<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Notes on a certain class of analytic functions (Some inequalities concerned with the geometric function theory)</td>
</tr>
<tr>
<td>著者</td>
<td>Nishiwaki, Junichi; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2014), 1878: 67-73</td>
</tr>
<tr>
<td>発行日</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195602</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストフォーマット</td>
<td>publisher</td>
</tr>
<tr>
<td>部門</td>
<td>京都大学</td>
</tr>
<tr>
<td>発行機関</td>
<td>京都大学</td>
</tr>
<tr>
<td>電子版</td>
<td>有</td>
</tr>
</tbody>
</table>
Notes on a certain class of analytic functions

Junichi Nishiwaki and Shigeyoshi Owa

Abstract

Let \(\mathcal{A} \) be the class of analytic functions \(f(z) \) in the open unit disk \(\mathbb{U} \). Furthermore, the subclass \(\mathcal{B} \) of \(\mathcal{A} \) concerned with the class of uniformly convex functions or the class \(\mathcal{S}_p \) is defined. By virtue of some properties of uniformly convex functions and the class \(\mathcal{S}_p \), an extreme function of the class \(\mathcal{B} \) and its power series are considered.

1 Introduction

Let \(\mathcal{A} \) be the class of functions \(f(z) \) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disk \(\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \} \). A function \(f(z) \in \mathcal{A} \) is said to be in the class of uniformly convex (or starlike) functions denoted by \(\mathcal{UCV} \) (or \(\mathcal{UST} \)) if \(f(z) \) is convex (or starlike) in \(\mathbb{U} \) and maps every circle or circular arc in \(\mathbb{U} \) with center at \(\zeta \) in \(\mathbb{U} \) onto the convex arc (or the starlike arc with respect to \(f(\zeta) \)). These classes are introduced by Goodman [1] (see also [2]). For the class \(\mathcal{UCV} \), it is defined as the one variable characterization by Rønning [4] and [5], that is, a function \(f(z) \in \mathcal{A} \) is said to be in the class \(\mathcal{UCV} \) if it satisfies

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \left| \frac{zf''(z)}{f'(z)} \right| \quad (z \in \mathbb{U}).
\]

It is independently studied by Ma and Minda [3]. But the one variable characterization for the class \(\mathcal{UST} \) is still open. Further, a function \(f(z) \in \mathcal{A} \) is said to be the corresponding class denoted by \(\mathcal{S}_p \) if it satisfies

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \left| \frac{zf'(z)}{f(z)} - 1 \right| \quad (z \in \mathbb{U}).
\]

This class \(\mathcal{S}_p \) was introduced by Rønning [4]. We easily know that the relation \(f(z) \in \mathcal{UCV} \) if and only if \(zf'(z) \in \mathcal{S}_p \). In view of these classes, we introduce the subclass \(\mathcal{B} \) of \(\mathcal{A} \) consisting

\[2010 \text{ Mathematics Subject Classification:} \text{ Primary 30C45}
\]

Keywords and Phrases: Analytic function, uniformly convex function, extreme function, power series.
of all functions \(f(z) \) which satisfy
\[
\Re \left(\frac{z}{f(z)} \right) > \left| \frac{z}{f(z)} - 1 \right| \quad (z \in \mathbb{U}).
\]

We try to derive some properties of functions \(f(z) \) belonging to the class \(\mathcal{B} \).

Remark 1.1. For \(f(z) \in \mathcal{B} \), we write \(w(z) = \frac{f(z)}{z} = u + iv \), then \(w \) lies in the domain which is the part of the complex plane which contains \(w = 1 \) and is bounded by a kind of teardrop-shape domain such that
\[
u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 + v^2 < 0.
\]

Example 1.1. Let us consider the function \(f(z) \in \mathcal{A} \) as given by
\[
f(z) = z + \frac{1}{\sqrt{2}}z^2.
\]
Then we easily see that the function \(f(z) \) is not univalent. And \(\frac{f(z)}{z} \) maps \(\mathbb{U} \) onto the circular domain which is 1 as the center and \(\frac{1}{\sqrt{2}} \) as the radius, that is, \(f(z) \in \mathcal{B} \).

2 An extreme function for the class \(\mathcal{B} \)

In this section, we would like to exhibit an extreme function of the class \(\mathcal{B} \) and its power series. For our results, we need to recall here some properties of the class \(\mathcal{S}_p \).

Lemma 2.1. (Rønning [4]). The extremal function \(f(z) \) for the class \(\mathcal{S}_p \) is given by
\[
\frac{zf'(z)}{f(z)} = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2.
\]
By using the expansion of logarithmic part of \(\frac{zf'(z)}{f(z)} \) in Lemma 2.1, we get

Lemma 2.2. (Ma and Minda [3]). The power series of \(\frac{zf'(z)}{f(z)} \) is following
\[
\frac{zf'(z)}{f(z)} = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2
\]
\[
= 1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k - 1} \right) z^n.
\]
The digamma function $\psi(z+1)$ is defined by

$$\psi(z+1) = \frac{\Gamma'(z+1)}{\Gamma(z+1)} = \psi(z) + \frac{1}{z},$$

where $\Gamma(z)$ is the gamma function defined by

$$\Gamma(z) = \int_0^\infty t^{z-1}e^{t}dt.$$

When z is natural number, we obtain

$$\psi(n+1) = \sum_{k=1}^{n} \frac{1}{k} - \gamma \quad (n \in \mathbb{N}),$$

where γ is Euler's constant and $-\gamma = \psi(1)$.

From Remark 1.1 and Lemma 2.1, we have the first result for the class \mathcal{B}.

Theorem 2.1. The extreme function $f(z)$ for the class \mathcal{B} is given by

$$f(z) = \frac{z}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right)^2}.$$

Proof. Let us consider the function $\frac{f(z)}{z}$ as given by

$$\frac{f(z)}{z} = \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right)^2}.$$

It suffices to show that $\frac{f(z)}{z}$ maps \mathbb{U} onto the interior of the domain such that

$$u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 + v^2 < 0,$$

implying that $\frac{f(z)}{z}$ maps the unit circle onto the boundary of the domain. Taking $z = e^{i\theta}$, we obtain that

$$\frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}} \right) \right)^2} = \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1+e^{i\frac{\theta}{2}}}{1-e^{i\frac{\theta}{2}}} \right) \right)^2}$$

$$= \frac{1}{1 + \frac{2}{\pi^2} \left(\log i - \log \left(\tan \frac{\theta}{4} \right) \right)^2}.$$
\[
= \frac{1}{\frac{1}{2} + \frac{2}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 - i \frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)}
\]

\[
= \frac{1}{\frac{1}{4} + \frac{6}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 + \frac{4}{\pi^4} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^4 + i \frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)}
\]

Writing \(f(z) = u + iv \), we see that

\[
\log \left(\tan \frac{\theta}{4} \right) = \frac{\pi(u \pm \sqrt{u^2 - v^2})}{2v}.
\]

Thus we have

\[
v = \frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)
\]

\[
= \frac{1 + \frac{6}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 + \frac{4}{\pi^4} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^4}{\frac{1}{4} + \frac{6}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 + \frac{4}{\pi^4} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^4}.
\]

Therefore, we arrive that

\[
u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 = 0.
\]

This completes the proof of the theorem.

Considering the power series of the function \(f(z) \) in Theorem 2.1, we derive

Theorem 2.2. The power series of the extreme function for the class \(B \) is given by

\[
f(z) = \frac{z}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2}
\]

\[
= z + \sum_{n=2}^{\infty} \sum_{p=1}^{n-1} (-1)^p \left(\frac{8}{\pi^2} \right)^p \sum_{j=1}^{p} \left(\prod_{k=1}^{m_j} \frac{1}{m_j} \sum_{k=1}^{m_j} \frac{1}{2k - 1} \right) z^n \quad (m_j \in \mathbb{N}).
\]
Proof. Let us suppose that

\[
\frac{f(z)}{z} = \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2}
\]

as the proof of Theorem 2.1. Then from Lemma 2.2, we have

\[
\frac{f(z)}{z} = \frac{1}{1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k-1} \right) z^n}
\]

\[
= 1 - \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k-1} \right) z^n + \left(\frac{8}{\pi^2} \right)^2 \left\{ \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k-1} \right) z^n \right\}^2
\]

\[
- \left(\frac{8}{\pi^2} \right)^3 \left\{ \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k-1} \right) z^n \right\}^3 + \cdots
\]

\[
+ (-1)^n \left(\frac{8}{\pi^2} \right)^n \left\{ \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{2k-1} \right) z^n \right\}^n + \cdots
\]

\[
= 1 - \frac{8}{\pi^2} \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) z
\]

\[
+ \left\{ -\frac{8}{\pi^2} \left(\frac{1}{2} \sum_{k=1}^{2} \frac{1}{2k-1} \right) + \left(\frac{8}{\pi^2} \right)^2 \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) \right\} z^2
\]

\[
+ \left\{ -\frac{8}{\pi^2} \left(\frac{1}{3} \sum_{k=1}^{3} \frac{1}{2k-1} \right) + \left(\frac{8}{\pi^2} \right)^2 \left\{ \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) \left(\frac{1}{2} \sum_{k=1}^{1} \frac{1}{2k-1} \right)
\]

\[
+ \left(\frac{1}{2} \sum_{k=1}^{1} \frac{1}{2k-1} \right) \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) \right\} - \left(\frac{8}{\pi^2} \right)^3 \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right)^3 \right\} z^3
\]

\[
+ \cdots
\]

\[
+ \left\{ -\frac{8}{\pi^2} \sum_{j=1}^{\infty} \left(\frac{1}{m_j} \sum_{j=1}^{m_j} \frac{1}{2k-1} \right) + \left(\frac{8}{\pi^2} \right)^2 \sum_{j=1}^{\infty} \left(\frac{1}{m_j} \sum_{j=1}^{m_j} \frac{1}{2k-1} \right) \right\} z^2
\]

\[
+ \left(\frac{8}{\pi^2} \right)^3 \sum_{j=1}^{\infty} \left(\frac{1}{m_j} \sum_{j=1}^{m_j} \frac{1}{2k-1} \right) + \cdots + \left(\frac{8}{\pi^2} \right)^p \sum_{j=1}^{\infty} \left(\frac{1}{m_j} \sum_{j=1}^{m_j} \frac{1}{2k-1} \right)
\]

\[
+ \cdots + \left(\frac{8}{\pi^2} \right)^n \sum_{j=1}^{\infty} \left(\frac{1}{m_j} \sum_{j=1}^{m_j} \frac{1}{2k-1} \right) \right\} z^n + \cdots \quad (m_j \in \mathbb{N})
\]
\[= 1 - \frac{8}{\pi^2} \left(\frac{1}{1} \sum_{k=1}^{1} \frac{1}{2k-1} \right) z + \sum_{p=1}^{2} (-1)^p \left(\frac{8}{\pi^2} \right)^p \sum_{\sum_{j=1}^{p} m_j = 2} \left(\prod_{j=1}^{p} \frac{1}{m_j} \sum_{k=1}^{m_j} \frac{1}{2k-1} \right) z^2 \]

\[
+ \sum_{p=1}^{3} (-1)^p \left(\frac{8}{\pi^2} \right)^p \sum_{\sum_{j=1}^{p} m_j = 3} \left(\prod_{j=1}^{p} \frac{1}{m_j} \sum_{k=1}^{m_j} \frac{1}{2k-1} \right) z^3 + \ldots
\]

\[
+ \sum_{p=1}^{n} (-1)^p \left(\frac{8}{\pi^2} \right)^p \sum_{\sum_{j=1}^{p} m_j = n} \left(\prod_{j=1}^{p} \frac{1}{m_j} \sum_{k=1}^{m_j} \frac{1}{2k-1} \right) z^n + \ldots
\]

\[= 1 + \sum_{n=1}^{\infty} \sum_{p=1}^{n} (-1)^p \left(\frac{8}{\pi^2} \right)^p \sum_{\sum_{j=1}^{p} m_j = n} \left(\prod_{j=1}^{p} \frac{1}{m_j} \sum_{k=1}^{m_j} \frac{1}{2k-1} \right) z^n.
\]

This completes the proof of the theorem. \(\square\)

By using digamma function in Theorem 2.2, we have

Corollary 2.1. The power series of the extreme function for the class \(B\) is rewritten as following

\[f(z) = z + \sum_{n=2}^{\infty} \sum_{p=1}^{n-1} (-1)^p \left(\frac{8}{\pi^2} \right)^p \times
\]

\[
\sum_{\sum_{j=1}^{p} m_j = n-1} \left\{ \prod_{j=1}^{p} \frac{1}{m_j} \left(\psi(m_j + 1) - \frac{1}{2} \psi([m_j/2] + 1) - \frac{1}{2} \psi(1) \right) \right\} z^n \quad (m_j \in \mathbb{N}),
\]

where \([\cdot]\) is the Gauss symbol

References

Junichi Nishiwaki
Department of Mathematics and Physics
Setsunan University
Neyagawa, Osaka 572-8508 Japan
email:jerjun2002@yahoo.co.jp

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502 Japan
email:shige21@ican.zaq.ne.jp