The Stokes semigroup on non-decaying spaces

Ken Abe
The University of Tokyo

Abstract

In this brief note, we review recent results on the analyticity of the Stokes semigroup in spaces of bounded functions. The Stokes equations are well understood on L^p space, $p \in (1, \infty)$, for various kinds of domains such as bounded or exterior domains with smooth boundaries. However, the situation is very different on L^∞ since in this case the Helmholtz projection does not act as a bounded operator on L^∞ anymore. The purpose of this note is to review an approach to prove the analyticity of the semigroup on L^∞, especially, on L^∞_σ and BUC_σ for exterior domains and perturbed half spaces. Note that for merely bounded initial data, even existence of solutions are non-trivial. We approximate merely bounded initial data on L^∞_σ and prove the unique existence of solutions together with the analyticity of the semigroup. This note is based on joint works with Y. Giga [2], [3] and the thesis [1].

1 Introduction

We consider the initial-boundary problem for the Stokes equations in the domain $\Omega \subset \mathbb{R}^n$, $n \geq 2$:

\begin{align*}
v_t - \Delta v + \nabla q &= 0 \quad \text{in} \quad \Omega \times (0, T), \\
\text{div} v &= 0 \quad \text{in} \quad \Omega \times (0, T), \\
v &= 0 \quad \text{on} \quad \partial \Omega \times (0, T), \\
v &= v_0 \quad \text{on} \quad \Omega \times \{t = 0\}.
\end{align*}

(1.1) (1.2) (1.3) (1.4)

It is well known that the solution operator (called the Stokes semigroup)

\[S(t) : v_0 \mapsto v(\cdot, t), \quad t \geq 0, \]

forms an analytic semigroup on the solenoidal L^p space, $L^p_\sigma(\Omega)$, $p \in (1, \infty)$, for various kind of domains Ω, such as bounded and exterior domains with smooth boundaries [25], [13]. However, it had been a long-standing open problem whether or not the Stokes semigroup $\{S(t)\}_{t \geq 0}$ is analytic on L^∞-type spaces even if Ω is bounded. When Ω is a half space, it is known that the Stokes semigroup $\{S(t)\}_{t \geq 0}$ is analytic on L^∞-type spaces since explicit solution formulas are available [6], [19], [26].

In [2], Y. Giga and the author gave an affirmative answer to this open problem at least when Ω is bounded as a typical example. Later, this approach was extended to exterior domains [3] and perturbed half spaces ($n \geq 3$) [1]. The propose of this note is to review an approach to
prove the existence of solutions for merely bounded initial data as well as the analyticity of the semigroup on L^∞-type spaces.

We begin with a typical statement for bounded domains. Let $C_{0,\sigma}(\Omega)$ denote the L^∞-closure of $C^\infty_c(\Omega)$, the space of all smooth solenoidal vector fields with compact support in Ω. When Ω is bounded, $C_{0,\sigma}(\Omega)$ agrees with the space of all solenoidal vector fields continuous in $\overline{\Omega}$ vanishing on $\partial\Omega$ [18]. A typical result proved in [2, Theorem 1.1] is the following:

Theorem 1.1 (Analyticity on $C_{0,\sigma}$). Let Ω be a bounded domain in \mathbb{R}^n with C^3-boundary. Then, the solution operator (the Stokes semigroup) $S(t) : v_0 \mapsto v(\cdot, t)$ is a C_0-analytic semigroup on $C_{0,\sigma}(\Omega)$.

The approach to prove Theorem 1.1 was to establish an a priori estimate for

$$N(v, q)(x, t) = |v(x, t)| + t^2|\nabla v(x, t)| + t|\nabla^2 v(x, t)| + t|\partial_t v(x, t)| + t|\nabla q(x, t)|$$

(1.5)
of the form

$$\sup_{0 < r < T_0} \|N(v, q)\|_\infty(t) \leq C\|v_0\|_\infty$$

(1.6)
for some $T_0 > 0$ and C depending only on the domain Ω, where $\|v_0\|_\infty = \|v_0\|_{L^\infty(\Omega)}$ denotes the sup-norm of $|v_0|$ in Ω. The a priori estimate (1.6) was proved by an indirect argument called a blow-up argument which is often used in the study of non-linear elliptic and parabolic equations [12], [14], [21], [20] (see also [17], [16] for the Navier–Stokes equations). Later, a direct approach to prove Theorem 1.1 was found in [4]. The approach in the paper is to derive L^∞-estimates for solutions of the resolvent problem corresponding to (1.1)–(1.4) based on the Masuda–Stewart technique for elliptic operators.

In both approaches, a key is to estimate pressure gradient in terms of velocity, i.e.,

$$\sup_{x \in \Omega} d_\Omega(x)|\nabla q(x, \cdot)| \leq C\|w\|_{L^\infty(\partial\Omega)},$$

(1.7)
where

$$w(v) = -(\nabla v - \nabla^T v)n_\Omega.$$

(1.8)
Here, d_Ω denotes the distance from $x \in \Omega$ to $\partial\Omega$, i.e., $d_\Omega(x) = \inf_{y \in \partial\Omega} |x - y|$ and n_Ω denotes the unit outward normal vector field on $\partial\Omega$. For $n = 3$, $w(v)$ is nothing but a tangential component of vorticity, i.e., $-\text{curl } v \times n_\Omega$. For $n = 2$, $w(v)$ agrees with $-\text{curl } v n^1_\Omega$, where $n^1_\Omega = (n^2_\Omega, -n^3_\Omega)$.

The estimate (1.7) plays an important role for estimating pressure gradient $\nabla q = (I - P)\Delta v$ by the velocity v on L^∞ since the Helmholtz projection P does not act as a bounded operator on L^∞. Actually, the estimate (1.7) is a special case of the estimate for the homogeneous Neumann problem of the form

$$\Delta q = 0 \quad \text{in } \Omega, \quad \frac{\partial q}{\partial n_\Omega} = \text{div}_{\partial\Omega} w \quad \text{on } \partial\Omega, $$

(1.9)
where $\text{div}_{\partial\Omega}$ denotes the surface divergence on $\partial\Omega$. Since the divergence-free condition for velocity implies

$$\Delta v \cdot n_\Omega = \text{div}_{\partial\Omega} w(v) \quad \text{on } \partial\Omega,$$
the pressure q solves the Neumann problem (1.9) for $w = w(v)$. The estimate (1.7) is valid for various domains, but it may not be true for general domains so we call Ω strictly admissible if the a priori estimate (1.7) holds for all solutions of the Neumann problem (1.9). Of course, a
half space is strictly admissible. Moreover, it was proved that bounded domains [2, Theorem 2.5] and exterior domains [3, Theorem 3.1] of class C^3 are strictly admissible. However, layer domains are not strictly admissible. In fact, in a layer domain, $\Omega = \{x = (x', x_n) \in \mathbb{R}^n | 0 < x_n < 1\}$, $P = x_1$ does not satisfy the estimate (1.9) for $w = 0$. We conjecture that quasi-cylindrical domains, i.e., $\lim_{|x| \to \infty} d_{\Omega}(x) < \infty$, are not strictly admissible.

Actually, it is possible to extend Theorem 1.1 for general strictly admissible, uniformly C^3-domains [2, Theorem 1.3] by using the L^p-theory developed in [8], [9], [10] since the space $L^p_{0,\sigma}$ is the L^∞-closure of $C^\infty_{0,\sigma}$. Once we have the a priori estimate (1.6) for $v_0 \in C^\infty_{0,\sigma}$, it is extendable for $v_0 \in L^p_{0,\sigma}$. Note that the L^p-theory is also available for uniformly C^3-domains for which the Helmholtz projection is bounded on L^p [11] so we are able to extend Theorem 1.1 through the L^p-theory for domains such as exterior domains or perturbed half spaces.

2 Non-decaying solenoidal spaces

It is natural to extend Theorem 1.1 for the larger space than $C_{0,\sigma}$,

$$L^\infty_{\sigma}(\Omega) = \left\{ f \in L^\infty(\Omega) \mid \int_{\Omega} f \cdot \nabla \varphi dx = 0 \quad \text{for all} \quad \varphi \in \hat{W}^{1,1}(\Omega) \right\},$$

where $\hat{W}^{1,1}(\Omega)$ denotes the homogeneous Sobolev space $\hat{W}^{1,1}(\Omega) = \{ \varphi \in L^1_{loc}(\Omega) \mid \nabla \varphi \in L^1(\Omega) \}$. Since the space L^∞_{σ} includes discontinuous functions, we approximate $v_0 \in L^\infty_{\sigma}(\Omega)$ by elements of $C^\infty_{c,\sigma}$ by the pointwise convergence in Ω. We extend the Stokes semigroup $S(t)$ to L^∞_{σ} by the following approximation [2, Lemma 6.3].

Lemma 2.1 (Approximation). Let Ω be a bounded domain in \mathbb{R}^n, $n \geq 2$, with Lipschitz boundary. There exists a constant $C = C_{\Omega}$ such that for $v_0 \in L^\infty_{\sigma}(\Omega)$, there exists a sequence $\{v_{0,m}\}_{m=1}^{\infty} \subset C^\infty_{c,\sigma}(\Omega)$ such that

$$\|v_{0,m}\|_{L_{\infty}(\Omega)} \leq C\|v_0\|_{L_{\infty}(\Omega)},$$

$$v_{0,m} \to v_0 \quad \text{a.e. in } \Omega \quad \text{as } m \to \infty. \quad (2.1)$$

If we do not care about the divergence-free condition for the sequence $\{v_{0,m}\}_{m=1}^{\infty}$, it is easy to construct the sequence satisfying (2.1). Lemma 2.1 says that we are able to approximate $v_0 \in L^\infty_{\sigma}$ by solenoidal vector fields $\{v_{0,m}\}_{m=1}^{\infty} \subset C^\infty_{c,\sigma}$ keeping the sup-norm, i.e., $\|v_{0,m}\|_{\infty} \leq C\|v_0\|_{\infty}$. If Ω is star-shaped, i.e., $\lambda\Omega \subset \Omega$, $\lambda < 1$, it is easy to construct the sequence satisfying (2.1). In fact, for $v_0 \in L^\infty_{\sigma}(\Omega)$, set $v_{0,\lambda}(x) = \alpha(x) v_{0}(\lambda x)$ for $x \in \lambda\Omega$ and $v_{0,\lambda}(x) = 0$ for $x \in \Omega \backslash \lambda\Omega$ so that $v_{0,\lambda}$ is a compactly supported solenoidal vector field in Ω. Then, we get the desired sequence with $C = 1$ in (2.1) by multiplying the mollifier η_ε to $v_{0,\lambda}$, i.e., $v_{0,m} = \eta_{\frac{1}{m}} \ast v_{0,\lambda_m}$. For general bounded domains, we are able to prove Lemma 2.1 by decomposing Ω into star-shaped domains.

By the above approximation, we are able to prove that the Stokes semigroup $S(t)$ is a (non-C_0)-analytic semigroup on $L^\infty_{\sigma}(\Omega)$ [2, Theorem 1.5]. Note that the semigroup $S(t)$ is not type C_0 since $S(t)v_0$ is smooth for $t > 0$ so $S(t)v_0 \to v_0$ on L^∞ as $t \downarrow 0$ may not hold for general $v_0 \in L^\infty_{\sigma}$. This means that $S(t)$ is a non-C_0-analytic semigroup.

Now, we observe the extension of $S(t)$ to $L^\infty_{\sigma}(\Omega)$ for unbounded domains Ω. Note that the space L^∞_{σ} includes non-decaying functions as $|x| \to \infty$ so the existence of solutions for $v_0 \in L^\infty_{\sigma}(\Omega)$ are non-trivial problem. However, if Lemma 2.1 is valid for the unbounded domain
\(\Omega \) (satisfying the strictly admissibility), we are able to prove the existence of solutions for \(v_0 \in L^\infty_\sigma(\Omega) \) satisfying the estimate (1.6) (called \(L^\infty \)-solutions). Although the approximation (2.1) is unknown in general, it is known to hold for exterior domains [3, Lemma 5.1] and perturbed half space [1, Lemma 4.3.10]. Let us sketch the approach to prove the existence of solutions for \(v_0 \in L^\infty_\sigma \) based on [3] and (1) for exterior domains and perturbed half spaces.

Our approach is by the \(L^\infty \)-estimate (1.6) and the approximation (2.1). We find a solution \((v, q)\) for \(v_0 \in L^\infty_\sigma \) by a sequence of \(L^p \)-solutions \([(v_m, q_m)]_{m=1}^\infty \) for \(v_{0,m} \in C^\infty_{c,\sigma} \). By the estimates (1.6) and (2.1), the sequence \((v_m, q_m)\) is uniformly bounded, i.e.,

\[
\sup_{0<\tau<T_0} \left\| [N(v_m, q_m)]_{\infty}^{(t)} \right\| \leq C \|v_0\|_{\infty}.
\]

Since \(v_{0,m} \to v_0 \), it is natural to expect that \((v_m, q_m)\) converges to a solution \((v, q)\) for \(v_0 \in L^\infty_\sigma \). In fact, by (1.6) and (2.1), we are able to estimate the Hölder semi-norms of \(q \) in the interior of \(\Omega \times (0, T] \) both in space and time variables. Thus, from the parabolic regularity theory, \([(v_m, q_m)]_{m=1}^\infty \) (subsequently) converges to a limit \((v, q)\) locally uniformly in \(\Omega \times (0, T] \) up to second orders. Actually, the limit \((v, q)\) is continuous in \(\overline{\Omega} \times (0, T] \) up to second derivatives since we have local Hölder estimates up to the boundary based on the Solonnikov’s Hölder estimate for (1.1)–(1.4) [25], [28], [29] (see [2, Theorem 3.5]). The uniqueness of \(L^\infty \)-solutions follows from the a priori estimate (1.6) for \(v_0 = 0 \) so the limit \((v, q)\) is independent of a choice of the sequence \([v_{0,m}]_{m=1}^\infty \subset C^\infty_{c,\sigma} \).

To state a result, let us define solutions of (1.1)–(1.4) for \(v_0 \in L^\infty_\sigma(\Omega) \) [3, Definition 2.7].

Definition 2.2 (\(L^\infty \)-solutions). Let \(\Omega \) be a domain in \(\mathbb{R}^n \), \(n \geq 2 \), with \(\partial \Omega \neq \emptyset \). Let \((v, \nabla q) \in C^{2,1}(\overline{\Omega} \times (0, T)) \times C(\overline{\Omega} \times (0, T)) \) satisfy (1.1)–(1.3) and (1.4) for \(v_0 \in L^\infty_\sigma(\Omega) \) in the sense that \(v(\cdot, t) \to v_0 \) weakly-* on \(L^\infty(\Omega) \) as \(t \downarrow 0 \). We call \((v, q)\) an \(L^\infty \)-solution if (1.5) and

\[
t^{1/2} d_\Omega(x) |\nabla q(x, t)|
\]

are bounded in \(\Omega \times (0, T) \).

Once we know the unique existence of \(L^\infty \)-solutions, we are able to extend the Stokes semigroup \(S(t) : v_0 \mapsto v(\cdot, t), t \geq 0, \) for \(v_0 \in L^\infty_\sigma \) together with the estimate (1.6). The following statement was proved in [3, Theorem 3.2] for exterior domains and [1, Theorem 4.1.2] for perturbed half spaces.

Theorem 2.3. Let \(\Omega \) be an exterior domain in \(\mathbb{R}^n \), \(n \geq 2 \), or a perturbed half space in \(\mathbb{R}^n \), \(n \geq 3 \), with \(C^3 \)-boundary.

(i) (Unique existence of \(L^\infty \)-solutions)

For \(v_0 \in L^\infty_\sigma(\Omega) \), there exists a unique \(L^\infty \)-solution \((v, \nabla q)\) satisfying (1.6) for any fixed \(T_0 \) with some constant \(C \) depending only on \(T_0 \) and \(\Omega \).

(ii) (Analyticity on \(L^\infty_\sigma \))

The Stokes semigroup \(S(t) \) is uniquely extendable to a (non-\(C_0 \))analytic semigroup on \(L^\infty_\sigma(\Omega) \).

Remark 2.4 (Continuity at time zero). It is natural to restrict \(S(t) \) to the space of uniformly continuous functions \(BUC_{c,\sigma}(\Omega) \) so that \(S(t) \) is a \(C_0 \)-analytic semigroup on \(BUC_{c,\sigma}(\Omega) \). Let \(BUC(\Omega) \) be the space of all uniformly continuous functions in \(\Omega \). Define the space \(BUC_{c,\sigma}(\Omega) \) by

\[
BUC_{c,\sigma}(\Omega) = \{ f \in BUC(\Omega) \mid \text{div} f = 0 \text{ in } \Omega, f = 0 \text{ on } \partial \Omega \}.
\]

Then, \(S(t) \) is a \(C_0 \)-(analytic) semigroup on \(BUC_{c,\sigma}(\Omega) \) at least when \(\Omega \) is an exterior domain. Note that \(C_{0,\sigma}(\Omega) \subset BUC_{c,\sigma}(\Omega) \subset L^\infty_\sigma(\Omega) \). When \(\Omega \) is bounded, the space \(BUC_{c,\sigma}(\Omega) \) agrees with \(C_{0,\sigma}(\Omega) \) [18], [2, Lemma 6.3].
References

[23] J. Saal, The Stokes operator with Robin boundary conditions in solenoidal subspaces of L^1(\mathbb{R}^n) and L^∞(\mathbb{R}^n), Communications in Partial Differential Equations 32 (2007), 343–373.

KEN ABE
Graduate School of Mathematical Sciences
The University of Tokyo
Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, JAPAN
kabe@ms.u-tokyo.ac.jp