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On some decay properties of solutions for the Stokes equations
with surface tension and gravity in the half space
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Abstract

In the present paper, we consider decay properties of solutions for the Stokes equations with the
surface tension and gravity in the half space when ¢ — co. The Stokes equations arises in the study of
a free boundary problem for the Navier-Stokes equations in unbounded domains. We are interested
in the global-time wellposedness of the free boundary problem. When we construct solutions of the
free boundary problem, decay properties for the Stokes equations and Banach’s fixed point theorem
will be combined. That is the reason why we consider decay properties of solutions for the Stokes
equations. This paper shows the L, — L, estimates with 1 < r < 2 < ¢ < oo of solutions for the
Stokes equations, mainly. Our technique is based on the analysis of some resolvent problem which
is obtained by the Laplace transform of the Stokes equations. By examining the spectrum of the
resolvent problem in detail, we show the decay properties of solutions of the Stokes equations.

1 Introduction

This article is brief survey of the results related to [9], mainly.
In the present paper, we consider decay properties of solutions for the Stokes equations with the
surface tension and gravity in the half space RY = {z = (z/,zn) € RV |2/ € RV, zy > 0} (N > 2):

dyu — Div S(u,0) =0, divu=0 in RY, t>0,
Oth+uy =0 on R(],V, t> 0, (L1)
S(u,0)n + (va — cA')hn =0 on RY, t>0, '
uli=o = f(z), hle=o = d(z’).
Here, u = u(z,t) = (u1(z,1),...,un(z,t))T and § = 8(z,t) are unknown N-component velocity vector

and scalar pressure at (z,t) € RY x (0,00), respectively, and h = h(z, t) is also unknown scalar function
at (2/,2) € RV~1 x (0, 00) which is explained more precisely below; f(z) and d(z’) are given initial data
for u(z,t) and h(z’,t), respectively; RY is the boundary of RY and n = (0,...,0,~1)7 is the unit outer
normal vector on RY; the derivatives divu and A’h denote

N 5 N-1
divu = ZDjuj (D; = éx—j)’ A'h= Z D?h;

j=1 Jj=1
S(u,8) = —0I + D(u) is the stress tensor for the newtonian fluids, where I is the N x N identity matrix
and D(u) is also N x N matrix whose (%, ) component D;;(u) is give by D;;(u) = Dyu; + Djus; v, is

DMT denotes the transposed M.



the gravitational acceleration and ¢ > 0 is the surface tension coefficient. For the matrix M = M(x) =
(M;;(z)), Div M denotes that

N
tth component of DivM = Z D;M;j(z),
=1

and therefore Div S(u, 0) is given by
ith component of Div S(u,8) = —D,6 + Aw; + D; div u.

Now, we introduce the following two nonlinear problem:

(0, + (v-V)v=DivS(w,m) =y, Vay, dive=0 in Q(¢), t>0,
V=v-ng on I'(¢), t>0,
< S(v, m)n; = okng on T'(¥), t>0, (1.2)
v=_0 on I, t>0,
\ vlt—0 = vo in  Q(0),
( Ov+ (v V)v=DivS(v,m) —v,Veny, dive=0 in Q(), t>0,
V=v-n on I'(t), t>0, (13)
S(v, m)n; = okn on TI'(t), t>0,
vlt=0 = vo in  ©(0).

These two problems are free boundary problems for the Navier-Stokes equations of incompressible flows
for the newtonian fluids. Here, (v,,T'(t)) is unknown, where v = v(z, t) = (v1(z,1),...,vn(z,t))T is the
N-component velocity vector, m = m(z,t) is the pressure, and for a scalar function h = h(z’,t) defined
on RY x (0,00), T'(t) is given by

T(t)={z=(z,zn) e RN |2/ e RN, zn = h(a/,1)};

[y ={z=(c,zn) € RN |2’ € RN7, gy = —b} (b > 0) is the fixed boundary; V is the velocity of the
evolution of I'(t) in the normal direction and n; is the unit outer normal vector on I'(t); k = k(z,t) is
the mean curvature of I'(¢) which is negative when Q(t) is convex in a neighborhood of z € I'(¢). The
domain Q(t) is give by

Qt) ={z = (z/,zn) eRY |2/ e RV, —b< 2y < h(2/,t)} for (1.2),
Q) ={z = (z/,zn) e RV |2’ e RV, 2y < h(z',1)} for (1.3).

First, we see the history of the problem (1.2). This problem is first studied by Beale [3] mathematically.
Beale [3] shows the local-time unique existence theorem in the case that o = 0, and show the fact that
global-time solutions depending analytically on the initial data (vg, hg) can not exist even if (vg, ho) is
sufficiently small. After that, Beale [4] proves the unique existence theorem globally in time for small
initial data by taking into account the surface tension cxn; with ¢ > 0. Beale and Nishida [5] gives
large-time behavior of solutions for Beale [4], but the paper has just outline of proof. We can find the
detailed proof in Hataya [7]. Tani and Tanaka [12] shows the global-time unique existence theorem for
small initial data in the case with or without surface tension under weaker assumptions of the initial data
than Beale’s. And also, Hataya and Kawashima [6] gives some decay properties of large-time behavior
of solutions for small initial data in the case of ¢ = 0. In addition to these results, there are Allain [2]
and Tani [13] as long as we know. Note that these all results are in the framework of Lo in time and L,
in space. As another approach to (1.2), Abels [1] uses the L, settings in both time and space, and he
obtain the unique existence theorem locally in time in the case of ¢ = 0 for ¢ > N.

Next, we see the history of the problem (1.3). We have seen a lot of results of (1.2) above, on the
other hand results of (1.3) are not so many. Shibata and Shimizu [10, 11] shows the maximal L, — L,
regularity theorem for the linearized problem of (1.3) and resolvent estimates for the resolvent problem
obtained by the Laplace transform of the linearized problem. And Priiss and Simonett [8] considers the
two-phase problem corresponding to (1.3), and shows the unique existence of solutions locally in time
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for sufficiently small initial data and its instability when upper fluid is heavier than lower one. But, we
think that these all results Shibata and Shimizu [10, 11], and Priiss and Simonett [8] can not be applied
directly to show the global-time wellposedness of the problem (1.3).

Our final goal is to show the global-time wellposedness of (1.3) in the scaling critical spaces L, in
time and L, in space with {2/p) + (N/q) = 1. As the first step, we consider decay properties of (1.1),
noting that the equations (1.1) is homogeneous part of the linearized equations of (1.3). Especially, we
obtain the L, — L, estimates of the solution of (1.1) for 1 < r < 2 < g < 00, and also obtain estimates
of Lo, norm of the lower order terms: w, Vu, Djh and D;Dih for j,k =1,...,N — 1. The restriction
r < 2 < q arises from a kind of hyperbolic effect of the term h(z’,t).

Here, we introduce a interesting fact concerning the difference between the problem (1.2) and (1.3).
The remarkable one appears in the analysis of Lopatinski determinant of the linearized problem. Beale
and Nishida [5], and Hataya [7] show the following expansion of spectrum A:

b
A=-L2R+0(EP) as 1€]—0,

where £ = (£&1,...,6n_1) is the tangential variable in the Fourier space. On the other hand, our case
has the spectrum A.:

Ap = P2 21 P+ O(E1P?) as €| > 0+.

From this viewpoint, our case is more complex than the case of Beale and Nishida [5], and Hataya [7],
because we have not only —|¢’|? but also +iys/ %1¢’|1/2 which yields oscillations in time.
This paper is organized as follows. In Section 2, we will state the main results of [9]. In Section 3,

the strategy of their approach is explained.

2 Main results

First, we introduce some symbols and functional spaces in order to state our main results precisely. Let
(! be any domain and I" be its boundary. L,(f2) and W"(§2) are usual Lebesgue and Sobolev spaces,
respectively, for 1 < ¢ < oo and m € N, where N denotes the set of all natural numbers. And, we use
the convention W,?(Q) = L,(Q). For 1 < ¢ < 0o and s > 0 that s is not integer, the Slobodeckij space is
defined by

Wi (@) = {u € WIH(Q) | llullws @) < oo},

|D2u(z) — Dyu(y)|? Ve
”u”w;(a) = “ullwgsl(n) + Z (/ﬂ o = g rG-Ta dzdy ,

ler|=[s}

where [s] = max{n|n < s, n € NU{0}} and D2 = 8!®l/(82%* ... 924" ) for any multi-index o € N} =
(N U {0})V. We use the following functional space for the pressure:

WHR) = {0 € Lg1oc() | VO € Ly(@)N} (1< g < o0).
Moreover, for 1 < q < oo we set W) .(Q) ={f € W2i(Q)|6lr = 0}, and

W1r(9) = {0 € Lytoe() | V0 € Lo(Q)", 6lr =0,
there exists {6;}52; C W, () such that lim [|V(6; — )|l () = 0}
jmoo

For the simplicity, we use the abbreviations: W, o(RY) and W;’O(Rf ) when @ = RY and I' = R}’ in the
above definitions. The second solenoidal space is defined as follows:

Jo(Q) = {u € Ly(Q)™ | (u, Vip)a = 0 for any ¢ € W) r(Q)} (1< g < o0),

where (1/¢) + (1/¢') = 1 and (f,9)a = [, f(z) - g(z)dz = Zj\f__l Jo fi(2)g;(z) dz for any N-component
vector functions f(z) and g(x). Let C™(I,X) be the set of all X-valued C™ functions defined on the
interval I for any Banach space X and any m € Ng. The letter C denotes a generic constant, and the
constant C' may change from line to line. Then, we have the following unique existence theorem for (1.1).



Theorem 2.1. Let 1 < g < oo, and let f € Jy(RY) and d € W2 D(RN-1). Then, (1.1) admits a
unique solution (u,8,h) in the spaces:

u € C1((0,00), Jo(RY)) N C°([0, 00), Jo(RY)) N C°((0, 00), WERY)Y), 6 € CO((0,00), WE(RY)),

h € CY((0,00), W~ H/D(RN1)) N CO([0, 00), W~ H/D(RN 1)) N CO((0, 00), W3/ (RN 1)),

Next, we introduce large-time behaviors of the solutions obtained in Theorem 2.1. For the purpose,
we extend h(z',t) to a function H(z,t) defined in RY x (0, 00) through the equations:

{AH:O in RY, ¢>0, 21)

H=h on RY, t>o0,
and we set

Xor = (LoRY) N L RN x (W~ DRV ) N L (RV ),

o= (2-2). 16D}

Then, there holds the following theorem.
Theorem 2.2. Let1 <7 <2< g < oo and F = (f(z),d(z")) for

feJRY)NLRY)Y, de WrW/IRN-Yn LRV ).

Let (u,8,h) be the solution in Theorem 2.1 and H be the extension in (2.1). Then, there ezists a positive
constant C such that for any t > 1 there hold

N—1

”Vzu(t)”llq(mf) _<_ Cmax {t—'z—(&_é)_a%f)‘i’ t—l} ”F”qu,
iz, @y < Ct~ T G026 F|, .,
IVu()lz,@y) < 15T (i) -an=dp)

1

IDEOH B L, @y, < Ot~ T G-D-2E-D-F |y, (ol <2),
( (

2
T (i-1)-4

IDSVH) L, @myy < Ct™ 7

Q

3=

ORIk, (el <2).

Moreover, if we assume that ¢ > N, then there exists a positive constant C such that for any t > 1 there
hold
@z myy < OGP, Vel @) < 6 CFH)F|x

q,r?

N-—-1

1 _(N=1
IVH®) 1wy < DI Pk, IVHEOl @y < CCF )Pk, .

3 Outline of the proof

We show the outline of the proof of Theorem 2.2. By applying the Laplace transform to (1.1), we obtain
the resolvent problem independent of time variable ¢:

AW —Av+Vr=f(z), divv=0 in Ri’,
A+ vy = d(z') on RY, (3.1)
S(v,m)n+ (7, — oA Yym =0 on R,

where (v,7,7) is the Laplace transform of (u,, h) and the resolvent parameter \ is in I, given by

Te={AeCllargA <m—¢, A#£0} (0<e<n/2).
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We also use the symbol X, 5, given by
Tero ={AEC||argA| <m—g, A2 X} (0<e<7/2, Ao >0).

In order to progress the argument, we define the partial Fourier transform F,- with respect to tangential
variable z’ and its inverse formula F, ! for functions f(z’,zx) and g(&',zn), respectively, as follows:

Folf@ zm)|(€) = fl€,zn) = / e~ ¢ f(z',zn) do’,

RN -1
FEo€ o (@) = gy [, € o€ om)

We can give the exact solution formulas of the resolvent problem (3.1) as follows. First, we apply the
partial Fourier transform with respect to the tangential variable z’ to (3.1), and after that we solve the
obtained ordinary differential equations with respect to zn in the Fourier space by seeing £’ € RN-lasa
parameter. Then, we have the exact formulas of 3(¢/,zn) = (01(¢', zn), - - ., on (€, zn))T, 7(€',zn) and
7(¢') in the Fourier space. Finally, the inverse partial Fourier transforms of (¢, zn), @(¢', zn) and 7(§’)
yield the exact solution formulas of (3.1). Here, we concentrate on the term:

D(4, B)

md(ﬁl) (=), (3.2)

—1
fs/
which is a part of the solution n = n(z’, \). The symbols in (3.2) are given by
A=|¢|, B=+VA+[¢]2 (ReB>0), D(A, B)=B+AB?+34?B - A%,

L(A,B) = (B— A)D(A, B) + A(v, + 0 A?). (3.3)
The following lemma is proved in [11, Lemma 7.2].
Lemma 3.1. Let 0 < e < /2 and & € N(I)V_l. There exist a positive number Ay = Xo(€,74,0) > 2,

depending only on €, v, and o, and a positive constant C, depending only on o, e and Ao, such that for
any (&,2) € (RN-1\ {0}) x Z¢,», there holds

’ -1 ’
1D L(4, B)™ < C{IN(INE + A + Ao + 04D} A7,

We set
D(A, B)

1 t —AzN Jr ¢ /
1ot = 7" | [ i e )| @),

where I' = I'y UT_ is give by

T+ ={A€C|A=2X +sI 5.0 oo},

F_={Ae€C|A=2X+se" ¥ 5:00— 0}
for Ap = Xo(7/4,%4,0) in Lemma 3.1. Note that I(z,t) is a part of the solution of (2.1). In the present
proof, we only show decay properties of I(z,t), but the other terms in u(z,t), 6(z,t) and H(z,t) are
calculated by techniques similar to the present case. In order to derive decay properties from I{z,t), we
divide I(z,t) into

I(z,t) = Ip(z,t) + Io(z, 1),

L[ [ o DB
Ia(zvt) = —QE}-E'I {:/I: e)‘t (B + A)L(A’ B)

where (&) and @ (€') are cut-off functions such that ¢o(¢') = @(€'/Ao), Yol€’) = 1 — @o(£’) and
(&) € C(RN 1) satisfies

e—AZNg(g’)d,\ (') (a€{0,00}),

, 1
(gl 3)

0o 2
0 (1< 3)

Note that the positive number 0 < Ag < 1 in o(¢’) can be chosen sufficiently small when we need to do
so.

p(€) =



3.1 Analysisi of Iy(z,t)
L(A, B) has the following four roots B]:.t (j = 1,2) as a function of B

(21} A7/4 0’A9/4 10/4
B]i = ei 4 ’7;/4‘41/4 - +:@i=Dr 1/4 - 1 H2i-1)3r 3/4 + O(A / ) (A — 0+)’
€ 4 Ya € 4 Ya

Moreover, setting Ay = (Bf:)2 — A? we obtain

At = £iy}/24Y2 _ 242 + A5/2 +O(AMY*) (A —0+).

ﬂ

Note that Ay appear only in our brunch since we use the brunch such that Re B > 0 in (3.3). Then, by
using Cauchy’s integral theorem, we change the integral path I" to the paths:

TF ={A€C|A=As + (1/?/4)AY2eF™, w0 — 2r},

If ={\e C|A=—4% + (42/4)eT™ u:0 — 7/2},

I ={\€ C|A=—(4%(1 - u) +you) £ i((A%/4)(1 ~ u) + 70u), u:0— 1},

T ={Ae€C|A=—(y0 £ i) +ue (™) 40— oo},

where g = tan"!{(A42%/8)/A4%} = tan"1(1/8) and ~, is the same number as \g = A\o(€0,7a, o) in Lemma
3.1, noting that Ay determined by £¢ especially. Then, Iy(z,t) is divided into

n n 1 — (gl)D(A’B —AzN 7 ¢t ’
In(z,t) = Zli z,t), Iy ($,t)=%fgfl [/ﬁe’\t%m‘%dke ATV (€| ().

We have the following theorem for Iy(z, t).

Theorem 3.2. Let 1 <r <2< g < oo and o € NY, and let d € L.(RV~!). Then, there erists a
positive constant C' such that for any t > 1 there hold

o _N-1 1(1_1Y_1_[e
IDEVIo ()2 @y < Ct 2 SO0 a) L, @,

(
_N-1 _i(1_1y_lel
ID20.Io(t)]| . ay < Ct 25735 |||, gv-1)-

Proof. The bad decay rate arises from the residue parts, that is I = 0($ t). We, therefore, consider only
Ii O(z,t) here. See [9] concerning the terms Ii ™(z,t) (n =,1,2,3). Since L(A.B) = (B - Bf)(B —
B )(B - B3)(B - By ), by the residue theorem we have

(DjIO (m>t)aDNI(§E(x,t)>atloi($vt)>

o[ e @) ANB+BODABE) o
P [/r BT A - )(B- BB BB B )] )
ool€)(i8;,~ 4, \s)(2BE)D(A, BE)
(BE + A)(B — BY)(BE - B )(BE - B;)

- ‘7:5—/1 I:e)\it C_AZNC’Z\(é-/)} (:II/)

for j =1,...,N — 1. Note that |D(A, B{)| < CA%4,
|Bff + Al > CAY*, |BEf — BF| > CAY*, |Bf — Bf| > CAY*, |Bf - Bj|>CA*
on supp ¢ with some positive constant C' and
et — e:tiwi/zA1/2te(—2A2+O(A5/2))t7

and then we obtain, by using the IV — 1 dimensions heat kernel F, ! [e‘Azt](a:/ } and Parseval’s theorem,

’(e—(Az/S)tAe—AzN) (e—(A2/3)t(;z‘(€/))”

—1i/1 1
DAl < O 4
1D an, )1, @n-1y < Ct 27 La@®N-1)
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w31y le” A |y m—)

S t1/2 4 zn
< o2 (A1) lldll, mn-1)
- 2+ oy

for J =1,...,N. Similarly, we obtain

£0 vz ldlin, @yv-1y
105 sy < O T T

Finally, taking | - ||z, (0,00) in the above inequalities yields the required inequalities with a = 0. For the
case of a # 0, we can prove analogously. 0O

3.2 Analysis of I(z,t)
L(A, B) has the following four roots B; (j =1,...,4) as a function of B:

o (1+3a?)0’2

4(1 - a; —al) N 32(1-a; —ad)

AT +0(A7?) (A - ),

Bj = ajA +
where a; (j = 1,...,4) are numbers, satisfying the equation: z* + 222 — 4z + 1 = 0, such that
1
a =1, 0<a2<-2-, Reaj<0(j=3,4).

Setting A; = (B;)% — A? for j = 1,2 implies that
A = —(0/2)A - (3/16)0%> + O(A™") (A — o0),

A = —(1—a2)A% + 2—(1-%%—)A+0(1) (A — o). (3.4)

The following lemma is the key when we consider I (z,t).
Lemma 3.3. Let £’ € RVN~1\ {0}. Then, L(A, B) # 0 provided that A € {z € C|Rez > 0}.

We set
Ly={A€C|L(A,B)=0, ReB >0, A€ supp ¥},

and then we obtain the following lemma by (3.4) and Lemma 3.3.

Lemma 3.4. There exist positive numbers 0 < €00 < /2 and Ass > 0 such that
LycZ, N{z€C|Rez < —Ax}-
By using Ao, in Lemma 3.3, we put Yo, = min{As, 47} x (4¢/6)?}, and we change I" to the paths:

Tf={AeC|A=—yoo Ltu, u:0—= 7},
IF={AeC|r= Yoo T 170 + uetHT =) 441 0 = o0},

where 79 > 0 is the same number as A\g = Ao(€00,Ya, o) in Lemma 3.1. Then, Io(z,t) can be written by

> 0 1 1 [ Pool€)D(A,B)  _pzn 5] (s
Io(z,1) =?;1§;”(x,t), IZMet) = o— /F \ MF! [——é ffz)L(( Y B))e AN d(e)| (") dA.

We have the following theorem for I, (z,t).

Theorem 3.5. Let 1 <g< oo and d € qu_(I/Q)(RN“l). Then, there exist a positive number 6 > 0 and
a positive constant C such that for any t > 1 there holds

8o ()l wz®eyy + IV oo (D)l wary) < C€_6t||dllwg—<x/q>m~_1)-



Proof. Set
— oo "D AvB —AzN 7t 7
Hoo(z,\) = F5* ——————(‘;f;)L((AB))e Asn (e (2') (AeTFuTD). (3.5)

First, we write (3.5) by integral. For the purpose, we extend d € WZ‘“/‘I) (RN-1) to d* defined in RY
satisfying d* = d on R} and
”d*”WQQ(Ri') S C”dllqu—(l/Q)(RN—1)' (36)

By using the relation:
o0
~ d —Aun 5
£ [ % d
d*(&,0) /0 dun (6 d (f,yN)) YN

=/ Ae”Ach/i\*(f,yN)dyN—/ e-AyNﬁN?(&yN) dyn
0 0

and A% = — Z;V:"ll(igj)z in (3.5), we have

[P 1 [ Pol)D(AB)  aantun) KT ] /
Hoo(z,A) = A f{/l [AZ(B-i-A)L(A,B)Ae Alewtun) Ard (€ yn)| (2') dyn

N-1 00 ! —
+3 [ 7 {%A"l)Azoé(i)gﬁfg)AG—A(xN+yN)DNDJ’d*(§""’V)} (@) duw
=1 ’

(3.7)

Now, there holds the following lemma.

Lemma 3.6. Letod’ € N(J)V ~L. Then, there exists a positive constant C such that for any & € (RMN-1\{0})
there hold

o [ _$Po(§)D(A, B) —3—|o| +
2% (45 micim)| <04 aerd,

o ( poel€)D(A, B) (A2 + 4)? o N
d (A?(B T A)L(A,B)) l S ORI + AR+ Ala voamy - PETE

where C is independent of \.
Proof. See [9]. O
By Lemma 3.6, (3.6), (3.7) and [11, Lemma 5.4], we have the resolvent estimates:
IAHoollwz@y) + IVHoollwz ey < Clldllgy2-crm g1y

for any X € ij U I‘gh with some positive constant C' independent of A. We can easily show the required
estimate for I (,t) by combining the above resolvent estimates with the exact formula of I (z,t). This
completes the proof. 0

By Theorem 3.2 and Theorem 3.5, we have

1D VI L, ®yy < ”ngjo(t)“Lq(RQ’) + 1DZ VI (|2, )

N-1(1 1)_1 _l._l)_L_
1

—N-1(1_ 1 JE38
S Ct 2 rq 2\27 ¢ 2 ”d”qu‘(l/q)(RN‘“l)ﬂLr(RN‘l)

for any multi-index o € N} with o] <2 and 1 <7 <2 < ¢ < 00. Similarly, we obtain

_N-11_ 1y 11 1y_led
ID2OI(Dl @y < C T G305 )2/ gavsyop, mv-1y:

Finally, we consider the L., norms. Let ¢ > N. Then, by Theorem 3.5 and Sobolev’s inequality there
holds
19 Zoo 0wy @ty < O™t/ gavony-
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Combining the above inequality and Theorem 3.2 yield that

(N=1.1

”v-l(t)”Lw(]R_’;") < Ct ( r +2)”d”W:_(l/q)(]RN—l)ﬁL,.(]RN‘l)’
(M=t

”VzI(t)”Lm(]Rf) <Ct ( 2 +1)”danz—(l/Q)(]RN—l)ﬂLr()RN——l)'

Note that these estimates of I(z,t) are corresponding to the estimates of H(z,t) in Theorem 2.2 since
I(z,t) is a part of the solution H(z,1).
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