_{*}\tilde{v}_{*}=-J\nu_{M*}\pi_{*}.$

Therefore we have the equality $v_{M*}J=-J\nu_{M*}.$ $\square$

Proof of Theorem 1.2
We denote by Hol‘ $(M)$ the totality of anti-holomorphic automorphisms of $M$ . Since $\nu_{M}$

interchanges $Ho1^{+}(M)$ with $Ho1^{-}(M)$ , we have the expression

Hol$\pm(M)=Ho1^{+}(M)\coprod\nu_{M}Ho1^{+}(M)$ . (3.7)

As is seen in the proof of Theorem 1.1, $Ho1^{+}(M)$ , realized ae a subgroup of Aut $\tilde{\mathfrak{g}}$ , coincides
with $\tilde{G}$ . Also $\nu$ is the realization of $v_{M}$ as an element of $G$ . Therefore, considering (3.7) and
Theorem 1.1, we have

Hol$\pm(M)=\tilde{G}\coprod\nu\tilde{G}=\tilde{G}\cdot<\nu>=G.$
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4. RELATION TO THE GENERALIZED CONFORMAL STRUCTURE ON $M$

First of all, let us remind the basic facts on the generalized conformal structure (simply,
GCS) on the real flag manifold $M=G/U$ (cf. [3]). Let $r$ be the rank of the symmetric space
$M$ , and let $o$ be the origin of the coset space $M=G/U$. As for the case of the complex
tangent space $T_{O}(M)$ , the real tangent space at the origin $0\in M$ can be identified with

$\mathfrak{g}_{1}$ . Let $\rho$ be the linear isotropy representation of $U$ on $\mathfrak{g}_{1}$ . Then we have $\rho(U)=G_{0}$ . The
$G_{0}$-orbit decomposition of $\mathfrak{g}_{1}$ is given by

$\mathfrak{g}_{1}=V_{r}\coprod V_{r-1}\coprod\ldots.\coprod V_{0},$

where $V_{r}$ is a single open orbit and $V_{0}=(0)$ . Since $G_{0}$ contains $\mathbb{C}^{*}$ , all orbits are cones.
The union of singular orbits, denoted by $C_{O}$ , is an algebraic cone. The automorphism group
Aut $C_{0}$ is defined as the subgroup of $GL(\mathfrak{g}_{1})$ consisting of all elements leaving $C_{0}$ stable.
Lemma 4.1. $([3J)$ Suppose that $r\geq 2$ . Then we have

Aut $C_{o}=G_{0}.$

By this lemma, one can translate the cone $C_{o}$ to each point of $M$ by the action of $G$ . Thus
we have the cone field $C=\{C_{p}\}_{p\in M}$ on $M$ , which is called the generalized conformal structure
(simply GCS) on $M$. Now we are going to define the automorphism group Aut $(M, C)$ of the
GCS $C$ . Aut $(M, C)$ is defined to be the group of all smooth diffeomorphisms $f$ of $M$ leaving
$C$ invariant, in other words, for $C=\{C_{p}\}_{p\in M},$ $f$ satisfies

$f_{*p}C_{p}=C_{f(p)}, p\in M.$

We can characterize the group $G$ as the automorphism group of the GCS, namely,
Theorem 4.2. $([3J)LetG$ be as above. Suppose that $r\geq 2$ . Then

Aut $(M, C)=G.$

Combining the above theorem with Theorem 1.2, we have

Theorem 4.3. Let $M$ be a compact irreducible Hermitian symmetric space of rank $\geq 2.$

Then we have
$Ho1^{\pm}(M)=$ Aut $(M, C)$ .

The following theorem gives a necessary and sufficient condition for the global extension
of a local holomorphic or local anti-holomorphic transformation on $M$. The proof is similar
to the case of the causal structure (cf. [4]).

Theorem 4.4. Let $D$ be a domain in $M$ and let $f$ be a local holomorphic or local anti-
holomorphic transformation of $M$ defined on D. Suppose that rank $M\geq 2$ . Then $f$ extends
uniquely to an element of $Ho1^{\pm}(M)$ if and only if $f$ is a local $C$ -conformal transformation
on $D.$
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