<table>
<thead>
<tr>
<th>Title</th>
<th>Basic properties of definable isomorphisms of quantum 2-tori $T_q^2(\mathbb{C})$ (Model theoretic aspects of the notion of independence and dimension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ITAI, Masanori</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1888: 44-51</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195743</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Basic properties of definable isomorphisms of quantum 2-tori $T_q^2(\mathbb{C})$

Masanori ITAI
Department of Mathematical Sciences
Tokai University, Hiratsuka, Japan

Abstract
In [5] we constructed quantum 2-tori and studied their first-order theories. Here we discuss basic properties of the definable isomorphisms between quantum 2-tori $T_q^2(\mathbb{C})$ and show that $SL_2(\mathbb{Z})$ is the set of definable isomorphisms of them.

1 Definable isomorphisms

Let $\theta \in \mathbb{R}$ be a transcendental element and put $q = \exp(2\pi i \theta)$ where $i = \sqrt{-1}$. Let also Γ_θ be an infinite multiplicative group generated by q. We denote \mathcal{A}_θ the non-commutative algebra $\mathcal{O}_q((\mathbb{C}^\times)^2)$ with generators written as U, U^{-1}, V, V^{-1} satisfying

$$VU = qUV.$$

For each pair $(u, v) \in \mathbb{C}^\times \times \mathbb{C}^\times / \Gamma_\theta$, we construct two \mathcal{A}_θ-modules $M_{|u,v\rangle}$ and $M_{\langle v,u|}$.

The module $M_{|u,v\rangle}$ generated by elements labeled $\{u(\gamma u, v) : \gamma \in \Gamma_\theta\}$ satisfies

$$U : u(\gamma u, v) \mapsto \gamma uu(\gamma u, v),$$
$$V : u(\gamma u, v) \mapsto vu(q^{-1}\gamma u, v).$$

(1)

We also define the module $M_{\langle v,u|}$ generated by elements labeled $\{v(\gamma v, u) : \gamma \in \Gamma_\theta\}$ satisfying

$$U : v(\gamma v, u) \mapsto uv(q\gamma v, u),$$
$$V : v(\gamma v, u) \mapsto \gamma vv(\gamma v, u).$$

(2)
Notice that we have

\begin{align}
U^{-1} : u(\gamma u, v) &\mapsto \gamma^{-1}u^{-1}u(\gamma u, v), \\
V^{-1} : u(\gamma u, v) &\mapsto v^{-1}u(q\gamma u, v),
\end{align}

and

\begin{align}
U^{-1} : v(\gamma v, u) &\mapsto u^{-1}v(q^{-1}\gamma v, u), \\
V^{-1} : v(\gamma v, u) &\mapsto \gamma^{-1}v^{-1}v(\gamma v, u).
\end{align}

Now let $\phi : \mathbb{C}^{*}/\Gamma_{\theta} \to \mathbb{C}^{*}$. Put $\Phi = \text{ran}(\phi)$. Set

\begin{align}
\Gamma_{\theta} \cdot u(u, v) &:= \{\gamma u(u, v) : \gamma \in \Gamma_{\theta}\}, \\
U_{\langle u,v \rangle} &:= \bigcup_{\gamma \in \Gamma_{\theta}} \Gamma_{\theta} \cdot u(\gamma u, v) = \{\gamma_1 \cdot u(\gamma_2 u, v) : \gamma_1, \gamma_2 \in \Gamma_{\theta}\}, \\
U_{\phi} &:= \bigcup_{\langle u,v \rangle \in \Phi^2} U_{\langle u,v \rangle} \\
&= \{\gamma_1 \cdot u(\gamma_2 u, v) : \langle u, v \rangle \in \Phi^2, \gamma_1, \gamma_2 \in \Gamma_{\theta}\}.
\end{align}

We call $\Gamma_{\theta} \cdot u(u, v)$ a Γ_{θ}-set over $u(u, v)$, and U_{ϕ} a Γ_{θ}-bundle over $\mathbb{C}^{*} \times \mathbb{C}^{*}/\Gamma_{\theta}$. Notice that U_{ϕ} is a subset of the A_{θ}-module

$$\bigcup_{\langle u,v \rangle} M_{\langle u,v \rangle}.$$

Similarly a Γ_{θ}-set $\Gamma_{\theta} \cdot v(v, u)$ over $v(v, u)$, and a Γ_{θ}-bundle V_{ϕ} over $\mathbb{C}^{*}/\Gamma_{\theta} \times \mathbb{C}^{*}$ is defined. As before the Γ_{θ}-bundle V_{ϕ} is a subset of the A_{θ}-module

$$\bigcup_{\langle v,u \rangle} M_{\langle v,u \rangle}.$$
Definition 1 Given θ and $q = \exp(2\pi i \theta)$. Let $\phi : \mathbb{C}^* / \Gamma_{\theta} \to \mathbb{C}^*$. We call the structure $(U_\phi, V_\phi, \mathbb{C})$ with actions U and V satisfying (1) and (2) a quantum 2-torus $T_q^2(\mathbb{C})$ over the field of complex numbers \mathbb{C}. We denote $T_q^2(\mathbb{C})$ as T_θ in this note.

Notice that the structure of the quantum 2-torus T_θ is essentially decided by θ (in fact $q = e^{2\pi i \theta}$). More precisely, $\Gamma_q = q^\mathbb{Z} = \Gamma_\theta = e^{2\pi i \theta \mathbb{Z}} = \langle e^{2\pi i \theta} \rangle$ is the key ingredient of Γ-bundles.

Remark 2 It is clear that we have $\Gamma_{\theta \pm 1} = \Gamma_\theta$, hence for any $n \in \mathbb{Z}$ we have $\Gamma_{\theta + n} = \Gamma_\theta$. It is also clear that $\Gamma_{-\theta} = \Gamma_\theta$. For $n \in \mathbb{Z}$, it is easy to see that $\Gamma_{n \theta}$ and Γ_θ are both infinite multiplicative groups generated by single elements hence isomorphic as such groups.

Definition 3 Given $\theta_1, \theta_2 \in \mathbb{R}$, both transcendental. We say that the quantum 2-tori T_{θ_1} and T_{θ_2} are definably isomorphic in the structure $(\mathbb{C}, +, \cdot, x^\theta)$ if there is an definable $f : \mathbb{R} \to \mathbb{R}$ such that $f(\theta_1) = \theta_2$ and

1. f induces a definable isomorphism between $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\theta_1}$ and $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\theta_2}$,
2. f induces a definable isomorphism between Γ_{θ_1}-bundle over $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\theta_1}$ and Γ_{θ_2}-bundle over $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\theta_2}$

Proposition 4 From the definition of definable isomorphism of quantum 2-torus, we see that there are three cases for quantum 2-tori to be definably isomorphic:

1. $\Gamma_{\theta_1} = \Gamma_{\theta_2}$, or
2. Γ_{θ_1} and Γ_{θ_2} are isomorphic, or
3. $\mathbb{C}/\Gamma_{\theta_1}$ is definably isomorphic to $\mathbb{C}/\Gamma_{\theta_2}$, more precisely there is a definable one-to-one correspondence between the cosets of Γ_{θ_1} and the cosets of Γ_{θ_2}.

Remark 5 Our definition of two quantum 2-tori being isomorphic is essentially the same as the notion of Morita equivalence. The idea of using the Morita equivalence as the definition of isomorphism of quantum tori comes from Manin's argument.

We investigate here the structure of the set $\text{DefIso}(T_{\theta_1}, T_{\theta_2})$ of all definable isomorphisms f between quantum tori T_{θ_1} and T_{θ_2}.
Proposition 6 It is clear that from Remark 2, we have (1) $T_{-\theta}$ and T_{θ} are definably isomorphic and (2) $T_{\theta+n}$ and T_{θ} are definably isomorphic for $n \in \mathbb{Z}$. It is not hard to see that $T_{n\theta}$ and T_{θ} are definably isomorphic since $\Gamma_{n\theta}$ and Γ_{θ} are isomorphic.

1.1 x^θ is a definable isomorphism between $T_{1/\theta}$ and T_{θ}

Here we show that the function x^θ gives rise to a definable isomorphism in the sense of Definition 3 between quantum tori $T_{1/\theta}$ and T_{θ}.

Recall that Γ_{θ} is an infinite multiplicative group generated by $q = \exp(2\pi i\theta)$.

Recall that over the complex numbers we have

$$x^\theta = e^{\theta \log x},$$

where $\log x = \ln x + 2\pi i\mathbb{Z}$.

Remark 7 x^θ is not a function but a multivalued operation.

First observation to make is the following:

Claim Suppose $\Gamma_{\theta^{-1}} = \{q_1^k : q_1 = \exp(2\pi i\theta^{-1}), k \in \mathbb{Z}\}$, and $\Gamma_{\theta} = \{q_2^m : q_2 = \exp(2\pi i\theta), m \in \mathbb{Z}\}$. Then x^θ sends a coset of $\Gamma_{1/\theta}$ to a coset of Γ_{θ} as follows;

$$x^\theta : a \cdot \exp(2\pi i\theta^{-1}k) \mapsto \exp\left(\theta(\ln(a) \exp(2\pi i\theta^{-1}k) + 2\pi im)\right)
= \exp\left(\theta(\ln a + 2\pi i\theta^{-1}k + 2\pi im)\right)
= \exp\left(\theta(\ln a + 2\pi im) + 2\pi ik\right)
= \exp(\theta(\ln a + 2\pi im)) \cdot \exp(2\pi ik)
= \exp(\theta \ln a) \cdot \exp(2\pi i\theta m)
= a^\theta \cdot \exp(2\pi i\theta m)
\in a^\theta \cdot \Gamma_{\theta}$$

On the other hand, for given $a^\theta \cdot \exp(2\pi i\theta m) \in a^\theta \cdot \Gamma_{\theta}$ we have $a \cdot \exp(2\pi i\theta^{-1}m) \in a \cdot \Gamma_{1/\theta}$ and

$$x^\theta : a \cdot \exp(2\pi i\theta^{-1}m) \mapsto \exp\left(\theta(\ln(a) \exp(2\pi i\theta^{-1}m)) + 2\pi il\right)
= a^\theta \cdot \exp(2\pi i\theta l)
\in a^\theta \cdot \Gamma_{\theta}$$
These computations show that x^θ gives a one-to-one correspondence between a coset of $\Gamma_{\frac{1}{\theta}}$ and a coset of Γ_{θ}. From this we see that x^θ defines a definable bijection between $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\frac{1}{\theta}}$ and $\mathbb{C}^* \times \mathbb{C}^*/\Gamma_{\theta}$.

Recall that the module $M_{|u,v\rangle,\frac{1}{\theta}}$ is generated by elements labeled $\{u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) : \gamma \in \Gamma_{\theta}\}$. Set first

$$x^\theta : u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \mapsto u(\gamma u, v)$$

Then the operators U, V act as follows:

$$U : u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \mapsto \gamma^\frac{1}{\theta}u^\frac{1}{\theta}u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}),$$

$$V : u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \mapsto v^\frac{1}{\theta}u(q^{-1}\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}),$$

where $q = e^{2\pi i \theta}$.

Hence we have the following diagrams:

$$
\begin{array}{c}
\begin{array}{c}
\text{u}(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \\
\downarrow U
\end{array}
\xrightarrow{x^\theta} \\
\begin{array}{c}
\gamma^\frac{1}{\theta}u^\frac{1}{\theta}u(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \\
\downarrow U
\end{array}
\end{array}
\xrightarrow{x^\theta} \\
\begin{array}{c}
\gamma uu(\gamma u, v)
\end{array}
$$

and

$$
\begin{array}{c}
\begin{array}{c}
\text{u}(\gamma^\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \\
\downarrow V
\end{array}
\xrightarrow{x^\theta} \\
\begin{array}{c}
\gamma^-\frac{1}{\theta}u(\gamma^-\frac{1}{\theta}u^\frac{1}{\theta}, v^\frac{1}{\theta}) \\
\downarrow V
\end{array}
\end{array}
\xrightarrow{x^\theta} \\
\begin{array}{c}
vu(q^{-1}\gamma u, v)
\end{array}
$$

These diagrams tell us that we have a definable correspondence of vectors in $\Gamma_{\frac{1}{\theta}}$-set and Γ_{θ}-set and vectors in Γ_1-bundle and Γ_{θ}-and, eventually vectors in line-bundles of both sides. Observe that x^θ preserves actions of U, V.

Proposition 8 In the structure $(\mathbb{C}, +, \cdot, x^\theta)$, by sending $\frac{1}{\theta}$ to θ, we construct a definable isomorphism f between $\Gamma_{\frac{1}{\theta}}$ and Γ_{θ} which give rise to the definable

$$f : \mathbb{C}^*/\Gamma_{\frac{1}{\theta}} \xrightarrow{\cong} \mathbb{C}/\Gamma_{\theta}.$$

Therefore the quantum 2-tori $T_{\frac{1}{\theta}}$ and T_{θ} are definably isomorphic.
1.2 $\text{SL}_2(\mathbb{Z})$ is the group of definable isomorphisms

We have shown that Γ_θ and $\Gamma_{\frac{1}{\theta}}$ define isomorphic quantum 2-tori. Since $\Gamma_{\theta+1} = \Gamma_\theta$, it is reasonable to have the following statement.

Proposition 9 $\text{SL}_2(\mathbb{Z})$ is the set of all definable isomorphisms. More precisely, for any $f \in \text{SL}_2(\mathbb{Z})$, Γ_θ and $\Gamma_{f(\theta)}$ define isomorphic quantum 2-tori.

Proof: 1) first show that for any $f \in \text{SL}_2(\mathbb{Z})$, Γ_θ and $\Gamma_{f(\theta)}$ give rise to isomorphic quantum 2-tori. Consider two functions

\[
\begin{align*}
 f_S &: \theta \mapsto -\frac{1}{\theta}, \\
 f_T &: \theta \mapsto \theta + 1.
\end{align*}
\]

View both f_S and f_T as Möbius transformations;

\[
\theta \mapsto \frac{a\theta + b}{c\theta + d},
\]

which is identified with

\[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}.
\]

Then f_S corresponds to $\begin{pmatrix} 0 & -1 \\
1 & 0 \end{pmatrix} = S$, and f_T corresponds to $\begin{pmatrix} 1 & 1 \\
0 & 1 \end{pmatrix} = T$. Then $S,T \in \text{SL}_2(\mathbb{Z})$ and S and T generate $\text{SL}_2(\mathbb{Z})$, i.e., $\langle S, T \rangle = \text{SL}_2(\mathbb{Z})$. From the argument in the previous subsection we have that $\text{SL}_2(\mathbb{Z})$ is a subgroup of the group of definable isomorphisms.

We still need to show that any definable isomorphism in fact belongs to $\text{SL}_2(\mathbb{Z})$. For this we have

Lemma 10 Suppose T_θ and T_{θ_1} are definably isomorphic quantum tori in $(\mathbb{C}, +, \cdot, x^\theta)$. Then there is a $f \in \langle S, T \rangle$ such that $\theta_1 = f(\theta)$.

Proof: Recall Proposition 4. From the fact that θ_1 being definable in the structure $(\mathbb{C}, +, \cdot, x^\theta)$, there are three cases to consider;

1. $\Gamma_\theta = \Gamma_{\theta_1}$, or
2. Γ_θ and Γ_{θ_1} are isomorphic, or
3. $\mathbb{C}/\Gamma_{\theta}$ is definably isomorphic to $\mathbb{C}/\Gamma_{\theta_1}$, more precisely there is a definable one-to-one correspondence between the cosets of Γ_{θ} and the cosets of Γ_{θ_1}.

Hence we may assume there are $a, b, c, d \in \mathbb{Z}$ such that

$$\theta_1 = \frac{a\theta + b}{c\theta + d},$$

thus there is an $f \in SL_2(\mathbb{Z})$ such that $\theta_1 = f(\theta)$.

References

DEPARTMENT OF MATHEMATICAL SCIENCES, TOKAI UNIVERSITY, HIRATSUKA, JAPAN

E-mail address: itai@tokai-u.jp