<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>分割と分け叉：独立性と次元のモデル論的側面の証明</td>
</tr>
<tr>
<td>集合</td>
<td>作成者</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>タイトル</td>
<td>数理解析研究所講究録</td>
</tr>
</tbody>
</table>
Dividing and Forking
– A Proof of the Equivalence –

Akito Tsuboi
Institute of Mathematics, University of Tsukuba

1 Introduction and Preliminaries

Let T be a simple complete theory. Then the two notions forking and dividing are equivalent. (See [1].) The usual proof of this fact needs Erdős-Rado theorem, a basic result in combinatorial set theory. Erdős-Rado theorem is a theorem on uncountable cardinals, extending Ramsey's theorem. So it is somewhat strange to use such a theorem for proving the fact when the language is countable. In this article, we present a new proof that will only use compactness and a Ramsey-type argument.

We explain the notations in this article and recall some basic definitions. L is a language and T is a complete theory formulated in L. Although the countability of L is not necessary, we assume that L is countable for simplicity. We fix a big saturated model \mathcal{M} of T and we work in \mathcal{M}. Small subsets of \mathcal{M} are denoted by A, B, \ldots. Finite tuples in \mathcal{M} are denoted by a, b, \ldots. Variables are x, y, \ldots. Formulas are denoted by φ, ψ, \ldots. If all the free variables of φ are contained in x, φ is sometimes written as $\varphi(x)$. For a set A, $L(A)$ is the language L augmented by the names (constants) for $a \in A$. For simplicity of the notation, we write $\varphi \in L(A)$, if φ is a formula in $L(A)$. In general, a formula $\varphi \in L(A)$ has the form $\psi(x, a)$, where $\psi(x, y)$ is an L-formula with xy free and a is the list of parameters (from A) appearing in φ. a will be called the parameters of φ.

A sequence $\{a_{i} : i \in \omega\}$ is called an indiscernible sequence over A, if for any strictly increasing $f : \omega \to \omega$, there is an automorphism σ of \mathcal{M} that extends the mapping $id_{A} \cup \{(a_{i}, a_{f(i)})\}_{i \in \omega}$. We say that $\{a_{i} : i \in \omega\}$ starts with a, if $a_{0} = a$.

Definition 1. A formula $\varphi(x, a)$ divides over A if there is an indiscernible sequence $\{a_{i} : i \in \omega\}$ starting with a such that $\{\varphi(x, a_{i}) : i \in \omega\}$ is inconsistent.

A set Φ of formulas is said to be k-inconsistent, if every subset $\Psi_{0} \subset \Phi$ of size k is inconsistent. If $\varphi(x, a)$ divides over A, by the indiscernibility of $\{a_{i} : i \in \omega\}$, there is some $k \in \omega$ such that $\{\varphi(x, a_{i}) : i \in \omega\}$ is k-inconsistent. In this case we say that $\varphi(x, a)$ k-divides over A.

Definition 2. A formula $\varphi(x, a)$ forks over A if it is covered by a finite number of dividing formulas, more precisely, if there is a finite number of formulas $\psi_{i}(x, b_{i})$ ($i = 1, \ldots, n$) with the following properties:
1. \(\mathcal{M} \models \forall x[\varphi(x, a) \rightarrow \bigvee_{i=1,\ldots,n} \psi_i(x, b_i)] \);

2. Each \(\psi_i(x, b_i) \) divides over \(A \).

\(T \) is called simple if there is a bound for the length of a dividing sequence of complete types. The simplicity of \(T \) is equivalent to the finiteness of the rank defined below:

Definition 3. Let \(\Sigma(x) \) be a set of formulas with parameters (with \(x \) free). Let \(\Phi(x, y) \) be a finite set of \(L \)-formulas and let \(k \in \omega \). The rank \(D(\Sigma(x), \Phi(x, y), k) \) is defined by:

1. \(D(\Sigma(x), \Phi(x, y), k) \geq 0 \) if \(\Sigma(x) \) is consistent;
2. \(D(\Sigma(x), \Phi(x, y), k) \geq \alpha + 1 \) if there is \(a \) and \(\varphi \in \Phi \) such that \(D(\Sigma(x) \cup \{ \varphi(x, a) \}, \Phi(x, y), k) \geq \alpha \) and such that \(\varphi(x, a) \) \(k \)-divides over the parameter set of \(\Sigma \);
3. \(D(\Sigma(x), \Phi(x, y), k) \geq \delta \) (a limit ordinal) if \(D(\Sigma(x), \Phi(x, y), k) \geq \alpha \) for any \(\alpha < \delta \).

In the same manner,

2 Simple theories

In what follows, \(T \) is a simple complete theory. Let us begin with the following lemma. A proof here is essentially the same as the one presented in Ziegler’s book [3].

Lemma 4. Let \(\varphi(x) \in L(A) \). Then \(\varphi(x) \) does not fork over \(A \).

Proof. For simplicity we assume \(A = \emptyset \). Suppose otherwise and choose \(\psi_i(x, b) \) (\(i = 1, \ldots, n \)) and \(k \in \omega \) such that

1. each \(\psi_i(x, b) \) \(k \)-divides over \(\emptyset \);
2. \(\forall x[\varphi(x) \rightarrow \bigvee_{i=1,\ldots,n} \psi_i(x, b)] \) holds.

Then we choose \(n_1, \ldots, n_m \leq n \) and \(b_1, \ldots, b_m \) (copies of \(b \)) such that

3. \(\psi_{n_i}(x, b_i) \) \(k \)-divides over \(\{ b_j : j < i \} \), for each \(i = 1, \ldots, n \);
4. \(\varphi(x) \wedge \bigwedge_{i=1,\ldots,m} \psi_{n_i}(x, b_i) \) is consistent, and its \(D(*, \{ \psi_i : i = 1, \ldots, n \}, k) \)-rank is minimum among such.

By moving the \(b_i \)'s, we can assume that each \(\psi_{n_i}(x, b_i) \) \(k \)-divides over \(\{ b \} \cup \{ b_j : j < i \} \).

By conditions 2 and 4, there is \(n_{m+1} \leq n \) such that

\(\varphi(x) \wedge \bigwedge_{i=1,\ldots,m} \psi_{n_i}(x, b_i) \wedge \psi_{n_{m+1}}(x, b) \) is consistent.

Since \(\psi_{n_{m+1}}(x, b) \) divides, by letting \(b_{m+1} = b \), we have

\[
D(\varphi(x) \wedge \bigwedge_{i=1,\ldots,m} \psi_{n_i}(x, b_i), \Psi, k) > D(\varphi(x) \wedge \bigwedge_{i=1,\ldots,m+1} \psi_{n_i}(x, b_i), \Psi, k)
\]

where \(\Psi = \{ \psi_i : i = 1, \ldots, n \} \). This contradicts our choice of \(n_i \) (\(i \leq m \)) and \(b_i \) (\(i \leq m \)) (condition 4). \(\square \)
Remark 5. 1. Let $A \subset B$ and $p(x) \in S(A)$. Then there is an extension $q(x) \in S(B)$ of $p(x)$ such that $q(x)$ does not divide over A. This can be shown as follows: Let $\Gamma(x) = p(x) \cup \{ \neg \varphi(x) \in L(B) : \varphi(x) \text{ does not divide over } A \}$. Then $\Gamma(x)$ is consistent, since otherwise we would have $p(x) \models \varphi_1(x) \lor \cdots \lor \varphi_n(x)$, for some φ_i dividing over A. So $p(x) \in S(A)$ forks over A, contradicting the above lemma. Choose $a \models \Gamma$, and let $q(x) = \text{tp}(a/B)$. Then, clearly $q(x)$ does not divide over A.

2. Suppose that $\text{tp}(a/Abc)$ does not divide over A and that $\text{tp}(b/Ac)$ does not divide over A. Then $\text{tp}(ab/Ac)$ does not divide over A: Let $\varphi(x, y, c) \in \text{tp}(ab/Ac)$. Let $I = \{ c_i : i \in \omega \}$ be an arbitrary indiscernible sequence with $c_0 = c$. Since $\text{tp}(b/Ac)$ does not divide over A, there is b' (a copy of b over Ac) such that I is Ab'-indiscernible. For an A-automorphism $\sigma : b' \to b$, $\sigma(I)$ is an Ab-indiscernible sequence. Notice then that $J = \{ b\sigma(c_i) : i \in \omega \}$ is an A-indiscernible sequence with $b\sigma(c_0) = b$. Since $\text{tp}(a/Abc)$ does not divide over A, there is a' (a copy of a over A) such that $a' \models \bigwedge_{d \in J} \varphi(x, d)$. So $\sigma^{-1}(a') = \bigwedge_{i \in \omega} \varphi(x, b', c_i)$. In particular, $\{ \varphi(x, y, c_i) : i \in \omega \}$ is satisfiable.

Lemma 6. For each non-algebraic type $p(x) \in S(A)$, there is an A-indiscernible sequence $J = \{ b_i : i \in \omega \}$ in p such that $\text{tp}(J \setminus \{ b_0 \}/Ab_0)$ does not divide over A.

Proof. First we inductively choose a_i's realizing p such that, for each $i \in \omega$,

$$\text{tp}(a_i/A_i) \text{ does not divide over } A,$$

where $A_i = A \cup \{ a_j : j < i \}$. Then, by an iterative use of Remark above, $\text{tp}(\{ a_j : j > 0 \}/Aa_0)$ does not divide over A. Similarly we can show that $\text{tp}(\{ a_j : j > i \}/Aa_i)$ does not divide over A, for each i.

Now let $\Gamma(\{ x_i : i \in \omega \})$ be the following set of $L(A)$-formulas:

$$\bigcup_{i \in \omega} p(x_i) \cup \bigcup_{i \in \omega, F \subseteq \omega} \{ \neg \varphi(x_F, x_i) : \varphi(x_F, a_0) \text{ divides over } A \},$$

where $x_F = x_{i_0}, \ldots, x_{i_k}$ if $F = \{ i_0 < \cdots < i_k \}$. Clearly Γ is realized by $I = \{ a_i : i \in \omega \}$.

Moreover, since each a_i realizes p, any infinite subsequence of I realizes Γ. In other words, Γ has the subsequence property. So there is an A-indiscernible sequence $J = \{ b_i : i \in \omega \}$ realizing Γ. It is clear that $\text{tp}(J \setminus \{ b_0 \}/Ab_0)$ does not divide over A. \hfill \Box

Lemma 7. Suppose that $\varphi(x, a)$ divides over A. Let $p(x) = \text{tp}(a/A)$ and choose an A-indiscernible sequence $J = \{ b_i : i \in \omega \}$ in p having the property described in Lemma 6. Then $\{ \varphi(x, b_i) : i \in \omega \}$ is inconsistent.

Proof. Choose k such that $\varphi(x, a)$ k-divides over A, and choose an A-indiscernible sequence $I = \{ a_i : i \in \omega \}$ such that $\{ \varphi(x, a_i) : i \in \omega \}$ is k-inconsistent. By moving J by an A-automorphism, we may assume that $b_0 = a_0$. Since $\text{tp}(J \setminus \{ b_0 \}/b_0)$ does not divide, there is $\{ b'_i : i > 0 \}$ (a copy of $J \setminus \{ b_0 \}$ over Ab_0) such that

$$a_i(b'_i : i > 0) \equiv_A a_j(b'_j : i > 0) \equiv_A J$$

holds for any i, j. Moreover, by Ramsey's theorem, we can assume that J is indiscernible over $A\{ b'_i : i > 0 \}$.

Claim A. \(\Phi(x) = \{ \varphi(x, b_i) : i \in \omega \} \) is \(k \)-inconsistent.

Suppose otherwise and let \(\alpha = D(\Phi(x), \varphi(x, y), k) \). Since \(J \) is an indiscernible sequence, we have \(J \equiv_A J \smallsetminus \{ b_0 \} \equiv_A \{ b'_i : i > 0 \} \). So we have

\[
\alpha = D(\{ \varphi(x, b_i) : i > 0 \}, \varphi(x, y), k).
\]

However, \(\varphi(x, a_0) \) divides over \(A \{ b'_i : i > 0 \} \), so we must have \(D(\{ \varphi(x, a_0) \} \cup \{ \varphi(x, b_i) : i > 0 \}, \varphi(x, y), k) < \alpha \). This is a contradiction. \(\square \)

Proposition 8. For \(i = 1, \ldots, m \), let \(\varphi_i(x, a) \) be a formula that divides over \(A \). Then

\[
\bigvee_{i=1,\ldots,m} \varphi_i(x, a) \text{ divides over } A.
\]

Proof. Choose \(J \) as in Lemma 7, then for each \(i \) there is \(k_i \) such that \(\{ \varphi_i(x, b) : b \in J \} \) is \(k_i \)-inconsistent. Let \(k = \max \{ k_1, \ldots, k_m \} \). Then \(\{ \varphi_i(x, b) : b \in J \} \) is \(mk \)-inconsistent. Hence \(\bigvee_{i=1,\ldots,m} \varphi_i(x, a) \) divides over \(A \). \(\square \)

Lemma 9. Suppose that \(p(x) \in S(A) \) does not divide (fork) over \(A_0 \subset A \). For any \(B \supset A \), there is \(a \models p \) such that \(\text{tp}(a/B) \) does not divide over \(A_0 \).

Proof. Let \(\Psi(x) \) be the following set of \(L(B) \)-formulas:

\[
p(x) \cup \{ \neg \varphi(x) \in L(B) : \varphi(x) \text{ divides over } A_0 \}.
\]

\(\Psi(x) \) is consistent, since otherwise we would have that \(p(x) \) forks over \(A_0 \). Let \(a \models \Psi(x) \). Then it follows that \(\text{tp}(a/B) \) does not divide over \(A_0 \). \(\square \)

Proposition 10 (Symmetry). \(\text{tp}(a/Ab) \) does not divide over \(A \) \(\Rightarrow \) \(\text{tp}(b/Aa) \) does not divide over \(A \).

Proof. First we inductively choose \(a_i \)'s such that

- \(a_i \models \text{tp}(a/Ab) \);
- \(\text{tp}(a_i/A \cup \{ a_j : j < i \}) \) does not divide over \(A \).

This process can be done by an iterative use of Lemma 9. As in the proof of Lemma 7, by compactness, we can assume that \(I = \{ a_i : i \in \omega \} \) is an \(A \)-indiscernible sequence satisfying the conditions

1. \(\text{tp}(\{ a_i : i > 0 \}/Aa_0) \) does not divide over \(A \) (\(i \in \omega \));
2. By letting \(q_a(x) = \text{tp}(b/Aa) \), \(b \) is a common solution of \(q_{a_i}(x) \) (\(i \in \omega \)).

Thus \(q_a(x) \) does not divide over \(A \), by Lemma 7. \(\square \)
References

