<table>
<thead>
<tr>
<th>Item</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Function spaces and isometrical extensions of bounded isometries of separable metric spaces (The present situation of set-theoretic and geometric topology and its prospects)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Kato, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1884: 107-111</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195684</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Function spaces and isometrical extensions of bounded isometries of separable metric spaces

筑波大学・数理物質科学研究科 加藤久男
Hisao Kato
Institute of Mathematics
University of Tsukuba

1 Introduction

In this note, unless stated otherwise, we assume that all maps are continuous functions. Let \(\mathbb{Z}, \mathbb{N} \) and \(\mathbb{R} \) denote the set of integers, the set of natural numbers and the set of real numbers, respectively. Also, let \(I, \Delta \) and \(\mathbb{Q} \) be the unit interval \([0, 1]\), a Cantor set and the Hilbert cube \(I^\infty \), respectively. For any compact metric space \(Z \), \(C(Z) \) denotes the function space of all (continuous) maps from \(Z \) to \(\mathbb{R} \) with the supremum metric \(\tilde{d} \), i.e.,

\[
\tilde{d}(f, g) = \sup \{|f(z) - g(z)| \mid z \in Z\}
\]

for \(f, g \in C(Z) \).

A map \(i : (X, d_X) \to (Y, d_Y) \) between separable metric spaces is an isometrical embedding from \((X, d_X) \) into \((Y, d_Y) \) if \(i \) satisfies the condition \(d_Y(i(x), i(x')) = d_X(x, x') \) for each \(x, x' \in X \). A map \(g : (X, d_X) \to (Y, d_Y) \) between separable metric spaces is an isometry if \(g \) is surjective and \(d_Y(g(x), g(x')) = d_X(x, x') \) for each \(x, x' \in X \). For a separable metric space \((X, d) \), let \(\text{Iso}(X) \) be the group of all isometries of \(X \) equipped with the pointwise convergent topology, i.e.,

\[
\text{Iso}(X) = \{ g : X \to X \mid g \text{ is an isometry} \}.
\]

A well-known theorem of Banach and Mazur is the result that \(C(I) \ (I = [0, 1]) \) is a universal space of separable metric spaces up to isometry (see \([1,3,9]\)). Also, Urysohn \([11]\) constructed a complete separable metric space \(U \) that is also universal up to isometry. In \([12]\), Uspenskij proved that for any separable metric space \(X \) there is a natural isometrical embedding \(i : X \to U \) such that \(i \) induces a natural continuous monomorphism \(i^* : \text{Iso}(X) \to \text{Iso}(U) \) satisfying that \(i^*(g) \in \text{Iso}(U) \) is an extension of \(g \in \text{Iso}(X) \) (see \([2,3,5,7,12,13]\) for more detailed properties of \(U \)).

In this note, we study the extension property of "bounded" isometries of separable metric spaces in function spaces \(C(\mathbb{Q}) \) and \(C(\Delta) \). Also, we know that \(C(I) \) does not have the extension property. Let \((X, d) \) be a separable metric space and \(x_0 \in X \). A subgroup \(G \) of \(\text{Iso}(X) \) is bounded if \(\text{diam} \ G(x_0) < \infty \), where \(G(x_0) = \{ g(x_0) \mid g \in G \} \subset X \). The definition of "bounded subgroup" of \(\text{Iso}(X) \) does not depend on the choice of the point \(x_0 \in X \). Also, each \(g \in \text{Iso}(X) \) is bounded if \(\text{diam} \{ g^n(x_0) \mid n \in \mathbb{Z} \} < \infty \). Note that if \((X, d) \) is bounded, i.e., \(\text{diam}_d X < \infty \), then \(\text{Iso}(X) \) itself is bounded. In particular, if \(X \) is a compact metric space, then \(\text{Iso}(X) \) is bounded. In \([6]\), Mazur and Ulam proved that if \(B \) and \(B' \) are Banach spaces, then every isometry \(T : B \to B' \) with \(T(0) = 0 \) is linealy
isometric and moreover, Banach and Stone proved that if X and Y are compact Hausdorff spaces, then every isometry $T : C(X) \to C(Y)$ with $T(0) = 0$ is linearly isometric and moreover, T is induced by a homeomorphism $h : Y \to X$ (see [1,10]).

Theorem 1.1. (Banach [1] and Stone [10]) Let X and Y be compact Hausdorff spaces. Then the followings hold.

1. $C(X)$ is isometric to $C(Y)$ if and only if X is homeomorphic to Y.
2. If $T : C(X) \to C(Y)$ is a linear isometry, then there is a homeomorphism $h : Y \to X$ and a (continuous) map $\alpha : Y \to \mathbb{R}$ with $|\alpha(y)| = 1$ for $y \in Y$ such that

 \[(T(f))(y) = \alpha(y) \cdot (f \circ h)(y)\]

 for $f \in C(X)$ and $y \in Y$. Moreover, if Y is connected, $T(f) = f \circ h$ or $T(f) = - (f \circ h)$.

For any Banach space B, let

\[\text{LinIso}(B) = \{f \in \text{Iso}(B) | f \text{ is linear}\}.\]

Note that LinIso(B) is bounded, because LinIso$(B)(0) = \{0\}$.

2 Extensions of bounded isometries in function spaces

In this section, we assume that (X, d) is a separable metric space and x_0 is a fixed point of X. In [9], Sierpiński considered the space

\[X' = \{f : X \to \mathbb{R} | f(x_0) = 0 \text{ and } |f(x) - f(y)| \leq d(x, y) \text{ for } x, y \in X\}\]

which is a topological space equipped with the pointwise convergent topology (see also [3]) and by use of the spaces X', he proved that $C(I)$ is a universal space of separable metric spaces up to isometry. We modify the Sierpiński's method of [9]. In this paper, for any bounded subgroup G of Iso(X), we consider the following more general space

\[\tilde{X} (= \tilde{X}_G) = \{f : X \to \mathbb{R} | f(z) \in [-\text{diam}(G(x_0)), \text{diam}(G(x_0))] \text{ for } z \in G(x_0) \text{ and } |f(x) - f(y)| \leq d(x, y) \text{ for } x, y \in X\}\]

which is a topological space equipped with the pointwise convergent topology. We have the following lemmas.

Lemma 2.1. $\tilde{X} (= \tilde{X}_G)$ is a compact metric absolute retract (= AR). Moreover, if $g \in G$, then $\tilde{g} : \tilde{X} \to \tilde{X}$ is a homeomorphism, where \tilde{g} is defined by $\tilde{g}(f) = f \circ g$ for $f \in \tilde{X}$.

Lemma 2.2. Suppose that $p_G : Z \to \tilde{X} (= \tilde{X}_G)$ is a map from a compact metric space Z onto \tilde{X} such that for each $g \in G$ there is a (lift) homeomorphism $L_g : Z \to Z$ satisfying the following commutative diagram.

\[
\begin{array}{ccc}
Z & \xrightarrow{\text{L}} & Z \\
\downarrow p_G & & \downarrow p_G \\
\tilde{X} & \xrightarrow{\tilde{g}} & \tilde{X}
\end{array}
\]
Then there is an isometrical embedding $i_G : X \to C(Z)$ such that for each $g \in G$, the following commutative diagram holds:

\[
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
i_G \downarrow & & \downarrow i_G \\
C(Z) & \xrightarrow{L_g} & C(Z)
\end{array}
\]

where $L_g : C(Z) \to C(Z)$ is the isometry defined by $L_g(f) = f \circ L_g$ for $f \in C(Z)$. In particular, $L_g \in \text{LinIso}(C(Z))$ is an isometrical extension of $g \in G$.

Here we have the following theorem of $C(\mathbb{Q})$ which implies that $C(\mathbb{Q})$ is universal concerning isometrical extensions of bounded isometry groups of separable metric spaces.

Theorem 2.3. Let (X, d) be a separable metric space and let G be any bounded subgroup of $\text{Iso}(X)$. Then there is an isometrical embedding $i_G : X \to C(\mathbb{Q})$ such that i_G induces a continuous monomorphism $i_G^* : G \to \text{LinIso}(C(\mathbb{Q}))$ such that $i_G^*(g) \in \text{LinIso}(C(\mathbb{Q}))$ is an extension of $g \in G$.

Corollary 2.4. Suppose that (X, d) is a bounded separable metric space. Then there is an isometrical embedding $i : X \to C(\mathbb{Q})$ such that i induces a continuous monomorphism $i^* : \text{Iso}(X) \to \text{LinIso}(C(\mathbb{Q}))$ such that $i^*(g) \in \text{LinIso}(C(\mathbb{Q}))$ is an extension of $g \in \text{Iso}(X)$.

Remark 1. Note that for any Banach space B, $\text{LinIso}(B)$ is a bounded group. Hence in this note, we can not omit the condition that G is bounded.

If we observe the proof of Lemma 2.2, we see that some converse assertions of Lemma 2.2 are also true. In fact, we have the following.

Proposition 2.5. Suppose that $p_G : Z \to \tilde{X}(= \tilde{X}_G)$ is a map from a compact metric space Z onto \tilde{X}, $i_G : X \to C(Z)$ is the isometrical embedding as in the proof of Lemma 2.2 and $g \in G$. Let $L_g : Z \to Z$ be a homeomorphism. Then the followings hold.

(1) The following diagram is commutative:

\[
\begin{array}{ccc}
Z & \xrightarrow{L_g} & Z \\
p_G \downarrow & & \downarrow p_G \\
\tilde{X} & \xrightarrow{g} & \tilde{X}
\end{array}
\]

if and only if the following diagram is commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
i_G \downarrow & & \downarrow i_G \\
C(Z) & \xrightarrow{L_g} & C(Z)
\end{array}
\]

(2) The following diagram is commutative:

\[
\begin{array}{ccc}
Z & \xrightarrow{L_g} & Z \\
p_G \downarrow & & \downarrow p_G \\
\tilde{X} & \xrightarrow{g} & \tilde{X}
\end{array}
\]
if and only if the following diagram is commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
i_G \downarrow & & \downarrow i_G \\
C(Z) & \xrightarrow{L} & C(Z)
\end{array}
\]

Example. Let \(X = \{x_i : i = 0, 1, 2\} \) be the set of three elements and let \(d \) be the metric on \(X \) defined by \(d(x_i, x_j) = r > 0 (i \neq j) \). Define the isometry \(g : X \to X \) by \(g(x_0) = x_0, g(x_1) = x_2 \) and \(g(x_2) = x_1 \). Let \(G = \{id_X, g\} \). Note that \(G(x_0) = \{x_0\} \).

Then there is an isometrical embedding \(i_G : X \to \mathbb{Q} \) such that there is no isometrical extension of \(g \) on \(\mathbb{Q} \). In particular, \(\mathbb{Q} \) is not equal to the Urysohn universal space \(U \), because that \(U \) has the following strong property: Any isometry between finite subsets of \(U \) can be extended to an isometry of \(U \).

Next we will consider the case of the function space \(C(\Delta) \). Let \(H(X) \) be the set of all homeomorphisms of a space \(X \).

Proposition 2.6. Let \(X \) be a compact metric space and let \(G \) be a countable subset of \(H(X) \). Then there is an onto map \(p_G : \Delta \to X \) such that for any \(g \in G \) there is a (lift) homeomorphism \(L_g : \Delta \to \Delta \) of \(\Delta \) such that the following diagram is commutative.

\[
\begin{array}{ccc}
\Delta & \xrightarrow{L_g} & \Delta \\
p_G \downarrow & & \downarrow p_G \\
X & \xrightarrow{g} & X
\end{array}
\]

Then we have the following theorem of \(C(\Delta) \).

Theorem 2.7. Let \((X, d) \) be any separable metric space and let \(G \) be a countable bounded subgroup of \(Iso(X) \). Then there is an isometrical embedding \(i_G : X \to C(\Delta) \) such that there exist a countable subgroup \(G^* \) of \(LinIso(C(\Delta)) \) and a continuous epimorphism \(r^* : G^* \to G \) such that each \(g^* \in G^* \) is an extension of \(r^*(g^*) \in G \). In particular, if \(g \in G \), then there is an extension \(g^* \in LinIso(C(\Delta)) \) of \(g \).

Remark 2. Note that the space \(H(\Delta) \) of all homeomorphisms of \(\Delta \) is homeomorphic to the space \(P \) of irrationals, and hence \(H(\Delta) \) is zero-dimensional. If \(G \) is any bounded subgroup of \(Iso(X) \) with \(\dim G \geq 1 \), there is no embedding from \(G \) to \(H(\Delta) \).

Corollary 2.8. Let \((X, d) \) be any separable metric space. If \(g \in Iso(X) \) is periodic i.e., \(g^n = id_X \) for some \(n \in \mathbb{N} \), then there is an isometrical embedding \(i_g : X \to C(\Delta) \) such that there is an extension \(g^* \in LinIso(C(\Delta)) \) of \(g \) with \((g^*)^n = id_{C(\Delta)} \).

Finally, we consider the case of \(C(I) \). We have the following proposition of \(C(I) \).

Proposition 2.9. Let \((X, d) \) be any separable metric space and let \(g \in Iso(X) \) such that \(g \) has a periodic point \(x_0 \) with period \(n \in \mathbb{N} \). If \(n \geq 3 \), there is no isometrical embedding \(i \) from \(X \) to \(C(I) \) such that \(g \) has an extension in \(LinIso(C(I)) \).

Now, we have the following problem.

Problem 2.10. Let \((X, d) \) be any separable metric space. Is it true that there is an isometrical embedding \(i \) from \(X \) to \(C(\mathbb{Q}) \) such that each \(g \in Iso(X) \) has an extension which is an affine isometry of \(C(\mathbb{Q}) \)?
References

