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Abstract

The unitary highest weight representations of Hermitian simple Lie
groups of tube type can be realized on the square-integrable space on
the space called symmetric cones. This can be regarded as a general-
ization of the Weil representation of Sp(r,R) on L#(R"). On L%(R"),
there exists a 1-dimensional holomorphic semigroup defined by in-
tegral operators by means of Mehler kernel, the kernel written by
exponential functions. This semigroup is called Hermite semigroup.
We can generalize this semigroup to the function spaces on symmetric
cones, and this can be expressed by integral operators with kernel de-
fined by generalized Bessel functions. In this paper we prove the upper
estimate of generalized Bessel functions, and prove that the integral
kernel decreases sufficiently rapidly.

1 Introduction: Hermite semigroup for O(n)-
invariant functions

First we consider the following operator on S(R™):
1 2
H:= 5(—-A + |z|*).

t

Then the exponential operator e *# is given as follows.



Theorem 1.1. e7: L*(R") — L*(R") (Ret >0, t ¢ m\/—1Z) is given by
the following integral:

et f(g) = 1

1 |2 2 ;x
m f(y)e 5 cotht(|z|*+]y] )+Smht ydy,

This family of operators is called the Hermite semigroup. If ¢t € v/—1R,
then e~ is a unitary operator on L2(R™).

Remark 1.2. We have the following isomorphisms and inclusion relations.

sp(n,R) ~ span < iz;xy, i > T; 0 +%-1<'k<n
p ) = 5p E23) axjaxk, ]axk 2 . ShRS

U

. . 02 0 0
u(n) ~ span {zxjxk - Zaxjﬁxk’xj 9o 8x] 1<5,k< n}
U

3(u(n)) ~RH

We assume f € L*(R") is O(n)-invariant, and set

)= (31aF)

where ¢ : Ro — C. Then e f is also O(n)-invariant. We set

e 1(a) = 5loP )

and calculate ¥(£).

P(€) = e f(V/2er)

2
@ 1h )"/ v (I‘yél“) e~ 7 ot e+ 3 VEery gy
wsinht)z Jin

(set y = r((cosf)e; + (sinb)o))
- / / / % (T_ ——cotht (28+r? )esmht\/@‘cosgr" Lgin™—2 0dodOdr
(27r s1nht 2 Sn-2 2
_ 2 T T n ( ) —1 cotht(26+72) /Wes‘nht\/_rcosﬂ =2 040r™ Ldr
T (%2) (27rsmht 2 0
set r =
5 n

1 = —co " oy VEcost i n— n_
~ /msinh3 ¢ (251) / pmemeo e / eV Sin'™ G’
%) Jo 0
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Now we recall the I-Bessel function.

(s B
hz) = (5) 2 mT(A+m+1)

m=0

We set

WATER SV ) M
z) = Z mlA+m+1) (5) ().

m=0

Then for A > —% we have the following integral expression:

. 1 m
Li(2) = —————— [ €*°**%sin?* 0dp.
&)= 7 oE D /0

Using this, we continue the calculation.

— 1 oo — cotht(é+n)
»(¢) ﬁsinh%tr("T-l)/o p(n)e

T
X / esﬁ—t\/ﬁcososinnﬁ Bdonlzl_ldn

0
1 * — cof T Z2—
= / p(n)e t“‘“”)h;--l( \/677) " ldn.
0

B sinh? ¢

sinh ¢

Since L?(Rso,£271d¢) = LAR™), ¢ = f(z) := ¢ (J%E) is an isometry (up
to const.),

00
/(; 4,0(77)3_ coth t(€+n)1%_1 (

is unitary on L?(Rsq,£271d€) if t € vV/—1R.

So far we have assumed that n is a positive integer, but the above map
is valid for any positive real number n. In the next section we replace 3 to
A where ) is any positive real number.

7\ .1
sinh? ¢ sinh ¢ 577) > dn

2 Holomorphic semigroup on R

For A > 0, we take ¢ € L?*(Rsq,£*1d€). For t € C with Ret > 0, ¢t ¢
v —1nZ, we set

o0 - 2
—cotht(é+n) I A-1
/0 e(n)e A-1 (sinhtvgn> ndn.

T(t)p(§) == il ¢



In this section we seek the properties of 7)(t).
First we prepare some notations and theorems. We write

H:=R++v—IR,, D:={weC:u|<1}.

For A > 0 we set

o oo
L3 (Rsg) := {so Rso — C: o)) / l(€)[2e*1de < oo}.
Also, for A > 1 we set
HA(H) = {FEO(H) —~/ |F(2)]2(Im 2)*~ 2dz<oo}
H0) = {1 € 0): 22 [ 11— ity =2aw < oo
Then SL(2,R) (resp. SU(1,1)) acts on H2(H) (resp. H3(D)) unitarily by,

(3 3)—1 {F(2) > (cz+ d)F ( : 2) |

We define Laplace transformation and Cayley transformation by

Ly : L3(Rsg) —» O(H) L = 2_A > i€ pA—1
FTATE0 ) Ap(2) : oy /. p(§)e* 67 d¢,
Mn:OH) = OD), NHF(w):=1-w)" F( ii’w) |

Then we have the following properties.

Theorem 2.1. (1) If A > 1, then L3(Rso) ——~—~> HZ(H) —2— H3(D).

unitary

de'n,s;a 1zun’fw,ge

Remark 2.2. For A > 1 and f(w) = Y _ amw™ € O(D), the norm || f||xp

18 given by
o9}

|
If3p=>" (—A’%mmﬁ

m=0
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This equality is proved as

™

-1
A / WG (1 — [w|?)*2duw
Jw|>1

2

=/\ —1 rminem=n) (] _ ¢+ A~2rdodr

i —s - l)émn/ ’\ ~2ds

=0mn(A = 1)B(m +1,A—1) = 5mnw _ . ml

Tt ™

Thus if we redefine H2(D) for A >0 by

H3(D) { Zamw € O(D Z |am|2<oo}

Then 7y o Ly : L2(Rsq) = H3(D) is unitary for A > 0.

We now assume t € R, and calculate £7(t)¢(2), assuming that Fu-
bini’s theorem is valid.

(/\)E,\T,\( t)p(2)

QAT
—-cotht(§+n)I iz€, A—1g2-1
smh’\ / / At <s1nht> e e dndt

(set sinh?¢t 6)

— 1)\ / jé (p(,r,)e(—cotht+iz)wL}ﬁt&le—(cotht)n
sinh™ ¢
h*t
x Doy (2v/E) 1 (—————sm - )5) ¢-de'dn
o0 o0 —1z 8in sin! 7 ~
=sinh)‘t/ <p(77)e‘(c°tht)"n_1/ P B L, (2\/§> M 1de! dn.
0 0

Now we have the following formula:

/ T e (2B dE = 2 e
0
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This is proved as

A zEI)‘ 1 2\/_ &/\ ldf / —ZEZm'Pm+A>€A 1d€

1 <, 1 -1
— —z€ m+/\—1d — o —mEN) Az )
;mlf‘(m-i-)\)/o e 3 Zm!z “e

m=0
Using this, we continue the calculation.

im0z

. by * _( th t) _1 o __ (cosh t—izsinh t)(sinh t) fl ~ el ,
=sinh™¢ [ o (n)e™ "y e m I (2\/5—’ ) §71de'dn
0 0

0 ht — izsinh¢)(sinh¢)\
— sinh)‘ t/ gp(n)e—(coth t)n ( (COS 1z :n )(Sln )) e lcosht—iz s?nh t)(sinh t) n_ldn
0

oo
=(——’l:ZSiIlht+COSht)_)\/ QO('T])GZf;;o::‘;tis‘:gghttnn/\ 1d77
0

)‘P(A)E zcosht +isinht
22 M\ Zizsinht + cosht /)’

=(—izsinht + cosht)”

zcosht + ¢sinht )

- Lama(8)p(2) = (—izsinht + cosht) *Lyp (—z’z sinht + cosh t

We can also check easily that
MLATA()p(w) = e M 1aLap(e w).

Especially we have
A ()7Ta(s)p = Ta(t + s)

if ¢ is a sufficiently “good” function. In order to justify the convergence and
the change of order of integrals, we want to know the upper estimation of
the integral kernel.

Lemma 2.3. If A > —%, then there exists a positive constant C such that
|Ix(2)| < CelRe?,

Proof. Using the integral formula

1 ™
I,(2) = —F——— e*°8% 5in?* 9o,
&)= 7 (A+%)/0 S
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we have

T 1 " zcos :
II,\(Z)l Sﬁ(,\—-{—l)_‘/o |e GISIIle 0de
2

g—l—— / el Bel gin?X 9dg < CelRel, O
0

VAl (A+3)

Corollary 2.4. If A > %, then there exists C > 0 such that for t = u + v
with u > 0,

e~ cotht(€+n) (2\/57) ’ < Cexp <— sinhu €+ 77)) ‘

sinh ¢ coshu + | cos ]

Therefore, if Ret = 0, we have
7x(t) : LY(Rso, £ 71dE) — L®(Rso),
and if Ret > 0, we have

7A(t) : {Polynomial growth functions} — {Exponential decay functions}.

3 Holomorphic semigroup on general sym-
metric cones

In this section we generalize the previous results to more general setting.

Let g be a simple Hermitian Lie algebra of tube type. Then there exists a
3-graded decomposition

g=ntoldn”
so that [ is a reductive subalgebra and n* are Abelian subalgebras. Let ¥ be
a Cartan involution such that ¥|,q) = —id,() holds, where 3(I) is the center

of I. Then 9 reverses the grading. We fix an e € n* such that
—[le, Fe], €] = 2e, Pe=0

holds, where I” is the subalgebra of [ which consists of fixed points of 9. Then
nt has a Euclidean Jordan algebra structure with the product

1
oY= —5[[x, de], y|.
That is, for any z,y € n* we have

zy=yz, z’(zy) = z(z%y),



and there exists an inner product (:|-) such that for any z,y, 2z € nt,

(zylz) = (zly2)

holds. e becomes the unit element of n'.

Ezample 3.1. When g = sp(r,R), we have the following isomorphism.

wem={(3 5): A )

~ Sym(r,R) & gl(r,R) & Sym(r, R).
n* = Sym(r, R) has a Jordan algebra structure with the product

1

T-y:i= E(xy—}—yx).

Let G be a connected Lie group with Lie algebra g, and L, K, K1 be
connected subgroups with Lie algebra [ € = g% & = [” respectively. We set
n = dimn*, r ;= rankgg, and d := dim gic,+c; With i # j, where gi. 4., is
the restricted root space with respect to te; +¢; € (g, a) of type C,, where
a is a maximal abelian subspace of p = g=®. Then we have the equality

1
n=r+ 57‘(7" —1)d.
Let (-|-) be the inner product on n* such that

(zylz) = (zlyz),  (ele) =T,

and set tr(z) := (z|e). This is called the Jordan trace of nt. Also let A(z)
be the Jordan determinant, that is, A(z) is the polynomial on n't of degree
r such that

A(lz) = A(le)A(z) (VIe L), Ale) =1

holds, where Iz := Ad_(l)a: In addition, we denote by h(z, w) the holomorphic
polynomial on n{ x nd such that

h(lz,w) = h(z,l*w) (VI € L), h(z,z) = Ale —2%) (Vz €n')

holds.
Ezample 3.2. When g = sp(r,R) and n* = Sym(r, R), then we have

1
r=r, n=§'r(r+1), d=1.
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L = GL(r,R) acts on n* = Sym(r,R) by
lo = Izl
The associated polynomials are given by

(zly) = Tr(zy),  tr(z) = Tr(z),
A(z) = Det(z), h(z,w) = Det(e — zy*).

g [ nt T n d
sp(r,R) | R@sl(r,R) Sym(r,R) |r |zr(r+1)| 1
su(r,r) R @ sl(r,C) | Herm(r,C) | r 2 2
§0*(4r) Rosl(r,H) |Herm(r,H) |r|r(2r—1)| 4
s0(2,n) | R@®so(l,n—1) RLn-1 2 n n—2

€7(~25) R & €6(—26) Herm(3, @) 3 27 8

Table 1: Classification of tube type Lie algebras and associated data

We set
Q:={z?:z € (n*)*} cnF,

T :=nt + /=10 C n¢,
D :=(Component of {w € n{ : h(w, w) > 0} which contains 0).

Then we have the following diffeomorphisms

O~ L/KL,
To~D~G/K.

Ezample 3.3. When n* = Sym(r,R), then Q, T, D are given by

Q) ={z € Sym(r, R) : Positive definite},
Ta ={z € Sym(r,C) : Im z is positive definite},
D ={w € Sym(r,C) : I — ww" is positive definite}.

L = GL(r,R) acts on Q by l.z := lz1.

0 I , (0 I
WesetJ—(__I O),J-—(I 0>,andset

G = {g - (‘z Z) € GL(2r,R) : gJlg = J} _ Sp(r,R),

G = {g = (Z 2) € GL(2r,C): gJig=J, gJ = J'g} ~ 'Sp(r,]R).
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Then G acts on T and G’ acts on D by
9.z2:= (az+b)(cz +d)~!

We prepare some notations. For s € C", we set

(s] - —(J - 1))

Also, for A € C, we set Tg(A) :=Tq((),...,\)).
Now we define some function spaces. For A > 2—landgp: Q> C
measurable, we set

Ielia = o [ lo@Pa@)Fa,

Also, for A\ > 22 — 1, F € O(Tq), f € O(D), we set

FQ (S

2 ‘_ 1 2 mz)\—
1Pz = / |F(2)[2A (I 2)

o
llfllw—wi F"“ a7 /| 1P

where h(w) := h(w,w), and let L?\(Q) H3(Tq), H2(D) be the spaces of all
functions with finite norms. Then G (umversal covering group of G) acts on
H3(Tq) and H2(D) unitarily by, for g € G,

F(2) = A(d(g)(2)e)2 F(g72)

where d(g™")(2) denotes the differential of g=' : Ty — Tq (resp. D — D) at
2.

Ezample 3.4. Sp(r,R) acts on H3(Tq) by

(ch Z) . F(z) = Det(cz + d)™*F ((az + b)(cz + d)7") .

The Laplace and Cayley transforms are defined as follows.

rA

Ly L3(Q) = O(Tn), Laplz) = 1,2( . /Q () A (2)V2 o
™ O(Ta) = O(D), MmF(w):=Ae —w)™F (i(e + w)(e — w)‘l) :

Then we have the following theorem.
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Theorem 3.5 ([2, Theorem XIIL.1.1, Proposition XIII.1.3, Proposition XIII.3.2]).
(1) If A > 2 — 1, then L3(Q) —2— H3(To) —2— H(D).
unitary unitary

(2) IfA> 2 — 1, then L3(Q) —LT O(Ta) 2 O(D).
mj). un wsom.
dense image

Now we define the 1-parameter semigroup on O(Tg). For t € C with
Ret > 0, t ¢ /—1nZ, we define 7,(t) : O(Tq) — O(Tgy) by

#(t)F(z) :=A(—izsinht + ecosht)™
x F ((zcosht + iesinht)(—izsinht + ecosht)™").
We can easily check that
NI f(w) = e f(ew),

so this indeed gives the action of the semigroup. From now on we find the
explicit formula of

LA Ly L3(Q) — L3().

We recall that the key formula for 1-dimensional case was given by

/ e (2B e = 2
0

So we generalize this formula for multi-variable case. In order to do this, we
consider the decomposition of the polynomial space.

Theorem 3.6 (Hua—Kostant—Schmid, [2, Theorem XI.2.4]). The polynomial
space P(n*) is decomposed under L as

Pnt) = @ Vi ++mer

my > >m, >0
m; €Z

where {Y1, ..., } i a set of some strongly orthogonal roots, and each sub-
space Vipiyi+-tmpye has nonzero Kp-invariant vectors.

Let @ € Vinyyy+--+m.q, De the unique K-invariant polynomial such that

®,(e) = 1, and let dp, := dim Vip o - tm,y,- Also we use the following
notation:
To(A4+m) + ( d,. )
MNm = ————= A—=(G-1 :
= =TT (2-50-1)

Using this, we define the generalized I-Bessel function as follows.
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Definition 3.7 (Generalized I-Bessel function, [2, Section XV.2]).

Ii(2) == Z —I——gm—@m(z)

my>-->my >0 ( )m (F)m
m;EZL

If n* = R, then Z,(2) = I'(A\)15_1(21/Z) holds. For this function, we have
the following formula.

Proposition 3.8 ([2, Proposition XV.2.1]). For A > 2 — 1 and 2 € n} with
Re 2z €,

/ e" T, () A(z) T dr = To(N)A(z) ™=,
Q
Proof. Since

/ e "0, (2)A(2)* Fdz = To(A + m)A(z) P (27),

LS (Z')“ D)

my1>--2me>0 \ 7
m;€Z

holds, the formula is proved by termwise integral. O

For t € C with Re t > 0, ¢t ¢ v/—17Z, and ¢ € L3(Q), we define

1
(1 r) i =—,— e—Cotht(tr(ac)+tr(y))
A(De(z) RGN SinhMt/ﬂw(y)

N

1 n
I, ——P Aly)*7+d
X A(S. 2 (z )y> (y)""rdy

in
where P(z)y = 2x(zy) — (2?)y (for example, if n* = Sym(r,R), then
P(z)y = zyz). When n* = R, then this coincides with the one in the
previous section:

1 o _ ~ 2 _
n(O0(e) = i [ et (e

Then we can prove similarly to the 1-dimensional case that
L:)\T)\(t) = %A(t)ﬁ,\,

and especially 7)(¢)7x(s) = 7a(¢ + s) holds if the integral converges. In order
to know when the integral converges, we have to know the estimate of the
kernel function.
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4 Speaker’s results

Let U; be the maximal compact subgroup of L¢, and let | - |; be the norm
on nt invariant under Uy, such that |z|; = tr(z) holds for any = € 2. Then
the I-Bessel function has the following upper estimate.

Theorem 4.1 (N). IfReX > 2 — 1 —k for some k € Zxo, then there ezists
a constant C' > 0 such that

IZ5(2%)| < C(1+ |z|i)e Resh.
This follows from the following integral formula.

Theorem 4.2 (N). IfReA > 2 — 1 —k for some k € Zo, then

IA(Z2) = CA+k/ 1F1(——k‘,)\; —z,w)ez(z|RBw)h(w)A+k—%_ﬂdw
D

where ¢y = W—lﬁﬁ%, and 1F1(—k, \; —z,w) is a polynomial of degree kr

with respect to z,w.
Idea of proof. For simplicity, we start with nt = R case

A+k—1

T

Ii(2*) = /| “ VP (=K, X —zw)eRev (1 — |w| )M 2dw
w(<

for k € Z>o, ReX > 1 —k. We recall from Remark 2.2 that the inner product

A—-1

n |wl<1

f(w)g(w)(1 — Jw|*)*"dw

(flg)x =

is computed as

2. m!
f = —'ambm
(flg)a mz—_o M

where f(w) = S.°_ anw™, g(w) = Y o0_ brw™. We now define the differ-

m=0

ential operator D® () by

odEo
D(k)()\) o ,wl /\_dw_kw,\ 1+k.

Then we can prove easily that

DB XNw™ = (X + m)w™
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Therefore, we have

1 1 m!
(k) =
oo LN lohrek = 155 g:; G At kb
~mA+m)y — o m!
a’mbm = ambm< 1)
Z;) m+k n;) ()‘)m (
Especially if f(w) = e** and g(w) = e, then
1 . >\ m! 2mF"
(k) w|  Zw — -
0 (P Vel g;o N ml ml
1 ~
=3 mzm = T)(2%) = P(\)],_1(22) = (LHS)
m=0 mi

dk k L dk—i (,w)\—1+k) 47 e?w
(k) 2w __ . 1-) A=1+k zw _ , 1-A
DWW (X)e™ = w'*—uw e =w E ( ) e Tk

S (F) ket = S CDR) Ve
) Z(')(/\mk_] L)

and therefore

1 -
(_)T)_k<D(k) (A)ezw,ezw>/\+k
=—~—)‘ tk—1 / 1F1(=k, A\ —2w)e™e”™ (1 — |[w[*)**2dw = (RHS)
|lw[<1

™

holds, and we have proved (LHS)=(RHS).
For general case, we redefine D®)()\) as

D) = 8w (1 a‘?ﬂ)kmwﬁ—%k.

Then instead of (1), if f,g € O(D) is decomposed as f = domfm, g =
> 1n 9m, according to the decomposition in Theorem 3.6, we have

(j\l)—k<D(k)()\)f|g>,\+k => (—/\')'r‘n"<fm|9m>F
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where this (A); means (A, ..., A)k, .k = H;=1 (/\ - g(j - 1))k, and (fm|gm)F
is the Fischer norm defined by

Ho)e = == [ fe)a@e s

(see [2, Corollary XIII.2.3, Proposition XIV.2.2]). Using this, we can prove
the theorem in the similar way. O
Proof of Theorem 4.1.

|I,\(Z2)|

=[cx+k] / 1 Fi(=k, A —2, w)|eBe 2 Re wp (o) Re Mk-22
D

Slenel [ (1 (elful)?) 4% 10 a2
Since w € D holds if and only if |w|e < 1, where | - | is the dual norm of
|- |1
<|earkl(L + |2[i)eRe =l / h(w)Re MR gy
<C(1 + |z|fm) e Re 2l 7 0

We recall that 7, is given by
1

e coth t(tr(z)+tr(y))
To()\)sinh™ ¢ /Q o)
1 1 n
x Iy <sinh2 tP(fﬁ)y) A(y)*r dy.

Now we give the upper estimate of the integral kernel.

Corollary 4.3 (N). If A > 22 —1 — k for some k € Zo, then there exists a
constant C > 0 such that for t = u + iv with u > 0,

& P(x%)y)

sinh? ¢t
sinh u

Ta(t)p(z) =

¢~ cotht(tr(@)+tr () T, (

<C (1 + (tr(z) tr(y))%) exp (—
Therefore, if Ret =0 and A > 27“ — 1 we have
ma(t) : LNQ, A(z)* 7 dz) — LP(R),

and if Ret > 0 and A > 2 — 1, we have

(tr(z) + tr(y))) .

coshu + | cos v

7x(t) :{Polynomial growth functions} — {Exponential decay functions}.
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