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1 Introduction

This note is a survey of the work [12] jointly with R. Farwig(Technische Universitét
Darmstadt) and T. Nakatsuka(Nagoya University). Let Q be 3-D exterior domain, the
half-space R?, the whole space R, a perturbed half-space, or an aperture domain with
02 € C*°. The motion of a viscous incompressible fluid in  is governed by the Navier-
Stokes equations:

Ou—Au+u-Vu+Vp = f, teR, z€Q,

(N-S) divu = 0, teR, z€Q,
ulaQ = 0, teR,

where u = (u!(z,t),v*(,t),u%(x,t)) and p = p(z,t) denote the velocity vector and the
pressure, respectively, of the fluid at the point (z,t) € 2 x R. Here f is a given external
force. In this paper we consider the uniqueness of mild solutions to (N-S) in unbounded
domains 2 which are bounded on the whole time axis. Typical examples of such solutions
are periodic-in-time and almost periodic-in-time solutions.

In case where Q C R? is bounded, the existence and uniqueness of time-periodic solu-
tions were considered by several authors; see e.g. [8] and references therein. Maremonti
[31, 32] was the first to prove the existence of unique time-periodic regular solutions to
(N-S) in unbounded domains, namely for @ = R® and Q = R3. In the case of more gen-
eral unbounded domains, the existence of time-periodic solutions was proven by Kozono-
Nakao [24], Maremonti-Padula [33], Salvi [39], Yamazaki [46], Galdi-Sohr [17], Kubo [28],
Crispo-Maremonti [6] and Kang-Miura-Tsai [22]. In particular, Yamazaki [46] proved the



34

existence of time-periodic mild solutions in L¥*((Q) in the case where (2 is a 3D exterior
domain with 9Q € C*®. Here LP? denotes the Lorentz space and LP** is equivalent to the
weak-LP space (L?). Without time-periodic condition on f, the existence of mild solu-
tions bounded on the whole time axis was also shown in [24], [46] and [22]. Furthermore,

Kang-Miura-Tsai [22] showed the existence of mild solutions v with the spatial decay

(1.1) sup sup |z|*|u(z,t) — U(z)| < 00
t |z|>r

for some a > 1, r > 0 and some function U(z) with sup,., [z||U(z)| < oo, if @ C R®
is an exterior domain and if f satisfies adequate conditions. They also dealt with the
inhomogeneous boundary value problem. Concerning the uniqueness of solutions bounded
on the whole time-axis, roughly speaking, it was shown in [31, 32, 24, 33, 46, 28, 6] that
a small solution in some function spaces (e.g. BC(R; L>*())) is unique within the class
of solutions which are sufficiently small; i.e., if u and v are solutions for the same force
f and if both of them are small, then u = v. In [17], Galdi-Sohr showed that a small
time-periodic solution is unique within the larger class of all periodic weak solutions v
with Vv € L2(0,T; L?), satisfying the energy inequality fOT |Volj2.dr < — foT(F, Vo) dr
and mild integrability conditions on the corresponding pressure; here T is a period of F'
and f=V-F.

Another type of uniqueness theorem was proven in [44, 13, 14] without assuming the
energy inequality. In the case of an exterior domain Q C R3, the whole space R3, the
halfspace Ri, a perturbed halfspace, or an aperture domain, it was shown in [44, 13, 14]
that if v and v are periodic-in-time, almost periodic-in-time or backward asymptotically

almost periodic-in-time solutions in
(1.2) BC(R; L>®)N L%, (R; L%?)

for the same force f, and if one of them is small in L>*, then « = v. In [37, 38], similar
uniqueness theorems for stationary solutions were proven. In [38], it was shown that if u
and v are stationary solutions in L3»® with Vu, Vv € L32% for the same force f, and if
u is small in L3* and v € L3 + L*®, then u = v.

Note that stationary as well as continuous time-periodic and almost periodic-in-time
L¥>-solutions u have a precompact range R(u) = {u(t);t € R} in L>*, see [5, Theorem
6.5]. Furthermore, there exist many functions which have a precompact range and are not
almost periodic, e.g. asin(t?) for a # 0. Hence, the set of all functions having precompact

range is much larger than the set of all almost periodic functions. In this article, we



establish new uniqueness theorems for bounded continuous solutions having precompact
range on the whole time axis, which improve our previous results in [44, 13, 14, 37, 38].
We also consider the uniqueness of solutions with (1.1) and solutions in weighted L*
spaces.

Our proof is based on an idea given by Lions-Masmoudi [30]. They proved the unique-
ness of L"-solutions to the initial-boundary value problem of (N-S) by using the backward
initial-boundary value problem of dual equations. Of course, in the initial-boundary value
problem of (N-S), the initial condition u(0) = v(0) plays an important role in proving
w(t) == u(t)—v(t) = 0 for t > 0. In our problem, however, we cannot assume u(0) = v(0),
and hence, it is difficult to prove w = 0 directly. A key point of our proof is to show
limj o0 71 i)j Hw(t)“%z( p)dt = 0 for any ball B, by using the method of dual equations.
Then, applying some uniqueness theorems on mild solutions, we can conclude w = 0,
under some hypotheses.

Throughout this paper we impose the following assumption on the domain.

Assumption 1 Q C R3 is an exterior domain, the half-space Ri, the whole space R3, a

perturbed half-space, or an aperture domain with 9Q € C.

For the definitions of perturbed half-spaces and aperture domains, see Kubo-Shibata,
[29] and Farwig-Sohr [9, 10]. Let BC(I;X) denote the set of all bounded continuous
functions on an interval I with values in a Banach space X. The open ball in X with
center 0 and radius R > 0 will be denoted by Br(0) = Bk.

Now our main results on uniqueness of mild L>»*-solutions, to be defined in the next

section, read as follows:

Theorem 1. Let Q satisfy Assumption 1. There exists a constant §(Y) > O such that if
T < o0, u and v are mald L¥*-solutions to (N-S) on (—oo,T) for the same force f,

(13) u, v € BC((—OO,T),.Z?.’OO),
(1.4) the range R(v) := {v(t);t € (—o0,T)} is precompact in L>*
and if
(1.5) lim sup |[u(t)]|z3.0 < 6,
t——00

~ S 3.
thenu =v on (—oc0,T). Here L¥® = L¥® N [ =

35
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Remark 1. (i) Yamazaki [46] proved the existence of bounded continuous mild L%-
solutions u on the whole time axis, if f can be written in the form f = V- F, F €
BUC(R; L%¥?*) and F is sufficiently small. We note that, in addition to this smallness
condition on F, if we assume f € BC(R; L¥*), then standard arguments easily prove
that Yamazaki’s small solution u belongs to L*(R; L) N BC(R; L3*); see [13, Remark
2]. Then, u belongs BC(R; L3*), since L>*® N L? is dense in L3>*. Moreover, Yamazaki
showed that if F is almost periodic in L%?%%, then v is almost periodic in L>*. Since an
almost periodic function in L3> has a precompact range in L>*, Theorem 1 is applicable
to his solution. For the definition and properties of almost periodic functions in a Banach
space, see [5].

(ii) In [13], a similar uniqueness theorem was proven for almost periodic mild L3>-
solutions. Since it was assumed that both of u and v are almost periodic and belong to
(1.2) and since the class (1.3) is strictly larger than (1.2), Theorem 1 improves the result
given in [13].

(iii) The condition (1.3) can be replaced by some condition more general than (1.3).
For details, see [12]

Theorem 2. Let Q satisfy Assumption 1. There exists a constant §(Q) > 0 with the
following property: Let R > 0, p > 3, T < 00, u and v be mild L¥*-solutions to (N-S)

on (—oo,T) for the same force f,
u,v € BC((—00,T); L3*(Q) N LP(Q N Bg)),

and let
lim sup ||u(t)|| 3.0 < 6.

t——o00
Assume that either
(i) The range

(1.6) {v(t)lQ\BR ;t € (—00,T)} is precompact in L>*(Q \ Bg),

or
(i) there exists a function V(z) € L¥>*(Q \ Br) such that

(L.7) limsup [[v(t) = V| s ) < &

Then u =v on (—o0,T).

The following corollaries are direct consequences of Theorem 2.
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Corollary 1. Let Q = R? T < 00 and a > 1. If u,v are mild L>*-solutions to (N-S)
on (—~o00,T) for the same force f,

u,v € BC((—00,T); X,), limsup |[u(t)]zse <,

t——00
then u = v on (—o0,T). Here Xo :={f € L™ ; ||(1 + |z))*f(x)| 1= < 00}.

It is straightforward to see that if v € BC((—o00,T); X,) for some o > 1, then v
belongs to BC((—oo,T); L N L*) and satisfies (1.7) with V = 0 for large R > 0.

Corollary 2. Let Q C R? be an exterior domain with 0Q € C®, T < o0, o > 1 and
p > 3. If u,v are mild L¥>*-solutions to (N-S) on (—oo,T) for the same force f,
u,v € BC((—00,T); L2 N [P(R)), limsup [|u(t)|r2e < 6,

t——o0

and if there exist r > 0, s € (—00,T) and V € L>*(Q \ B,) such that

(1.8) sup sup |z|%|v(z,t) — V(z)| < oo,

t<s |z|>r
then u = v on (—oo,T).

For the proof note that L3>>* N LP C L3 Moreover, we see easily that if v satisfies
(1.8) for some o > 1, then (1.7) holds for sufficiently large R > 7.

Remark 2. The existence of small mild solutions with property (1.8) was proven by
Kang-Miura-Tsai [22] if Q is a 3D exterior domain with 9Q € C* and under adequate
conditons on f. Moreover, if 2 = R3, the existence of small mild solutions in BC(R; X4)

was also proven in [22] for 1 < a < 2.

2 Preliminaries

In this section, we introduce some notation, function spaces and key lemmata. Let
G55 () = G5, denote the set of all C*-real vector fields ¢ = (¢!,--- ,4") with com-
pact support in 2 such that div ¢ = 0. Then L”, 1 < r < oo, is the closure of Cgo with
respect to the L™-norm | - ||,. Concerning Sobolev spaces we use the notations W*P(Q)
and Wok’p (), k € N, 1 < p < co. Note that very often we will simply write L" and
W¥P instead of L"(Q) and W¥*P(Q), respectively. Let LP4 (), 1 < p,q < 0o, denote the

Lorentz spaces and || - ||, the norm (not quasi-norm) of LP(Q); for the definition and
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properties of L»4(9), see e.g. [1]. The symbol (-, ) denotes the L2- inner product and the
duality pairing between L”9 and L”*¢, where 1/p+1/p' = 1 and 1/q+1/¢' = 1. We note
that L™ is norm equivalent to the weak-L? space (L%) and LP? is norm equivalent to LP.
Moreover, when 1 < p < oo and 1 < ¢ < 0o, then the dual space of L9 is isometrically
isomorphic to LF9 .

In this paper, we denote by C various constants. In particular, C = C(*,--- ,*)
denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: L"(2) = L, & G, (1 < r < 00), where
G, ={Vpe L";p € L} (Q)}, see Fujiwara-Morimoto [15], Miyakawa [35], Simader-Sohr
[42], Borchers-Miyakawa [2], and Farwig-Sohr [9, 11]; P, denotes the projection operator
from L™ onto L7 along G,. The Stokes operator A, on L, is defined by A, = —F,A with
domain D(A,) = W2 AW N L. It is known that (L7)* (the dual space of L) = L7
and A; (the adjoint operator of A,) = A, where 1/r +1/r" = 1. It is shown by Giga
[18], Giga-Sohr [19], Borchers-Miyakawa [2] and Farwig-Sohr [9, 11] that — A, generates a
uniformly bounded holomorphic semigroup {e~*47;¢ > 0} of class Cy in L7. Since Pu =
Puforallue L"NLI (1 <r,q < oo) and since A,u = Aqu for all u € D(A,) N D(A4,),
for simplicity, we shall abbreviate Pyu, P;u as Pu for w € L"N L9 and A,u, Aqu as Au for
u € D(A,;) N D(A,), respectively. By real interpolation, we define L2 by

L o= (L2, Lo

where 1 < py < p < p; <00, 8 €(0,1), q € [1,00] satisfy 1/p= (1 —8)/po + 0/p:.
Now, we define mild L**-solutions to (N-S), following [25].

Definition 1 ([25]). Let T < oo and f € L},.(—00,T; D(Ap)* + D(Ag)*) for some 1 <
p,q < 0. A function v € C((—o0,T); L3*®) is called a mild L¥*-solution to (N-S) on
(—00,T) if v satisfies

(2.1)

(v(t), ) = (e‘(t‘s)Av(s), ¢) +/ ((U(T) . Ve_(t_T)Aqﬁ, v(7‘))+ < f(r), e_(t‘T)Agb > )dT

forallp € L¥*' and all ~co < s <t < T.

In order to prove our main results, we recall properties of the Lorentz spaces, estimates

of the Stokes semigroup and several uniqueness theorems for mild solutions.



Lemma 2.1 (Shibata [40, 41]). For allt > 0 and ¢ € L%®, the following inequalities are
satisfied:

l<g<p<oo, r=s€[l,o),

2.9 e—tA , < Ct’3/2(1/q—1/17) s when
(2.2) | Ollpr < I#llg, l<g<p<oo, r=1,8=o00,

(2.3)

1 < < < 3, = [ 1, ,
”Ve_tAqs”p,r < Ct—1/2—3/2(1/q—1/p)”¢”q,s when { /AN S r=3s { OO]

l<g<p<3, r=1,s=o00.

In the case where 2 is an exterior domain, Shibata [40, 41] proved (2.2) and (2.3)
for all r = s. If ¢ < p, his estimates (2.2)-(2.3) with » = s and real interpolation yield
(2.2)-(2.3) even for r = 1,5 = co. In the restricted case r = 1, Yamazaki [46] obtained
(2.3) also by a method different from [40, 41]. In the case where Q is R%, R?, a perturbed
halfspace or an aperture domain, the usual L9-L? estimates for the Stokes semigroup and
real interpolation directly yield (2.2)-(2.3), since in this case the L-L” estimates hold
for all 1 < ¢ < p < oo. For details of L%-L? estimates for the Stokes semigroup, see
[45, 19, 21, 2, 3, 23, 40, 20, 29, 27].

Lemma 2.2 (Meyer [34], Yamazaki [46]). The following estimates
t

(2.4) / |(F(r), Ve = D4g)| dr < C(esssutp 1 Fll3/2,00) 1613/2,1,
k) s<T<

t
(2.5) / |(u- Ve 4, w)(7)| dr < C(esisil}?“U“?ﬁ,oo)(eSSSUP”wHB,oo)Hd)Hs/m

s<r<t

hold for all F € L>®(s,t; L%/%%), u,w € L®(s,t; L>®), ¢ € Lg/z’l(Q) and all —oo < s < t,
where the constant C depends only on §).

In the case where €2 is an exterior domain, the whole space or halfspace, Yamazaki
[46] proved Lemma 2.2 by real interpolation. His proof is also valid in the case where Q
is a perturbed halfspace or an aperture domain. In the case where Q = R® Meyer [34]
obtained Lemma 2.2 by a method different from [46].

The following lemma is direct consequence of Lemma 2.2 using the duality L} =
(LY.

Lemma 2.3 ([46]). There exists a constant ey = €o(S2) with the following property: Let
T < 00, u,v,w € BC((—00,T); L>*) and let w satisfy

t

(2.6) (w(t),¢) = / ((w Ve -4y, u) (1) + (v Ve t-m4g, w) (7')) dr

-0
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for all ¢ € LY and all —co <t < T. Assume that

sup |luflsc0 + sup ||v[l3,00 < €0-
—oo<t<T —oo<t<T

Then, w(t) =0 for allt € (—o0,T).

Lemma 2.4. Let T < 0o. Ifu,v are mild L>*-solutions to (N-S) on (0,T) for the same
force f, u(0) = v(0) and

27) w0 € BC((0,T); L3),

then
u=v on[0,T).

Lemma 2.4 was essentially proven by Meyer [34], Yamazaki [46] and Lions-Masmoudi
[30]. See also Furioli, Lemarié-Rieusset and Terraneo [16], Cannone-Planchon [4], Mon-
niaux [36]. We note that Lemma 2.4 can be proven by using Lemma 2.2, cf. [14, Lemma
2.5).

Lemma 2.5. There exists a constant €;(Q) > 0 such that if T < 0o, u,v are mild L>*-
solutions to (N-S) on (—o0,T) for the same force f,
u,v € BC((_007 T)? ilg,oo)a
limsup ||u(t)||s0 < €1 and liminf ||u(t) — v(t)]|3,00 < €1,
t——00 t——00

then
u=v on (—o00,T).

We can prove Lemma 2.5 by using Lemmata 2.3 and 2.4.

Finally, we come to the key lemma of the proof of uniqueness. If u and v are solutions

to the Navier-Stokes equations, then w := u — v satisfies

Il

ow— Aw+w-Vu+v-Vw+ Vp/ 0, te(—o0,T), z€9Q,
(U) divw = 0, t€(—00,T), z €9,
'LUiaQ = 0.

Hence, if Q is a bounded domain and if u,v belong to the Leray-Hopf class, under the
hypotheses of Theorem 1, the usual energy method and the Poincaré inequality yield
lw®)|Z2 < e~t=9|lw(s)||? for t > s. Letting s — —oo, we get w(t) = 0 for all ¢t.



Consequently, in the case of bounded domains, Theorem 1 is obvious. In the case where
(2 is an unbounded domain, u and v do not belong to the energy class in general and
the Poincaré inequality does not hold in general. Hence, since we cannot use the energy
method, we will use the argument of Lions-Masmoudi [30].

We recall the dual equations of the above system (U), namely,
(

3
—O U — AT - VU —v VI +Vr = h, t€(-00,0), z€Q,

=1

(D) , V-0 = 0, te(-00,0), z €,
\I]|8Q = 07
¥(0) = 0.

\

Lemma 2.6. There exists an absolute constant 8, > 0 with the following property: Let
u,v.€ BC((—00,0]; L>*), h € BC((—00,0]; L¥® N L?) and

sup [[u(®)lls e < .
t<0

Then there exists a unique solution ¥ € L2 _((—o0,0]; D(As)) "W ((—o0, 0]; L2) to (D)
such that

0 0
(2.8) H\I’(t)l|3+/ V(3 dr < C/ 1R]1E/5 dr
t t

for allt < 0. Here C is an absolute constant.

Remark 3. Lemma 2.6 is valid for a general unbounded uniform C2-domain  C R3.

For the properties of the Stokes operator A, in a uniform C2-domain, see [43, 7].

3 Outline of the proof of Main Theorems

In this section, we prove Theorems 1 and 2. As in section 2 let w = u — v for two given

mild solutions v and v of (N-S). We first prove the following theorem:

Theorem 3. Let T' < 0o, u and v be mild L¥>*-solutions to (N-S) on (—oo,T) for the

same force f,
u,v € BC((—o0,T); L>*),

and let

(3.1) lim sup [ju(?)][3,00 < o,

t——o00

41



42

where &g is an absolute constant given in Lemma 2.6. Then there exists so < T such that
1 [
(3.2) lim —7/ |[w(T)H%2(QnBT) dr =0 forallr > 0.
J— ] —Jj+s0
Moreover, there ezists a sequence {tn} such that

(3.3) lim ¢, = —oo and lim |lw(ty)|/r2@nB,) =0 for allr > 0.

n—oo

Remark 4. (i) Since sup, 7 [|w(t)l3.00 < 00 and since Co(€) is dense in L¥%*(Q), it is

straightforward to see that (3.3) implies
(3.4) w(t,) — 0 weakly-* in L¥*®(Q) as n — oo.

(ii) If we assume that both of u and v are stationary or time-periodic in L%, then
(3.2) directly yields w = 0.
Outline of the proof of Theorem 3. By (3.1), there exists s, < T such that sup |[u(t)]|3.00 <
t<so
dp. Without loss of generality, we may assume 0 < T and sy = 0. Let j € N. For
=3 <t<T,let
9 wn(t) = e (-3
wi(t) == w(t) — wo(t).
Then, it holds that
t
(w1 (t), ¢) = / (- Ve =948 u) + (v Ve t=94g, w)) ds
—35
for all ¢ € LY/*'. By Lemma 2.1, we have for ¢ € L3210 [2
(wi(t), )| =(wi(t), Po)]
1
SCE+35)7_ sup {[w(s)llseo(lluls)llse0 + llu(s)llaco) ]2,

—00<8<

(3.6)

which implies wy(t) € L? for —3j <t < T and

6T @k <CE+3) swp ulhm s (el + ol

—oo<s<
Furthermore we can observe that w; satisfies

/_' (w1, — B — M) — (w - Vb, w) — (v Vb, w)) ds

J

= (wi(=1), % (=) — (w1(0), %(0))

(3.8)



for all v € Wh2(—j5,0; L2) N L?(—4,0; D(A2)).
Let ©, := QN B(0,r) for fixed r > 0 and

h(z,t) == w(z,t) - 1q,.

In order to show (3.2), we decompose ffj lw(7)||72(q,) d7 the integral mean of ||w(r) 1220,

over the interval (—7,0), into two terms as follows:

F 1o e = f 0t o

=7
0

:][;(wo(T), h(T))dr +][ (wi(7), (7)) dr = Iy + I.

=J

We estimate Iy and I; separately. Since
(3.9) Ihlless = llw - Lo, | zers < Cllwllseolllanllze/s < Cllwlls,eoll'?,
from Lemma 2.1 we obtain

0 0
| Io] s][ Nlwo()l6l|Rlle/s d < C][ e T30 A (=35) |6l (7) | 3,00| [/ d
(3.10) —j . g
< C][ (7'+3_7)_%“w(—3j)H3,oo||w(7-)”3,oo'QT|1/2 dr < GV 0
—J

as j — 00.
Let ¥ be the solution to (D) with right-hand side A = w-1gq, and initial value ¥(0) = 0,

cf. Lemma 2.6. Then, we can observe

1 ° ’
L= ;(wl(*j), ¥(—7)) +][ (wo - V¥, u)dr +]l (v- V¥, w)dr
—j -7
= JO + Jl + JQ.

By using (2.8), (3.7), (3.9) and Lemma 2.1 we can show that Jy, J1 and J, converge to 0

as j — oo. Hence, by (3.10) we have
I iy dr = Jo+ 1, 0 8s = 00,
=J
which proves (3.2). It is straightforward to see that (3.2) implies
I%Ln_lilof lw(t)]| L2,y = 0 for all r > 0.
Therefore, with r = n, we see that for all n =1,2,-- -, there exists t, such that

t, < —n, ”’w(tn)”Lz(Qn) < l/n,

which implies (3.3). a

43
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Proof of Theorem 1. Let & < ¢;/4, where €; is a constant given in Lemma 2.5. In view of

Lemma 2.5, it suffices to show
(311) l;mlnf ”’U.)(t)”;;,oo < €.
——00

Let {t,} be the sequence given in Theorem 3. Due to the precompact range condition on
v, i.e., R(v) = {v(t) ; t < T} is precompact in L>*(12), there exist a subsequence {tr, }
of {t,} and a function V(z) € L3*°(2) such that

(3.12) Bim [[o(ta,) = V.0 = 0.

Since (3.4) implies w(t,, ) +V — V weakly-* in L>*(Q), by (3.12) and the assumption

lim sup ||u||3,0 < & we have
t——00

(313)  IVllaeo < liminf flw(tn,) + Vllso < Hmsup flu(tn,) — (v(tn.) = V)lls,00 < 6.
Therefore, since w = u — (v — V) — V, we obtain

lim sup ||w(tn, 3,00 < lim sup(||u(tn,)lls,00 + 0(tne) = Vlso + [V ls00) < 26,

k—o0 k—00

which proves (3.11). O

Proof of Theorem 2. Let & be the constant given in Proof of Theorem 1 and let {¢,} be

the sequence given in Theorem 3. Since, with Qg = QN Bk,

[w(ta)lzse@r) < Cllw(ta)lz2@p lwta) izt

holds for 1 = £+ 1—;—9, by (3.3) and the assumption u,v € BC((—o0,T; L*(Qg)), we have
(3.14) nlLIIolo “'U}(tn)llL3.oo(QR) =0.

Let £ .= Q \ Bp.

(i) Assume that (1.6) holds. In the same way as in (3.12)-(3.13), from (3.4) and (1.6),
we observe that there exist a subsequence {t,, } of {t,} and a function V(z) € L¥*(E)
such that limg e ||(tn,) — V|L3.o(g) = 0 and consequently also that ||V||zs,e0(5) < .
Then we conclude that

lim sup {lw(ts,)|| 3.0 ) < liin sup([|lu(tn, ) lzsco ey + |v(tne) = Vizsoo gy + |V | 23,20 (1)) < 26.
- 00

k—o0



This and (3.14) prove (3.11) and hence the first part of the theorem.
(ii) Assume that (1.7) holds. Since limsup |[v(tn) — V||s.o(ry < 0 and since (3.4)

n—oo

implies w(t,) + V — V weakly-* in L>*®(E), in the same way as in the proof of (3.13),
we obtain ||V z3.c0(g) < 20 and

lim sup ||w(tn)|| 2oy < limsup(||u(tn)||Lseo(r) + [[0(tn) = Viizseomy + IV || La.eo(m)) < 46.

n—00 n—00

This and (3.14) prove (3.11). O
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