<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>THE SHARP GROWTH ESTIMATE FOR $\mathcal{U}(\lambda)$ (Some inequalities concerned with the geometric function theory)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Yanagihara, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1878: 100-111</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/195597">http://hdl.handle.net/2433/195597</a></td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THE SHARP GROWTH ESTIMATE FOR $U(\lambda)$

Hiroshi Yanagihara
Department of Applied Science
Faculty of Engineering, Yamaguchi University
Tokiwadai, Ube 755-8611, Japan

ABSTRACT. For $0 < \lambda \leq 1$ let $U(\lambda)$ be the class of analytic functions in the unit disk $D$ with $f(0) = f'(0) - 1 = 0$ satisfying $|f'(z)(z/f(z))^2 - 1| < \lambda$ in $D$. Then it is known that every $f \in U(\lambda)$ is univalent in $D$. In the present article we shall prove the sharp estimates $|f''(0)| \leq 2(1+\lambda)$ and $|z|/(1+|z|(1+\lambda|z|)) \leq |f(z)| \leq |z|/(1-|z|(1-\lambda|z|))$. As an application we shall also give the sharp covering theorems.

1. INTRODUCTION

We denote the complex plane by $C$ and the extended complex plane by $\hat{C} = C \cup \{\infty\}$. For $c \in C$ and $r > 0$ let $D(c, r) = \{z \in C : |z-c| < r\}$ and $D = D(0,1)$. Similarly let $\Delta_r = \hat{C} \setminus \overline{D}(0,r) = \{z \in \hat{C} : r < |z| \leq \infty\}$ and $\Delta = \Delta_1$.

Let $A(\{D\})$ denote the space of analytic functions in $D$ and $A_0(\{D\}) = \{f \in A(\{D\}) : f(0) = f'(0) - 1 = 0\}$. Here we regard $A(\{D\})$ as a topological vector space endowed with the topology of uniform convergence over compact subsets of $D$. A function $f$ is said to be univalent in a domain $D$ if it is one-to-one in $D$. Let $S$ denote the class of univalent functions in $A_0(\{D\})$.

For $0 < \lambda \leq 1$ let $U(\lambda)$ be the class of functions $f \in A_0$ satisfying

\begin{equation}
|f'(z) \left( \frac{z}{f(z)} \right)^2 - 1 | < \lambda
\end{equation}

in $D$. The boundedness of $f'(z)(z/f(z))^2$ forces $f \in U(\lambda)$ that $f(z) \neq 0$ in $D \setminus \{0\}$. Hence $f'(z) \neq 0$ holds in $D$ and $f$ is locally univalent in $D$. Moreover it is known that $f \in U(\lambda)$ is univalent in $D$, i.e., $U(\lambda) \subset S$. 

\begin{itemize}
    \item [A] 2014 100-111
\end{itemize}
In the present article we shall prove the sharp inequalities

\[ |a_2(f)| = 2^{-1}|f''(0)| \leq 1 + \lambda, \]

\[ \frac{|z|}{(1-\lambda|z|)(1-|z|)} \leq |f(z)| \leq \frac{|z|}{(1-\lambda|z|)(1-|z|)} \]

for \( f \in \mathcal{U}(\lambda) \). To this end we introduce three classes of meromorphic functions in \( \Delta \) closely related to \( \mathcal{U}(\lambda) \). For \( 0 < \lambda \leq 1 \) let \( \mathcal{M}(\lambda) \) be the class of meromorphic functions \( g \) in \( \Delta \) which has a Laurent expansion of a form

\( g(w) = w + c_0 + \frac{c_1}{w} + \frac{c_2}{w^2} + \cdots, \quad 1 < |w| < \infty \)

and satisfying

\[ |g'(w) - 1| < \lambda. \]

Now for \( f \in \mathcal{U}(\lambda) \) put

\[ T(f)(w) = \frac{1}{f(\frac{1}{w})}, \quad w \in \Delta. \]

Then we have

\[ \frac{d}{dw} T(f)(w) = \frac{f'(1/w)}{w^2 f^2(1/w)} = f'(z) \left( \frac{z}{f(z)} \right)^2, \quad z = \frac{1}{w} \]

and hence \( Tf \in \mathcal{M}(\lambda) \). Thus \( T \) is a transformation which maps \( \mathcal{U}(\lambda) \) injectively into \( \mathcal{M}(\lambda) \). The image \( T(\mathcal{U}(\lambda)) \) is a proper subset of \( \mathcal{M}(\lambda) \) and it is easy to see that

\( \mathcal{M}_0(\lambda) = \{g \in \mathcal{M}(\lambda) : g(w) \neq 0 \text{ in } \Delta \} = T(\mathcal{U}(\lambda)). \)

Notice that \( a_2(f) = -c_0(T(f)) \) hold for \( f \in \mathcal{U}(\lambda) \). Moreover let

\( \widetilde{\mathcal{M}}(\lambda) = \{g \in \mathcal{M}(\lambda) : c_0(g) = 0\}. \)

In the next section we shall show that every \( g \in \widetilde{\mathcal{M}}(\lambda) \) satisfies \( g(w) \neq 0 \) in \( \Delta \). Thus the relation

\( T(\widetilde{\mathcal{U}}(\lambda)) = \widetilde{\mathcal{M}}(\lambda) \subset T(\mathcal{U}(\lambda)) = \mathcal{M}_0(\lambda) \subset \mathcal{M}(\lambda) \)

holds.

In Section 2 we shall derive an integral representation of \( g \in \mathcal{M}(\lambda) \) and prove existence of the boundary limit \( g(\eta) = \lim_{\Delta \ni w \to \eta} g(w) \) for each \( \eta \in \partial \Delta \). Further we shall precisely study the boundary values of \( g \in \widetilde{\mathcal{M}}(\lambda) \) and obtain the sharp estimate \( |g(\eta)| \leq 1 + \lambda \) for \( g \in \widetilde{\mathcal{M}}(\lambda) \) and \( \eta \in \partial \Delta \), which is equivalent to the sharp upper bound \( |a_2(f)| \leq 1 + \lambda \) for \( f \in \mathcal{U}(\lambda) \).
In Section 3 for each fixed $w_0 \in \Delta \setminus \{\infty\}$ we shall treat the sharp estimate on $|g(w_0)|$ for $g \in \mathcal{M}_0(\lambda)$. The result has an immediate counterpart in $\mathcal{U}(\lambda)$ and we shall derive the sharp growth estimate and the sharp covering theorem for $\mathcal{U}(\lambda)$.

2. INTEGRAL REPRESENTATION

For $g \in \mathcal{M}(\lambda)$ let

(2.1) \[ b_g(w) = \frac{w^2}{\lambda} (1 - g'(w)), \quad w \in \Delta, \]

(2.2) \[ \beta_g(z) = b_g(1/z), \quad z \in \mathbb{D}. \]

Note that $g'(w) - 1 = O(w^{-2})$ as $w \to \infty$ and that $g'(1/z)$ is analytic in $\mathbb{D}$. Applying the maximum modulus principle to $g'(1/z) - 1$ we have

\[ |g'(w) - 1| \leq \frac{\lambda}{|w|^2}, \quad 1 < |w| < \infty. \]

Hence $\beta_g \in H_{1}^{\infty}(\mathbb{D})$ and for any $w, w_0 \in \Delta \setminus \{\infty\}$ by integrating $g'(w) - 1 = -\lambda b_g(w)w^{-2}$ we obtain

\[ g(w) - w = g(w_0) - w_0 - \lambda \int_{w_0}^{w} \frac{b_g(\zeta)}{\zeta^2} d\zeta. \]

Since $\lim_{w_0 \to \infty} (g(w_0) - w_0) = c_0$, we have

\[ g(w) = w + c_0 - \lambda \int_{\infty}^{w} \frac{b_g(\zeta)}{\zeta^2} d\zeta = w + c_0 + \lambda \int_{0}^{1/w} \beta_g(\zeta) d\zeta. \]

Converse is also true and we have the following.

Theorem 2.1. For a meromorphic function $g$ in $\Delta$, $g \in \mathcal{M}(\lambda)$ if and only if there exist $\beta \in H_{1}^{\infty}(\mathbb{D})$ and $c \in \mathbb{C}$ such that

\[ g(w) = w + c + \lambda \int_{0}^{1/w} \beta(\zeta) d\zeta. \]

Corollary 2.2. Each $g \in \mathcal{M}(\lambda)$ is Lipschitz continuous and satisfies

(2.3) \[ \left(1 - \frac{\lambda}{|w_0w_1|}\right) |w_1 - w_0| \leq |g(w_1) - g(w_0)| \leq \left(1 + \frac{\lambda}{|w_0w_1|}\right) |w_1 - w_0| \]

for $w_0, w_1 \in \Delta$. Particularly

(i) The limit $g(\eta) = \lim_{\Delta \ni w \to \eta} g(w)$ exists for every $\eta \in \partial \Delta$.

(ii) $g$ is univalent in $\Delta$. Furthermore if $0 < \lambda < 1$, then $g$ is univalent on $\bar{\Delta}$. 

Proof. Inequality (2.3) easily follows from Theorem 2.1 and
\[
\left| \int_{1/w_0}^{1/w_1} \beta(\zeta) \, d\zeta \right| \leq \left| \frac{1}{w_1} - \frac{1}{w_0} \right| = \frac{|w_1 - w_0|}{|w_0 w_1|}.
\]
By (2.3) the function \( g \) is Lipschitz continuous in \( \Delta \) and from this the boundary limit \( g(\eta) = \lim_{\Delta \ni w \to \eta} g(w) \) exists for each \( \eta \in \partial \Delta \). Inequality (2.3) also shows that \( g \) is univalent in \( \Delta \). Since (2.3) still holds on \( \overline{\Delta} \) by continuity, \( g \) is univalent on \( \overline{\Delta} \), when \( 0 < \lambda < 1 \). \( \square \)

Each \( f \in \mathcal{U}(\lambda) \) is univalent in \( \mathbb{D} \), since \( Tf \) is univalent in \( \Delta \) by Corollary 2.2.

Corollary 2.3. For each \( 0 < \lambda \leq 1 \) the inclusion relation \( \tilde{\mathcal{M}}(\lambda) \subset \mathcal{M}_0(\lambda) \) holds.

Proof. For \( g \in \tilde{\mathcal{M}}(\lambda)(\subset \mathcal{M}(\lambda)) \) we have by Theorem 2.1
\[
|g(w)| = \left| w + \lambda \int_0^{1/w} \beta(\zeta) \, d\zeta \right| \geq |w| - \frac{\lambda}{|w|} > 0, \quad |w| > 1.
\]
Thus \( g \) has no zeros in \( \Delta \) and hence \( g \in \mathcal{M}_0(\lambda) \). \( \square \)

For \( g \in \mathcal{M}(\lambda) \) let \( E(g) \) be the omitted set of \( g \), i.e.,
\[
E(g) = \hat{\mathbb{C}} \setminus g(\Delta).
\]
For \( R > 1 \) the image \( g(\partial \Delta_R) \) is an analytic Jordan curve and \( g(\Delta_R) \) is the domain outside \( g(\partial \Delta_R) \). Let \( D_R \) be the domain bounded by \( g(\partial \Delta_R) \). Then \( \{D_R : 1 < R\} \) is a 1-parameter family of increasing domains in \( \mathbb{C} \) and
\[
E(g) = \bigcap_{R > 1} D_R.
\]
In particular when \( 0 < \lambda < 1 \), by Corollary 2.2 \( E(g) \) is a closed Jordan domain bounded by \( g(\partial \Delta) \). Notice that for any \( g \in \mathcal{M}(\lambda) \) with \( 0 < \lambda \leq 1 \) and \( a \in \partial E(g) \) there exists \( \eta \in \partial \Delta \) such that \( a = g(\eta) \).

Theorem 2.4. Let \( g \in \mathcal{M}(\lambda) \) and \( g(w) = w + c_0 + \int_0^{1/w} \beta(\zeta) \, d\zeta \) with \( \beta \in H_1^\infty(\mathbb{D}) \) and \( c_0 \in \mathbb{C} \). Then \( g \in \mathcal{M}_0(\lambda) \) if and only if
\[
-c_0 \in E(\tilde{g}),
\]
where
\[
\tilde{g}(w) = w + \int_0^{1/w} \beta(\zeta) \, d\zeta \in \tilde{\mathcal{M}}(\lambda).
\]
Proof. For $g \in \mathcal{M}(\lambda)$, by definition, $g \in \mathcal{M}_0(\lambda)$ if and only if $g(w) = \tilde{g}(w) + c_0 \neq 0$ for all $w \in \Delta$. This is equivalent to (2.4).

For $g \in \mathcal{M}_0(\lambda)$ the coefficient $c_0 = c_0(g)$ in the expansion (1.2) is called the conformal center of the set $E(g)$. For more details on conformal center we refer to [8].

Notice that $g + c \in \mathcal{M}(\lambda)$ holds for any $g \in \mathcal{M}(\lambda)$ and $c \in \mathbb{C}$. This implies that there are no upper bound on $|c_0(g)|$ for $g \in \mathcal{M}(\lambda)$. However concerning with the class $\mathcal{M}_0(\lambda)$, it is not difficult to get the sharp estimate.

**Theorem 2.5.** Let $\lambda \in (0, 1]$. Then,

(a) For $g \in \tilde{\mathcal{M}}(\lambda)$ the sharp estimate $1 - \lambda \leq |g(\eta)| \leq 1 + \lambda$ holds on $\partial\Delta$. Furthermore equality $|g(\eta)| = 1 - \lambda$ at some $\eta \in \partial\Delta$ if and only if $g(w) \equiv w - \lambda \eta^2 / w$, and $|g(\eta)| = 1 + \lambda$ if and only if $g(w) \equiv w + \lambda \eta^2 / w$.

(b) Inequality $|c_0(g)| \leq 1 + \lambda$ holds for $g \in \mathcal{M}_0(\lambda)$ with equality if and only if

$$g(w) = w \left(1 + \frac{\lambda e^{i\theta}}{w}\right) \left(1 + \frac{e^{i\theta}}{w}\right), \quad w \in \Delta.$$ 

for some real $\theta$.

(c) Inequality $|a_2(f)| \leq 1 + \lambda$ holds for $f \in U(\lambda)$ with equality if and only if

$$f(z) = \frac{z}{(1 + \lambda e^{i\theta}z)(1 + e^{i\theta}z)}, \quad z \in \mathbb{D}$$

for some real $\theta$.

Proof. Let $g \in \tilde{\mathcal{M}}(\lambda)$ and put $\beta \in H_1^{\infty}(\mathbb{D})$ as in (2.2). Then

$$g(w) = w + \lambda \int_0^{1/w} \beta(\zeta) \, d\zeta.$$ 

For $\eta \in \partial\Delta$ we consider $\int_0^{1/\eta} \beta(\zeta) \, d\zeta$ as the Lebesgue integral along a $C^1$-path connecting $0$ to $1/\eta$ and contained in $\mathbb{D}$ except for the end point $1/\eta$. Then the integral does not depend on choice of path. Thus (2.5) still holds for $\eta \in \partial\Delta$ and we have

$$|g(\eta)| \leq |\eta| + \lambda \left| \int_0^{1/\eta} \beta(\zeta) \, d\zeta \right| \leq 1 + \lambda \int_{[0,1/\eta]} |\beta(\zeta)| \, |d\zeta| \leq 1 + \lambda,$$
where $[0, 1/\eta]$ is the radial line segment connecting 0 and $1/\eta$. If $|g(\eta_0)| = 1 + \lambda$ at some $\eta_0 \in \partial \Delta$, then by the maximum modulus theorem $\beta = \epsilon$ for some $\epsilon \in \partial \mathbb{D}$ and

$$\frac{\lambda}{\eta} \int_0^{1/\eta} \beta(\zeta) \, d\zeta = \frac{\lambda \epsilon}{\eta^2} > 0.$$ 

Therefore $\epsilon = \eta^2$ and $g(w) \equiv w + \lambda \eta^2/w$. Similarly

$$|g(\eta)| \geq |\eta| - \lambda \int_0^{1/\eta} |\beta(\zeta)| \, d\zeta \geq 1 - \lambda \int_{[0,1/\eta]} |\beta(\zeta)| \, d\zeta \geq 1 - \lambda$$

with equality if and only if $\beta = \epsilon \in \partial \mathbb{D}$ and $\lambda \epsilon / \eta^2 < 0$, i.e., $\epsilon = -\eta^2$ and therefore $g(w) \equiv w - \lambda \eta^2/w$. This completes the proof of (a).

To show (b) let $g \in \mathcal{M}_0(\lambda)$. Then $g$ can be expressed as $g = \tilde{g} + c_0$ with $\tilde{g} \in \tilde{\mathcal{M}}(\lambda)$ and $-c_0 \in E(\tilde{g})$. By (a) and $E(\tilde{g}) = \bigcap_{R>1} D(R)$, where $D(R)$ is a domain bounded by the Jordan curve $\tilde{g}(\partial \Delta_R)$. Hence we have $E(\tilde{g}) \subset \overline{\mathbb{D}}(0,1+\lambda)$ and $|c_0(g)| \leq 1 + \lambda$.

Suppose now that $|c_0(g)| = 1 + \lambda$. Combining $-c_0(g) \in E(\tilde{g}) \cap \partial \mathbb{D}(0,1+\lambda)$ and $E(\tilde{g}) \subset \overline{\mathbb{D}}(0,1+\lambda)$, we have $-c_0(g) \in \partial E(\tilde{g})$. By Lipschitz continuity of $\tilde{g}$ there exists $\eta \in \partial \Delta$ with $-c_0(g) = \tilde{g}(\eta)$. Since $|\tilde{g}(\eta)| = |-c_0(g)| = 1 + \lambda$, it follows from (a) that $\tilde{g}(w) = w + \lambda \eta^2/w$ and hence

$$g(w) = \tilde{g}(w) + c_0 = \tilde{g}(\eta) = w \left(1 + \frac{\lambda \eta}{w}\right) \left(1 + \frac{\eta}{w}\right).$$

By letting $e^{i\theta} = -\eta$ we obtain (b).

Since $a_2(f) = -c_0(T(f))$ holds for $f \in \mathcal{U}(\lambda)$, (c) follows directly from (b). \qed

### 3. Growth Estimates

Let $0 < \lambda \leq 1$ and $1 < |w_0| < \infty$. Combining Theorem 2.1 and Theorem 2.5 (b) it is easily seen that if $g \in \mathcal{M}_0(\lambda)$ then

$$|g(w_0)| \leq |w_0| + \lambda \left| \int_{[0,1/w_0]} |\beta(\zeta)| \, d\zeta \right| + |c_0|$$

$$\leq |w_0| + \frac{\lambda}{|w_0|} + 1 + \lambda = |w_0| \left(1 + \frac{\lambda}{|w_0|}\right) \left(1 + \frac{1}{|w_0|}\right)$$
with equality at $w_0 = Re^{i\theta}$ if and only if $g(w) \equiv w(1 + \lambda e^{i\theta}w^{-1})(1 + e^{i\theta}w^{-1})$. Similarly the lower estimate

$$|g(w_0)| \geq |w_0| - \frac{\lambda}{|w_0|} - (1 + \lambda)$$

holds for $g \in \mathcal{M}(\lambda)$. Clearly it is not sharp, since the right hand side is negative for all $r$ sufficiently close to 1.

In this section we deal with the region of variability $V_\lambda(w_0)$ of $g(w_0)$, when $g$ varies on $\mathcal{M}_0(\lambda)$, i.e.,

$$V_\lambda(w_0) = \{g(w_0) : g \in \mathcal{M}_0(\lambda)\}.$$  

We shall show that $V_\lambda(w_0)$ is a closed Jordan domain bounded by a simple closed curve and give a parameterization of the boundary curve. Using these ideas we will obtain the sharp lower estimate on $|g(w_0)|$ when $g \in \mathcal{M}_0(\lambda)$.

First we notice that $V_\lambda(w_0)$ is a compact subset of $\mathbb{C}$. Indeed by (3.1) it is clear that $\mathcal{M}_0(\lambda)$ is a family of analytic functions in $\Delta \setminus \{\infty\}$ which is locally uniformly bounded and hence normal. Moreover if a sequence $\{g_n\}_{n=1}^\infty$ in $\mathcal{M}_0(\lambda)$ converge to $g$ locally uniformly in $\Delta \setminus \{\infty\}$, then it is not difficult to see that $g \in \mathcal{M}_0(\lambda)$. Thus $\mathcal{M}_0(\lambda)$ is a compact family with respect to the topology of locally uniform convergence. Since $V_\lambda(w_0)$ is the image of $\mathcal{M}_0(\lambda)$ with respect to the continuous mapping $\mathcal{M}_0(\lambda) \ni g \mapsto g(w_0) \in \mathbb{C}$, $V_\lambda(w_0)$ is also an compact subset of $\mathbb{C}$.

Next for $g \in \mathcal{M}_0(\lambda)$ let $g_\theta(w) = e^{-i\theta}g(e^{i\theta}w)$. Then $g_\theta \in \mathcal{M}_0(\lambda)$ for any $\theta \in \mathbb{R}$. From this it follows that

$$V_\lambda(Re^{i\theta}) = e^{i\theta}V_\lambda(R)$$

and it suffices to determine $V_\lambda(R)$ for $1 < R < \infty$. Similarly for $g \in \mathcal{M}_0(\lambda)$ let $\overline{g}(w) = \overline{g(\overline{w})}$. Then $\overline{g} \in \mathcal{M}_0(\lambda)$ and hence $V_\lambda(R)$ is symmetric with respect to $\mathbb{R}$.

**Theorem 3.1.** Let $0 < \lambda \leq 1$. Then

(i) For $g \in \mathcal{M}_0(\lambda)$

$$|w| \left(1 - \frac{\lambda}{|w|}\right) \left(1 - \frac{1}{|w|}\right) \leq |g(w)| \leq |w| \left(1 + \frac{\lambda}{|w|}\right) \left(1 + \frac{1}{|w|}\right),$$

for $1 < |w| < \infty$ with equality $w_0 = R_0e^{i\theta_0}$ if and only if

$$g(w) = w \left(1 - \frac{\lambda e^{i\theta_0}}{w}\right) \left(1 - \frac{e^{i\theta_0}}{w}\right) \text{ or } g(w) = w \left(1 + \frac{\lambda e^{i\theta_0}}{w}\right) \left(1 + \frac{e^{i\theta_0}}{w}\right),$$

respectively.
(ii) For $f \in \mathcal{U}(\lambda)$
\[
\frac{|z|}{(1+|z|)(1+\lambda|z|)} \leq |f(z)| \leq \frac{|z|}{(1-|z|)(1-\lambda|z|)},
\]
with equality at $z=r_0 e^{i\theta_0}$ if and only if
\[
f(z) = \frac{z}{(1+\lambda e^{i\theta_0}z)(1+e^{i\theta_0}z)} \quad \text{or} \quad f(z) = \frac{z}{(1-\lambda e^{i\theta_0}z)(1-e^{i\theta_0}z)}
\]
respectively.

**Theorem 3.2.** Let $f \in \mathcal{U}(\lambda)$ with $0 < \lambda \leq 1$. Then
\[
\mathbb{D} \left(0, \frac{1}{2(1+\lambda)} \right) \subset f(\mathbb{D}).
\]
Furthermore $\frac{e^{i\theta_0}}{2(1+\lambda)} \notin f(\mathbb{D})$ holds if and only if
\[
f(z) = \frac{z}{(1+\lambda e^{-i\theta_0}z)(1+e^{-i\theta_0}z)}.
\]

Now we define auxiliary functions. For $\epsilon \in \overline{\mathbb{D}}$ let
\[
\tilde{G}_{\lambda, \epsilon}(w) = w + \frac{\lambda \epsilon}{w}
\]
and
\[
E_\lambda = \begin{cases} 
\{ u + iv : (u/(1 + \lambda))^2 + (v/(1 - \lambda))^2 \leq 1 \}, & 0 < \lambda < 1 \\
[-2, 2], & \lambda = 1.
\end{cases}
\]
Notice that $E(\tilde{G}_{\lambda, e^{i\theta}}) = e^{i\theta/2} E_\lambda$ for $\theta \in \mathbb{R}$.

**Proposition 3.3.** Let $g \in \mathcal{M}_0(\lambda)$. If $g(R) \in \partial V_\lambda(R)$, then there exists $\epsilon, \eta$ with $|\epsilon| = |\eta| = 1$, such that $g = \tilde{G}_{\lambda, \epsilon} - \tilde{G}_{\lambda, \epsilon}(\eta)$.

**Proof.** By Theorem 2.4 $g$ can be decomposed as $g = \tilde{g} + c_0$, where $\tilde{g}(w) = w + \lambda \int_0^{1/w} \beta_\theta(\zeta) \, d\zeta \in \tilde{M}(\lambda)$ and $-c_0 \in E(\tilde{g})$. Again by Theorem 2.4
\[
g(R) = \tilde{g}(R) + c_0 \in \tilde{g}(R) - E(\tilde{g}) \subset V_\lambda(R).
\]
Thus $-c_0$ cannot be an interior point of $E(\tilde{g})$, otherwise $g(R)$ is an interior point of $V_\lambda(R)$. Hence $-c_0 \in \partial E(\tilde{g})$. By Lipschitz continuity of $\tilde{g}$ there exists $\eta \in \partial \Delta$ such that $-c_0 = \tilde{g}(\eta)$. Therefore
\[
g(R) = \tilde{g}(R) - \tilde{g}(\eta) = R - \eta + \lambda \int_{1/\eta}^{1/R} \beta_\theta(\zeta) \, d\zeta.
\]
Notice that \( R \neq \eta \), since \( g(R) \neq 0 \). Then we have
\[
\left| \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \right| \leq \left| \frac{1}{R} - \frac{1}{\eta} \right|
\]
with equality if and only if \( \beta_g = \varepsilon \) for some \( \varepsilon \) with \( |\varepsilon| = 1 \).

Suppose that
\[
\left| \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \right| < \left| \frac{1}{R} - \frac{1}{\eta} \right| = \left| \frac{\eta - R}{R \eta} \right|.
\]
Put
\[
\varepsilon_0 = \frac{R \eta}{\eta - R} \int_{1/\eta}^{1/R} \beta_g(\zeta) \, d\zeta \in \mathbb{D}.
\]
Then
\[
\tilde{G}_{\lambda, \varepsilon_0}(R) - \tilde{G}_{\lambda, \varepsilon_0}(\eta) = R - \eta + \lambda \frac{1}{R} - \frac{1}{\eta} = \tilde{g}(R) - \tilde{g}(\eta) = g(R).
\]

On the other hand since \( \tilde{G}_{\lambda, c} - \tilde{G}_{\lambda, c}(\eta) \in \mathcal{M}_0(\lambda) \) for \( c \in \mathbb{D} \), we have \( \tilde{G}_{\lambda, c}(R) - \tilde{G}_{\lambda, c}(\eta) \in V_\lambda(R) \) for \( c \in \mathbb{D} \). The mapping \( \mathbb{D} \ni c \mapsto \tilde{G}_{\lambda, c}(R) - \tilde{G}_{\lambda, c}(\eta) \in V_\lambda(R) \) is an analytic function of \( c \in \mathbb{D} \). Since \( R \neq \eta \), the mapping is not constant and hence it is an open mapping. Thus \( g(R) = \tilde{G}_{\lambda, \varepsilon_0}(R) - \tilde{G}_{\lambda, \varepsilon_0}(\eta) \) is an interior point of \( V_\lambda(R) \), which contradict the assumption that \( g(R) \in \partial V_\lambda(R) \). Therefore \( \beta_g = \varepsilon \) for some \( \varepsilon \in \partial \mathbb{D} \) and \( g = \tilde{G}_{\lambda, \varepsilon} - \tilde{G}_{\lambda, \varepsilon}(\eta) \).

\( \square \)

**Proof of Theorem 3.1.** Since (ii) follows directly from (i), it suffices to show (i). From compactness of \( \mathcal{M}_0(\lambda) \) it follows that there exist \( g_1, g_2 \in \mathcal{M}_0(\lambda) \) such that
\[
|g_1(R)| = \min_{g \in \mathcal{M}_0(\lambda)} |g(R)| \quad \text{and} \quad |g_2(R)| = \max_{g \in \mathcal{M}_0(\lambda)} |g(R)|.
\]
Then clearly \( g_2(R) \in \partial V_\lambda(R) \). Also \( g_1(R) \in \partial V_\lambda(R) \) follows from the fact that \( 0 \notin V_\lambda(R) \). Thus by Proposition 3.3 there exist \( \varepsilon_j, \eta_j \) with \( |\varepsilon_j| = |\eta_j| = 1 \) such that \( g_j = \tilde{G}_{\lambda, \varepsilon_j} - \tilde{G}_{\lambda, \varepsilon_j}(\eta_j) \) for \( j = 1, 2 \). Since
\[
g_j(R) = \tilde{G}_{\lambda, \varepsilon_j}(R) - \tilde{G}_{\lambda, \varepsilon_j}(\eta_j) = (R - \eta_j) \left( 1 - \frac{\lambda \varepsilon_j}{R \eta_j} \right),
\]
we have
\[ |g_1(R)| = \min_{g \in \mathcal{M}_0(\lambda)} |g(R)| \leq \tilde{G}_{\lambda,1}(R) - \tilde{G}_{\lambda,1}(1) \]
\[ = (R - 1) \left( 1 - \frac{\lambda}{R} \right) \]
\[ \leq \left| (R - \eta_1) \left( 1 - \frac{\lambda \varepsilon_1}{R \eta_1} \right) \right| = |g_1(R)|. \]
Thus \( \eta_1 = \varepsilon_1 = 1 \) and hence
\[ g_1(w) \equiv \tilde{G}_{\lambda,1}(w) - \tilde{G}_{\lambda,1}(1) = w + \frac{\lambda}{w} - (1 + \lambda). \]

We have shown that for \( g \in \mathcal{M}(\lambda) \)
\[ (R - 1) \left( 1 - \frac{\lambda}{R} \right) \leq |g(R)| \]
with equality if and only if \( g(w) = w + \lambda w^{-1} - (1 + \lambda) \). Applying this to \( g_\theta(w) = e^{-i\theta}g(e^{i\theta}w) \) we have for \( w = Re^{i\theta} \) and \( g \in \mathcal{M}_0(\lambda) \)
\[ (|w| - 1) \left( 1 - \frac{\lambda}{|w|} \right) = (R - 1) \left( 1 - \frac{\lambda}{R} \right) \leq |g_\theta(R)| = |g(w)| \]
with equality \( g_\theta(w) = w + \lambda w^{-1} - (1 + \lambda) \), i.e.,
\[ g(w) = w + \lambda e^{2i\theta}w^{-1} - (1 + \lambda)e^{i\theta} = w \left( 1 - \frac{\lambda e^{i\theta}}{w} \right) \left( 1 - \frac{e^{i\theta}}{w} \right). \]

In the same manner we can treat the rest of the proof of (i).

\[ \square \]

Proof of Theorem 3.2. For \( f \in \mathcal{U}(\lambda) \) the relation \( \mathbb{D}(0, (2(1+\lambda))^{-1}) \subset f(\mathbb{D}) \) directly follows from 3.1 (ii).

Suppose that \( e^{i\theta_0} \{2(1+\lambda)\}^{-1} \notin f(\mathbb{D}) \). Then \( 2(1+\lambda)e^{-i\theta_0} \in E(g) = E(\tilde{g}) + c_0(g) \), where \( g = Tf = \tilde{g} + c_0(g) \) with \( \tilde{g} \in \tilde{\mathcal{M}}(\lambda) \). Since \( 2(1+\lambda)e^{-i\theta_0} - c_0(g) \in E(\tilde{g}) \subset \overline{\mathbb{D}}(0,1+\lambda) \) and \( |c_0(g)| \leq 1 + \lambda \) by Theorem 2.5, we have
\[ 1 + \lambda \leq 2(1 + \lambda) - |c_0(g)| \leq |2(1 + \lambda)e^{-i\theta_0} - c_0(g)| \leq 1 + \lambda. \]

Thus \( c_0(g) = (1 + \lambda)e^{-i\theta_0} \). By Theorem 2.5 (b) \( g(w) = w(1 + \lambda e^{i\theta_0}w^{-1})(1 + e^{i\theta_0}w^{-1}) = w + (1 + \lambda)e^{i\theta} + \lambda e^{2i\theta}w^{-1} \) for some \( \theta \in \mathbb{R} \). Therefore \( e^{i\theta} = e^{-i\theta_0} \) and \( g(w) = w(1 + \lambda e^{-i\theta_0}w^{-1})(1 + e^{-i\theta_0}w^{-1}) \). This implies
\[ f(z) = \frac{z}{(1 + \lambda e^{-i\theta_0}z)(1 + e^{-i\theta_0}z)}. \]

\[ \square \]
Proposition 3.3 implies that $\partial \partial V_\lambda(R)$ is contained in

$$V^*_\lambda(R) = \left\{(R - \eta) \left(1 - \frac{\lambda \epsilon}{R \eta}\right) : |\epsilon| = |\eta| = 1\right\}.$$

FIGURE 1. $V^*_{0.5}(2)$ and $V^*_{0.9}(1.1)$

One can prove $\partial V^*_\lambda(R)$ consists of two Jordan curves $J_e(R)$ and $J_i(R)$ which are starlike with respect to $R$ and $J_i(R)$ is contained inside of $J_e(R)$, and that $V_\lambda(R)$ is a closed Jordan domain surrounded by $J_e(R)$. For details see forthcoming paper [11].

REFERENCES


