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1 Introduction

In this survey we consider the Cauchy problem for the fast diffusion equation:

$\{\begin{array}{ll}u_{\tau}=\nabla\cdot(u^{m-1}\nabla u) , y\in \mathbb{R}^{n}, \tau\in(0, T) ,u(y, 0)=u_{0}(y)\geq 0, y\in \mathbb{R}^{n},\end{array}$ (1.1)

where $m<1$ and $T>0$ . It is known that for $m$ below the critical exponent $m_{c}$ $:=(n-2)/n$
all solutions with initial data in some suitable space, like $L^{p}(\mathbb{R}^{n})$ with $p:=n(1-m)/2,$
vanish in finite time. We discuss results on the asymptotic behaviour of solutions near
extinction in the range

$m\leq m_{*}:=\underline{n-4} n>2.$

$n-2$ ’

The exponent $m_{*}$ plays an important role in [1, 2, 3, 4, 6, 7, 9].
The book [11] contains a general description of the phenomenon of extinction. It is

explained there that the size of the initial data at infinity (the tail of $u_{0}$ ) is very important
in determining both the extinction time and the extinction rates.

For $m<m_{c}$ we have explicit self-similar solutions $U_{D,T}$ called generalized Barenblatt
solutions, given by the formula

$U_{D,T}(y, \tau) :=\frac{1}{R(\tau)^{n}}(D+\frac{\beta(1-m)}{2}|\frac{y}{R(\tau)}|^{2})^{-\frac{1}{1-m}}$ (1.2)

where

$R( \tau);=(T-\tau)^{-\beta}, \beta:=\frac{1}{n(1-m)-2}=\frac{1}{n(m_{c}-m)}=\frac{\mu}{2(n-\mu)}.$

Here $T\geq 0$ (extinction time) and $D>0$ are free parameters. These solutions have a
decay rate near extinction of the form $\Vert u(\cdot, \tau)\Vert_{\infty}=O((T-\tau)^{n\beta})$ .

A very interesting limit case occurs if we take $D=0$ in formula (1.2), and we find the
singular solution

$U_{0,T}(y, \tau):=k_{*}(T-\tau)^{\mu/2}|y|^{-\mu}, k_{*}:=(2(n-\mu))^{\mu/2}.$

whose attracting properties were studied in [6] where we obtained a continuum of extinc-
tion rates for suitable bounded data $u_{0}.$
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To study the behaviour of solutions near extinction one can rewrite (1.1) by introducing
the change of variables

$t:= \frac{1-m}{2}\log(\frac{R(\tau)}{R(0)})$ and $x:= \sqrt{\frac{\beta(1-m)}{2}}\frac{y}{R(\tau)},$

with $R$ as above, and the rescaled function

$v(x, t):=R(\tau)^{n}u(y, \tau)$ .

If $u$ is a solution of (1.1) then $v$ solves the equation

$v_{t}=\nabla\cdot(v^{m-1}\nabla v)+\mu\nabla\cdot(xv) , t>0, x\in \mathbb{R}^{n}$ , (1.3)

which is a nonlinear Fokker-Planck equation. The generalized Barenblatt solutions $U_{D,T}$

are transformed into generalized Barenblatt profiles $V_{D}$ which are stationary solutions of
(1.3):

$V_{D}(x):=(D+|x|^{2})^{\frac{1}{m-1}}, x\in \mathbb{R}^{n}$

The singular Barenblatt solution becomes

$V_{0}(x)=|x|^{-\mu}, x\in \mathbb{R}^{n}\backslash \{0\}.$

The critical exponent $m_{*}$ has the property that the difference of two generahzed Barenblatt
profiles is integrable for $m\in(m_{*}, m_{c})$ , while it is not integrable for $m\leq m_{*}.$

We discuss convergence to $V_{0}$ for $m<m_{*}$ in Section 2, convergence to $V_{D}$ when $D>0,$

$m<m_{*}$ in Section 3, and convergence to $V_{D}$ when $D>0,$ $m=m_{*}$ in Section 4.

2 Convergence to the singular Barenblatt profile

The following was shown in [6].

Theorem 2.1 Assume that

$n\geq 5$ and $0<m<m_{*}= \frac{n-4}{n-2}$ , (2.1)

and let the initial function $u_{0}$ be continuous, bounded, and satisfy the conditions:

$0\leq u_{0}(y)\leq A|y|^{-\mu}$ for all $y\neq 0$

and
$A|y|^{-\mu}-c_{1}|y|^{-l}\leq u_{0}(y)\leq A|y|^{-\mu}-c_{2}|y|^{-l}$ for $|y|\geq 1$

for some $A,$ $c_{1},$ $c_{2}>0$ , and

$\mu+2<l\leq L:=\mu+\sqrt{2(n-\mu)}$. (2.2)

Then the solution $u$ of problem (1.1) has complete extinction precisely at the time $T:=$

$(A/k_{*})^{1-m}>0$ , and there are positive constants $K_{1},$ $K_{2}$ such that for $0<\tau<T$ we have

$K_{1}(T-\tau)^{\theta_{l}}\leq\Vert u(\cdot, \tau)\Vert_{\infty}\leq K_{2}(T-\tau)^{\theta_{l}},$
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where
$\theta_{l}:=\frac{n\mu-\gamma_{l}}{2(n-\mu)}>0$ , (2.3)$\gamma_{l}:=\frac{\mu(l-\mu-2)(n-l)}{l-\mu}.$

One of the main aims of [9] is to show that Theorem 2.1 does not hold for $l>L.$
The main result from [6] can be formulated as follows.

Theorem 2.2 Let (2.1) hold. Assume that $v_{0}\geq 0$ is continuous, bounded and such that

$|x|^{-\mu}-c_{1}|x|^{-l}\leq v_{0}(x)\leq|x|^{-\mu}-c_{2}|x|^{-l}$ for $|x|\geq 1,$

where $l$ is as in (2.2) and $c_{1},$ $c_{2}>0$ . Assume also that $v_{0}(x)\leq|x|^{-\mu}$ for all $x\neq 0$ . Let $v$

denote the solution of (1.3) with initial condition

$v(x, O)=v_{0}(x) , x\in \mathbb{R}^{n}$ . (2.4)

Then;

(i) There exist $K_{1},$ $K_{2}>0$ such that for $t\geq 1$ we have

$K_{1}e^{\gamma\iota^{t}}\leq\Vert v(\cdot, t)\Vert_{\infty}\leq K_{2}e^{\gamma\iota t}$, (2.5)

here $\gamma_{l}$ is as in (2.3).

(ii) For each $r_{0}>0$ one can find $C_{1},$ $C_{2}>0$ such that for $t\geq 1$ and $|x|\geq r_{0}$ the following
holds

$C_{1}e^{-\alpha_{l}t}\leq|x|^{-\mu}-v(x, t)\leq C_{2}e^{-\alpha_{t}t}, \alpha\iota :=(l-\mu-2)(n-l)$ . (2.6)

The reason why we assume that $l>\mu+2$ is that the difference $|x|^{-\mu}-V_{D}(x)$ behaves
like $|x|^{-(\mu+2)}$ as $|x|arrow\infty$ . It was shown in [9] that the condition $\mu+2<l\leq L$ is optimal
for Theorem 2.2 (i) but not for Theorem 2.2 (ii) which holds for a larger range

$l \in(\mu+2, l_{\star}) , l_{\star}:=\frac{1}{2}(n+\mu+2)$ . (2.7)

More precisely, the following results were established in [9]:

Theorem 2.3 Assume that $m<m_{*},$ $n>2$ , and $v_{0}\geq 0$ is continuous.

(i) If
$v_{0}(x)<|x|^{-\mu}, x\neq 0$ , (2.8)

and
$v_{0}(x)\leq|x|^{-\mu}-c|x|^{-l}, |x|>1,$

with some $l$ as in (2.7) and $c>0$ then for any $r_{0}>0$ there exists $C(r_{0})>0$ such that the
solution of (1.3), (2.4) satisfies

$v(x, t)\leq|x|^{-\mu}-C(r_{0})e^{-\alpha_{l}t}|x|^{-l}, |x|\geq r_{0}, t\geq 0.$
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(ii) Assume that
$v_{0}(x)\geq|x|^{-\mu}-c|x|^{-l}, |x|>1,$

with some $l$ as in (2.7) and $c>0$ . Then one can find $C>0$ such that the solution of
(1.3), (2.4) satisfies

$v(x, t)\geq|x|^{-\mu}-Ce^{-\alpha_{l}t}|x|^{-l}, x\neq 0, t>0.$

(iii) Set
$\alpha_{\star}:=\alpha_{l_{\star}}=\frac{(n-\mu-2)^{2}}{4}$ . (2.9)

If (2.8) holds then for any $\alpha>\alpha_{\star}$ and each $r_{0}>0$ there exists $C(\alpha, r_{0})>0$ such that the
solution of (1.3), (2.4) satisfies

$\sup_{|x|\geq r0}(|x|^{-\mu}-v(x, t))\geq Ce^{-\alpha t}, t>0.$

Theorem 2.4 Let $m<m_{*},$ $n>2$ . Assume (2.8) and $v_{0}\geq 0$ is continuous. Then for
any

$\gamma>\gamma_{L}:=\mu(n+2-\mu-2\sqrt{2(n-\mu)})$

there exists $C(\gamma)>0$ such that the solution of (1.3), (2.4) satisfies
$v(x, t)\leq C(\gamma)e^{\gamma t}, x\in \mathbb{R}^{n}, t>0.$

The fact that the optimal condition on $l$ is different for (2.5) and (2.6) is in contrast
with corresponding results for the equation $u_{t}=\Delta u+u^{p}$ , see [5, 8, 10].

3 Convergence to regular Barenblatt profiles

The basin of attraction of $V_{D},$ $D>0$ and the rates of convergence to $V_{D},$ $D>0$ was
studied in [1, 2] using certain functional inequalities of Hardy-Poincar\’e type. It was
established there that the basin of attraction of $V_{D}$ in the range $m<m_{*}$ contains functions
$v_{0}$ such that

$V_{D_{0}}\leq v_{0}\leq V_{D_{1}}, 0<D_{1}<D<D_{0}, |v_{0}-V_{D}|\in L^{1}(R^{n})$ .

We call this set the variational basin, and for this the entropy method from [1, 2] gives
precise decay rates (the variational rates).

The main result in [7] is the following:

Theorem 3.1 Let $m<m_{*},$ $n>2$ . Assume that $c,$ $D>0$ and $\mu+2<l<l_{\star}$ , here $l_{\star}$ is
as in (2.7).
(i) If

$|v_{0}(x)-V_{D}(x)|\leq c|x|^{-l}, |x|\geq 1,$

and
$0<v_{0}(x)\leq V_{\delta}(x) , x\in \mathbb{R}^{n}$
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for some $\delta<D$ , then there exists $C_{1}>0$ such that the solution $v$ of (1.3) with the initial
condition (2.4) satisfies

$\sup_{x\in \mathbb{R}^{n}}|v(x, t)-V_{D}(x)|\leq C_{1}e^{-\alpha\iota t}, t\geq 0,$

where $\alpha_{l}$ is as in (2.6).
(ii) If

$v_{0}(x)\leq V_{D}(x)-c|x|^{-l}, |x|\geq 1,$

and
$0<v_{0}(x)\leq V_{D}(x) , x\in \mathbb{R}^{n},$

then there exists $C_{2}>0$ such that the solution $v$ of (1.3), (2.4) satisfies
$\sup_{x\in \mathbb{R}^{n}}(V_{D}(x)-v(x, t))\geq C_{2}e^{-\alpha_{l}t}, t\geq 0.$

(iii) If
$v_{0}(x)\geq V_{D}(x)+c|x|^{-l}, |x|\geq 1,$

and
$v_{0}(x)\geq V_{D}(x) , x\in \mathbb{R}^{n},$

then there exists $C_{3}>0$ such that the solution $v$ of (1.3), (2.4) satisfies
$\sup_{x\in \mathbb{R}^{n}}(v(x, t)-V_{D}(x))\geq C_{3}e^{-\alpha_{l}t}, t\geq 0.$

This result gives a sharp description of the basin of attraction of generalized Barenblatt
profiles for $m<m_{*}$ . It shows that non-integrable perturbations of $V_{D}$ may still yield
convergence to $V_{D}$ . The condition $l>\mu+2$ is optimal since the difference of two Barenblatt
profiles is of the order $|x|^{-(\mu+2)}.$

Theorem 3.1 yields a continuum of convergence rates which depend explicitly on the
tail of initial data. The rate $\alpha_{l}=(l-\mu-2)(n-l)$ converges to zero as $larrow\mu+2$ and
to the maximum value $\alpha_{\star}$ (see (2.9)) as $larrow l_{\star}$ . Here $\alpha_{\star}$ is the rate found in [1, 2] for
solutions emanating from integrable perturbations of $V_{D}$ . This fastest rate is the best
constant in a Hardy-Poincar\’e inequality (see [2]). This best constant is also the bottom
of the continuous spectrum of the linearization on a suitable weighted space (see [1, 2]).

In Theorem 3.1, the assertion (i) is no longer true if $l>l_{\star}$ . In fact, the following result
about the optimality of the range of $l$ was obtained in [7].

Theorem 3.2 Let $m<m_{*},$ $n>2$ . Assume that $D>0$ and

$0<v_{0}(x)<V_{D}(x) , x\in \mathbb{R}^{n}$

$or$

$v_{0}(x)>V_{D}(x) , x\in \mathbb{R}^{n}.$

Then for any $\epsilon>0$ , there exists $C_{\epsilon}>0$ such that the solution $v$ of (1.3), (2.4) satisfies
$\sup_{x\in \mathbb{R}^{n}}|V_{D}(x)-v(x, t)|\geq C_{\epsilon}e^{-(\alpha_{\star}+\epsilon)t}, t\geq 0$ . (3.1)
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It follows from (3.1) that Theorem 2 (i) in [1] is optimal if $m<m_{*},$ $n>2$ . The
sharpness of the rate given by $\alpha_{\star}$ was discussed in [2] in terms of relative entropy which
can be written as

$\overline{J-}[w]:=\frac{1}{1-m}\int_{\mathbb{R}^{n}}[w-1-\frac{1}{m}(w^{m}-1)]V_{D}^{m}dx, w:=\frac{v}{V_{D}}.$

The statement on the sharp rate in [2] says that $\alpha=\alpha_{\star}$ is the best possible rate for which
$\mathcal{F}[w(\cdot, t)]\leq \mathcal{F}[w(\cdot, 0)]e^{-\alpha t}$

holds for all $t\geq 0$ if $V_{D_{0}}\leq v_{0}\leq V_{D_{1}}$ for some $D_{0}>D>D_{1}>0$ and $v_{0}-V_{D}$ is integrable.
Theorem 3.2 implies that solutions starting from positive or negative perturbations of $V_{D}$

cannot converge to $V_{D}$ (in $L^{\infty}$ ) at exponential rates faster than $e^{-\alpha_{\star}t}.$

4 Critical case

The case $m=m_{*}$ was treated in [3] by functional analytic methods. $A$ suitable lineariza-
tion of the non-linear Fokker-Planck equation (1.3) was viewed as the plain heat flow
on a suitable Riemannian manifold and then non-linear stability was studied by entropy
methods. One of the main results of [3] says that if $0<D_{1}<D_{0},$ $D\in[D_{1}, D_{0}]$ and

$V_{D_{0}}(x)\leq v_{0}(x)\leq V_{D_{1}}(x) , x\in \mathbb{R}^{n},$

$|v_{0}(x)-V_{D}(x)|\leq f(|x|) , x\in \mathbb{R}^{n}, f(|\cdot|)\in L^{1}(\mathbb{R}^{n})$, (4.1)
then for the solution $v$ of (1.3) with the initial condition $v(x, 0)=v_{0}(x)$ it holds that

$\Vert v(\cdot, t)-V_{D}\Vert_{L}\infty(\mathbb{R}^{n})\leq K(t+1)^{-\frac{1}{4}}, t\geq 0$, (4.2)

for some $K>0.$

No lower bound for the rate was given in [3] and the question of whether the rate from
(4.2) is optimal for a class of data was posed there as an open problem together with the
question of whether one can prove convergence, maybe with worse rates or without rates,
for more general initial data. The aim in [4] is to provide some answers to these questions
by establishing optimal results on rates of convergence for a class of initial data which do
not satisfy (4.1).

Theorem 4.1 Assume that $n>2_{f}m=m_{*}= \frac{n-4}{n-2}$ and $D>0$ . Let $v$ be the solution of
(1.3) with the initial condition

$v(x, 0)=v_{0}(x) :=(|x|^{2}+D+\psi_{0}(x))^{-\frac{n-2}{2}} x\in \mathbb{R}^{n}$ , (4.3)

where $\psi_{0}$ is continuous and nonnegative on $\mathbb{R}^{n},$ $\psi_{0}\not\equiv 0.$

(i) If there are $B>0$ and $\gamma\in(0,1)$ such that
$\psi_{0}(x)\leq B\ln^{-\gamma}|x|, |x|>2,$

then there exists $C>0$ such that

$V_{D}(x)(1-CV_{D}^{\frac{2}{n-2}}(x)(t+1)^{-:1}2)\leq v(x, t)\leq V_{D}(x)$ , $x\in \mathbb{R}^{n},$ $t\geq 0.$
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(ii) If there are $b>0$ and $\gamma\in(0,1)$ such that

$\psi_{0}(x)\geq b\ln^{-\gamma}|x|, |x|>2,$

then there exists $c>0$ such that

$v(O, t)\leq V_{D}(0)-c(t+1)^{-l}2, t>0.$

This theorem says that if $V_{D}(x)-v_{0}(x)$ behaves like $|x|^{-n}\ln^{-\gamma}|x|$ for $|x|$ large and some
$\gamma\in(0,1)$ then $\Vert v(\cdot, t)-V_{D}\Vert_{L^{\infty}(\mathbb{R}^{n})}$ behaves like $t^{-\gamma/2}$ for $t$ large. Hence, we obtain a
continuum of algebraic rates for initial data which do not satisfy (4.1). It is also shown
in [4] that convergence to $V_{D}$ from below cannot occur at any rate faster than $t^{-1/2}$ , so
Theorem 4.1 (i) does not hold for $\gamma>1.$

Theorem 4.2 Let $n>2,$ $m=m_{\star}$ and $D>0$ , and assume that $\psi_{0}$ is continuous and
nonnegative on $\mathbb{R}^{n},$ $\psi_{0}\not\equiv 0$ . Then there exists $c>0$ such that the solution $v$ of (1.3),
(4.3) satisfies

$v(0, t)\leq V_{D}(0)-c(t+1)^{-\frac{1}{2}}$ for all $t>0.$
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