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ON THE GROUP OF HOLOMORPHIC AND ANTI-HOLOMORPHIC
AUTOMORPHISMS OF A COMPACT HERMITIAN SYMMETRIC
SPACE

SOJI KANEYUKI

ABSTRACT. Let f be a complex function on a domain in the complex plane C. Then f is
holomorphic or anti-holomorphic, if and only if f is a conformal map. we are interested
in generalizing this to higher dimensional cases. In this paper, for a compact irreducible
Hermitian symmetric space M, we determine the group H*(M) of all holomorphic and
anti-holomorphic automorphisms of M, and we characterize the group H* (M) as the auto-
morphism group of a certain G-structure on M, called the generalized conformal structure.
This paper is a short-cut version; the detailed one will appear elsewhere.

1. SIMPLE GRADED LIE ALGEBRAS AND COMPACT HERMITIAN SYMMETRIC SPACES

1.1.
o Let
§=0-1+80+01 (1.1)
be a complex simple graded Lie algebra (abbrev. GLA).

® Z € g is the characteristic element of g, that is, ad Z = k1 on g, k=0, 1.

e 7 is the grade-reversing Cartan involution of g, that is, 7(gx) = g_x k = 0,%1,
which is equivalent to 7(Z) = —Z. Note that 7 is a conjugation of § with respect to
a compact real form & of g.

o Aut g(C GL(g)) : the automorphism group of the complex Lie algebra §.

o Go:= Autg g := {g € Autd: g(dr) = G, k = 0, £1}: the group of grade-preserving
automorphisms of g.
Gy coincides with the centralizer Caut§(Z) of Z in Aut g.
Note that Lie Gy = go-

o U= Go expg_;.

° G GoInt§ : an open subgroup of Aut g.
U is a parabolic subgroup of &, and Gy is the Levi subgroup of U. 3

e We have the (complex) flag manifold M = G/U. It can be shown that G acts on M
effectively.

e The symmetric space expression of M. _
#: the Cartan involution of G defined by 7(g) =797, g €G.
Then the set K of all 7-fixed elements in G is a compact real form of G. Note that
Lie K = &. M is expressed as

M = G/U = K/K,,
where Ko = K NU. Here K /Ky is a compact irreducible Hermitian symmetric

space. K/Kj has a K-invariant Kahler-Einstein metric (cf. [5]).
e The identity component of K coincides with that of the isometry group I(M).
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Theorem 1.1. Let Hol™ (M) be the group of all holomorphic automorphisms of M = G/U.
Then we have

Hol* (M) = G.

Proof. (Sketch)
There are four steps. First of all, Hol™ (M) is a complex Lie group by a theorem of Bochner-
Montgomery ([1, 2]).

(1) As was noted before, G acts on M effectively and holomorphically. Hence G C
Hol* (M).

(2) The existence of the K-invariant Kihler-Einstein metric on M implies that
Lie Hol" (M) = (Lie I(M))® = ¥© =g,
by Matsushima [6]. Thus G is an open subgroup of Hol*(M).

(3) One can show that the center of Hol* (M) reduces to the identity. Therefore Hol* (M)
is realized as an open subgroup of Autg by taking the adjoint representation of Hol™ (M)
on g.

(4) M has the coset space expression in two ways:

M = G/U = Hol*(M)/U,

where U D U. It is easy to see that U = U , which shows the coincidence of the numerators.

O

1.2. Here we consider the scalar restrictions of the objects in 1.1 to R.
o Let
g=g-1+tg+toh

be the real simple GLA, which is the scalar restriction of the complex GLA (1.1) to
R.
Let I be the complex structure on g corresponding to the i-multiplication on g.
g can be expressed as the pair (g, I).
e 7 € g and 7 are the same as those for g.
e Aut g(C GL(g)) : the automorphism group of the real Lie algebra g.
Note that Autg C Autg.
e Gy := Autg g. Note that the inclusion Go C Gy and Lie Gy = go are valid.
o U:=Gpexpg_1 DU.
e The open subgroup G of Aut g:
Autg D G:=GoIntg D G.
U is a parabolic subgroup of G, and Gy is the Levi subgroup of U.
e As a real manifold, M is expressed as a (real) flag manifold G/U.
This is non-trivial, and will be proved in Corollary 2.4.

The following theorem will be proved in the section 3.
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Theorem 1.2. Let Hol* (M) be the group of all holomorphic or anti-holomorphic automor-
phisms of M. Then we have

Hol*(M) = G.
2. THE RELATION BETWEEN THE GROUPS é AND G

Lemma 2.1. Let g = g_1 + go + g1 be a complex simple GLA and let Z and T be as before.
Then there exists a unique normal real form gV of § such that Z € gV and that 7(g") C g".

g" can be expressed as a GLA

g" =0 +g0 +o7,
where g = gV Ng, (k= 0, +1).
Now let v be the conjugation of (g,I) with respect to g¥. Then v satisfies the following
equalities:

v =1, vl =—-Iv.

Since v(Z) = Z, v is grade-preserving on g. Hence we have

veGo\Go, veAutg\Autg.
Let g be the complexification of g. We extend v C-linearly to g.
Proposition 2.2.
Autg = (Autg)- <v>. (2.1)

Proof. Let II be the Dynkin diagram of the complex simple Lie algebra g. Then it is well-
known that

Aut g/ Int g = Aut(II). (2.2)
The Satake diagram of the real simple Lie algebra g is given by the pair (II, v), where II

is the Dynkin diagram of g which is the pair of two copies of II.. v acts on II as the Satake
involution. Now let us denote by (Aut g)* the Zariski connected component of Aut g. Then
we see that (Aut g)* = Int §. Applying a result of H. Matsumoto ([7]) we conclude that

Autg/Intg = Aut g/(Aut g)* = Aut(Il, v) =< v > (Aut(Il)). (2.3)
(2.1) follows from (2.2) and (2.3). a

From Proposition 2.2 we have

Theorem 2.3. (1) Go=Go- <v >,
@2U=U <v>, 3
(3) G =G- <v>. In particular, G is a normal subgroup of G.

Corollary 2.4. The complex flag manifold M is expressed as the real flag manifold

M =G/U =G/U.
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Proof. By Theorem 2.3, we have G = GU. Consequently we get

G/U=GU/U=G/GNU=G/U = M.

3. THE PROOF OF THEOREM 1.2

Definition 3.1. Let X be a smooth manifold, I a complex structureon X andleto : X — X
be a diffeomorphism. Then o is said to be an anti-holomorphic involution, if the following
conditions are satisfied on X

o’ =1, o, = —Io,,
where o, is the differential of 0. The pair (o, I) is called an anti-holomorphic pair (shortly,
AHP).

3.1. The AHP (3,1) on G
We identify the Lie algebra (g, I) with the Lie algebra of left-invariant vector fields on G.

The complex structure I on g and the left-invariant complex structure I on G are related
with each other by the equality

LX,=(X),, peG,X €y,
which is also expressed as

IX =IX, (3.1)
where both sides are vector fields on G.

Next, noting that vGv=! C G, we define the automorphism 7 : G — G as
v(a) =var™!, a € G. (3.2)
Then ¥ is naturally extended to the whole G.

Lemma 3.2. (7,1) is an AHP on G

Proof. Note that 7, = v. By using this equality, (3.1) and the anti-linearity of v, we can
conclude the equality 7,1 = —ID,. O

3.2. The AHP (vy,J) on M
First of all, note that

p(0)=v0vt =1. (3.3)
The left action of v on G/U at a point gU (g € G) can be expressed as

v(gU) = vgU = vgr~wUv™" = vgv™'U = 9(g)U.
Restricting this equality to G / U , we have the following action of v on G / U:

v(aU) = p(a)U, a € G. (3.4)
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In the following, the v acting on G/U will be denoted by va.
Let 7 : G = M = G/U be the natural projection. Then the following commutativity
follows from (3.4):

D = Uy, (3.5)

_ Next we will define the invariant complex structure J on M = G/U, which is 7-related to
1. We consider the following identification for the complex tangent space of M at the origin
o:

T,(M) = LieG/ LieU = §;, = gV + IgV.

The complex structure J, on g; is given by

Jo = I'ﬁl = a‘dﬁl(iZ)‘
J, commutes with the linear isotropy representation of U , that is,
[Ad;, Go, J,] = 0.

Therefore J, extends uniquely to a G-invariant almost complex structure J on M. It can
be seen from the construction that I and J are m-related, that is,

m I = Jn,. (3.6)
It follows from (3.6) that the almost complex structure J is integrable.
Proposition 3.3. (v, J) is an AHP on M.
Proof. In view of (3.5), (3.6) and Lemma 3.2, we have
UMsJ T = VM,,vrj = mﬂ,j = —7r,,1:17* = —Jm Ve = —JVpfaTs.

Therefore we have the equality vpJ = —JVps.. O

Proof of Theorem 1.2
We denote by Hol™ (M) the totality of anti-holomorphic automorphisms of M. Since vy,
interchanges Hol™ (M) with Hol™ (M), we have the expression

Hol® (M) = Hol* (M) II vps Hol ™ (M). (3.7)

As is seen in the proof of Theorem 1.1, Hol* (M), realized as a subgroup of Aut g, coincides
with G. Also v is the realization of v, as an element of G. Therefore, considering (3.7) and
Theorem 1.1, we have

Hol*(M)=GlIvG =G <v>=0G.
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4. RELATION TO THE GENERALIZED CONFORMAL STRUCTURE ON M

First of all, let us remind the basic facts on the generalized conformal structure (simply,
GCS) on the real flag manifold M = G/U (cf. [3]). Let r be the rank of the symmetric space
M, and let o be the origin of the coset space M = G/U. As for the case of the complex
tangent space T,(M), the real tangent space at the origin o € M can be identified with
1. Let p be the linear isotropy representation of U on g;. Then we have p(U) = Gy. The
Go-orbit decomposition of g; is given by

g =V, IV, 0.0V,
where V; is a single open orbit and V5 = (0). Since Gy contains C*, all orbits are cones.

The union of singular orbits, denoted by C,, is an algebraic cone. The automorphism group
Aut C, is defined as the subgroup of GL(g;) consisting of all elements leaving Cj stable.

Lemma 4.1. (/3]) Suppose that r > 2. Then we have
Aut C, = G,.

By this lemma, one can translate the cone C, to each point of M by the action of G. Thus
we have the cone field C = {C}},ep on M, which is called the generalized conformal structure
(simply GCS) on M. Now we are going to define the automorphism group Aut(M,C) of the
GCS C. Aut(M,C) is defined to be the group of all smooth diffeomorphisms f of M leaving
C invariant, in other words, for C = {C,},cnr, f satisfies

foCp = Cip), P € M.
We can characterize the group G as the automorphism group of the GCS, namely,
Theorem 4.2. (/3/)Let G be as above. Suppose that r > 2. Then
Aut(M,C) = G.
Combining the above theorem with Theorem 1.2, we have

Theorem 4.3. Let M be a compact irreducible Hermitian symmetric space of rank > 2.
Then we have
Hol*(M) = Aut(M,C).

The following theorem gives a necessary and sufficient condition for the global extension
of a local holomorphic or local anti-holomorphic transformation on M. The proof is similar
to the case of the causal structure (cf. [4]).

Theorem 4.4. Let D be a domain in M and let f be a local holomorphic or local anti-
holomorphic transformation of M defined on D. Suppose that rank M > 2. Then f extends
uniquely to an element of Holi(M ) if and only if f is a local C-conformal transformation
on D.
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