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1 Introduction and Preliminaries
Let $T$ be a simple complete theory. Then the two notions forking and dividing are
equivalent. (See [1].) The usual proof of this fact needs Erd\"os-Rado theorem, a basic
result in combinatorial set theory. Erd\"os-Rado theorem is a theorem on uncountable
cardinals, extending Ramsey’s theorem. So it is somewhat strange to use such a theorem
for proving the fact when the language is countable. In this article, we present a new
proof that will only use compactness and a Ramsey-type argument.

We explain the notations in this article and recall some basic definitions. $L$ is a
language and $T$ is a complete theory formulated in $L$ . Although the countability of $L$ is
not necessary, we assume that $L$ is countable for simplicity. We fix a big saturated model
$\mathcal{M}$ of $T$ and we work in $\mathcal{M}$ . Small subsets of $\mathcal{M}$ are denoted by $A,$ $B,$

$\ldots$ . Finite tuples
in $\mathcal{M}$ are denoted by $a,$ $b,$

$\ldots$ . Variables are $x,$ $y,$ $\ldots$ . Formulas are denoted by $\varphi,$
$\psi,$

$\ldots$ . If
all the free variables of $\varphi$ are contained in $x,$ $\varphi$ is sometimes written as $\varphi(x)$ . For a set
$A,$ $L(A)$ is the language $L$ augmented by the names (constants) for $a\in A$ . For simplicity
of the notation, we write $\varphi\in L(A)$ , if $\varphi$ is a formula in $L(A)$ . In general, a formula
$\varphi\in L(A)$ has the form $\psi(x, a)$ , where $\psi(x, y)$ is an $L$-formula with $xy$ free and $a$ is the
list of parameters (from $A$ ) appearing in $\varphi.$ $a$ will be called the parameters of $\varphi.$

A sequence $\{a_{i} : i\in\omega\}$ is called an indiscernible sequence over $A$ , if for any strictly
increasing $f$ : $\omegaarrow\omega$ , there is an automorphism $\sigma$ of $\mathcal{M}$ that extends the mapping
$id_{A}\cup\{\langle a_{i}, a_{f(i)}\rangle\}_{i\in\omega}$ . We say that $\{a_{i} : i\in\omega\}$ starts with $a$ , if $a_{0}=a.$

Definition 1. $A$ formula $\varphi(x, a)$ divides over $A$ if there is an indiscernible sequence
$\{a_{i}:i\in\omega\}$ starting with $a$ such that $\{\varphi(x, a_{i}):i\in\omega\}$ is inconsistent.

A set $\Phi$ of formulas is said to be $k$-inconsistent, if every subset $\Psi_{0}\subset\Phi$ of size $k$ is
inconsistent. If $\varphi(x, a)$ divides over $A$ , by the indiscernibility of $\{a_{i} : i\in\omega\}$ , there is
some $k\in\omega$ such that $\{\varphi(x, a_{i}) : i\in\omega\}$ is $k$-inconsistent. In this case we say that $\varphi(x, a)$

$k$-divides over $A.$

Definition 2. $A$ formula $\varphi(x, a)$ forks over $A$ if it is covered by a finite number of dividing
formulas, more precisely, if there is a finite number of formulas $\psi_{i}(x, b_{i})(i=1, \ldots, n)$ with
the following properties:
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1. $\mathcal{M}\models\forall x[\varphi(x, a)arrow _{i=1,\ldots,n}\psi_{i}(x, b_{i})]$ ;

2. Each $\psi_{i}(x, b_{i})$ divides over $A.$

$T$ is called simple if there is a bound for the length of a dividing sequence of complete
types. The simplicity of $T$ is equivalent to the finiteness of the rank defined below:

Definition 3. Let $\Sigma(x)$ be a set of formulae with parameters (with $x$ free). Let $\Phi(x, y)$

be a finite set of $L$-formulas and let $k\in\omega$ . The rank $D(\Sigma(x), \Phi(x, y), k)$ is defined by:

1. $D(\Sigma(x), \Phi(x, y), k)\geq 0$ if $\Sigma(x)$ is consistent;

2. $D(\Sigma(x), \Phi(x, y), k)$ $\geq$ $\alpha+1$ if there is $a$ and $\varphi$
$\in$ $\Phi$ such that $D(\Sigma(x)\cup$

$\{\varphi(x, a)\},$ $\Phi(x, y),$ $k)\geq\alpha$ and such that $\varphi(x, a)$ $k$-divides over the parameter set of $\Sigma$ ;

3. $D(\Sigma(x), \Phi(x, y), k)\geq\delta($alimitordinal) if $D(\Sigma(x), \Phi(x, y), k)\geq\alpha forany\alpha<\delta.$

In the same manner,

2 Simple theories
In what follows, $T$ is a simple complete theory. Let us begin with the following lemma.
A proof here is essentially the same as the one presented in Ziegler’s book [3].

Lemma 4. Let $\varphi(x)\in L(A)$ . Then $\varphi(x)$ does not fork over $A.$

Proof. For simplicity we assume $A=\emptyset$ . Suppose otherwise and choose $\psi_{i}(x, b)(i=$

$1,$
$\ldots,$

$n)$ and $k\in\omega$ such that

1. each $\psi_{i}(x, b)$ $k$-divides over $\emptyset$ ;

2. $\forall x(\varphi(x)arrow _{i=1,\ldots,n}\psi_{i}(x, b))$ holds.

Then we choose $n_{1},$
$\ldots,$

$n_{m}\leq n$ and $b_{1},$
$\ldots,$

$b_{m}$ (copies of b) such that

3. $\psi_{n_{i}}(x, b_{i})$ $k$-divides over $\{b_{j} : j<i\}$ , for each $i=1,$
$\ldots,$

$n$ ;

4. $\varphi(x)\wedge\bigwedge_{i=1,\ldots,m}\psi_{n_{i}}(x, b_{i})$ is consistent, and its $D(*, \{\psi_{i} : i=1, \ldots, n\}, k)$ -rank is mini-
mum among such.

By moving the $b_{i}’ s$ , we can assume that each $\psi_{n_{i}}(x, b_{i})$ $k$-divides over $\{b\}\cup\{b_{j} : j<i\}.$

By conditions 2 and 4, there is $n_{m+1}\leq n$ such that

$\varphi(x)\wedge\bigwedge_{i=1,\ldots,m}\psi_{n_{t}}(x, b_{i})\wedge\psi_{n_{m+1}}(x, b)$ is consistent.

Since $\psi_{n_{m+1}}(x, b)$ divides, by letting $b_{m+1}=b$ , we have

$D( \varphi(x)\wedge\bigwedge_{i=1,\ldots m},\psi_{n_{i}}(x, b_{i}), \Psi, k)>D(\varphi(x)\wedge\bigwedge_{i=1,\ldots,m+1}\psi_{n}.(x, b_{i}), \Psi, k)$

where $\Psi=\{\psi_{i} : i=1, \ldots, n\}$ . This contradicts our choice of $n_{i}(i\leq m)$ and $b_{i}(i\leq m)$

(condition 4). $\square$
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Remark 5. 1. Let $A\subset B$ and $p(x)\in S(A)$ . Then there is an extension $q(x)\in S(B)$

of $p(x)$ such that $q(x)$ does not divide over $A$ . This can be shown as follows: Let
$\Gamma(x)=p(x)\cup$ { $\neg\varphi(x)\in L(B)$ : $\varphi(x)$ does not divide over $A$ }. Then $\Gamma(x)$ is consistent,
since otherwise we would have $p(x)\vdash\varphi_{1}(x)\vee\cdots\vee\varphi_{n}(x)$ , for some $\varphi_{i}$ dividing over
$A$ . So $p(x)\in S(A)$ forks over $A$ , contradicting the above lemma. Choose $a\models\Gamma$ , and
let $q(x)=$ tp $(a/B)$ . Then, clearly $q(x)$ does not divide over $A.$

2. Suppose that tp$(a/Abc)$ does not divide over $A$ and that tp $(b/Ac)$ does not divide
over $A$ . Then tp $(ab/Ac)$ does not divide over $A$ : Let $\varphi(x, y, c)\in$ tp $(ab/Ac)$ . Let
$I=\{c_{i} : i\in\omega\}$ be an arbitrary indiscernible sequence with $c_{0}=c$ . Since tp $(b/Ac)$ does
not divide over $A$ , there is $b’$ (a copy of $b$ over $Ac$) such that $I$ is Ab’-indiscernible. For
an $A$-automorphism $\sigma$ : $b’\mapsto b,$ $\sigma(I)$ is an Ab-indiscernible sequence. Notice then that
$J=\{b\sigma(c_{i}):i\in\omega\}$ is an $A$-indiscernible sequence with $b\sigma(c_{0})=bc$ . Since tp $(a/Abc)$

does not divide over $A$ , there is $a’$ (a copy of $a$ over $A$ ) such that $a’ \models\bigwedge_{d\in J}\varphi(x, d)$ .
So $\sigma^{-1}(a’)\models\bigwedge_{i\in\omega}\varphi(x, b’, c_{i})$ . In particular, $\{\varphi(x, y, c_{i}) : i\in\omega\}$ is satisfiable,

Lemma 6. For each non-algebraic type $p(x)\in S(A)$ , there is an $A$ -indiscernible sequence
$J=\{b_{i} : i\in\omega\}$ in $p$ such that tp $(J\backslash \{b_{0}\}/Ab_{0})$ does not divide over $A.$

Proof. First we inductively choose $a_{i}$ ’s realizing $p$ such that, for each $i\in\omega,$

tp $(a_{i}/A_{i})$ does not divide over $A,$

where $A_{i}=A\cup\{a_{j}\}_{j<i}$ . Then, by an iterative use of Remark above, tp $(\{a_{j}\}_{j>0}/Aa_{0})$

does not divide over $A$ . Similarly we can show that tp $(\{a_{j}\}_{j>i}/Aa_{i})$ does not divide over
$A$ , for each $i.$

Now let $\Gamma(\{x_{i} : i\in\omega\})$ be the following set of $L(A)$ -formulas:

$\bigcup_{i\in\omega}p(x_{i})\bigcup_{i\in\omega},\bigcup_{F\subset\omega\backslash i}$ { $\neg\varphi(x_{F}, x_{i})$ : $\varphi(x_{F}, a_{0})$ divides over $A$ },

where $x_{F}=x_{i_{0}},$ $\ldots,$ $x_{i_{k}}$ if $F=\{i_{0}<\cdots<i_{k}\}$ . Clearly $\Gamma$ is realized by $I=\{a_{i} : i\in\omega\}.$

Moreover, since each $a_{i}$ realizes $p$ , any infinite subsequence of $I$ realizes F. In other words,
$\Gamma$ has the subsequence property. So there is an $A$-indiscernible sequence $J=\{b_{i}:i\in\omega\}$

realizing $\Gamma$ . It is clear that tp $(J\backslash \{b_{0}\}/Ab_{0})$ does not divide over A. $\square$

Lemma 7. Suppose that $\varphi(x, a)$ divides over A. Let $p(x)=$ tp$(a/A)$ and choose an A-
indiscernible sequence $J=\{b_{i} : i\in\omega\}$ in $p$ having the property described in Lemma 6.
Then $\{\varphi(x, b_{i}) : i\in\omega\}$ is inconsistent.

Proof. Choose $k$ such that $\varphi(x, a)$ $k$-divides over $A$ , and choose an $A$-indiscernible se-
quence $I=\{a_{i} : i\in\omega\}$ such that $\{\varphi(x, a_{i}) : i\in\omega\}$ is $k$-inconsistent. By moving $J$ by
an $A$-automorphism, we may assume that $b_{0}=a_{0}$ . Since tp $(J\backslash \{b_{0}\}/b_{0})$ does not divide,
there is $\{b_{i}’ : i>0\}$ (a copy of $J\backslash \{b_{0}\}$ over $Ab_{0}$ ) such that

$a_{i}\{b_{i}’ : i>0\}\equiv Aa_{j}\{b_{i}’ : i>0\}\equiv A]$

holds for any $i,$ $j$ . Moreover, by Ramsey’s theorem, we can assume that $I$ is indiscernible
over $A\{b_{i}’ : i>0\}.$
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Claim A. $\Phi(x)=\{\varphi(x, b_{i}):i\in\omega\}$ is $k$ -inconsistent.

Suppose otherwise and let $\alpha=D(\Phi(x), \varphi(x, y), k)$ . Since $J$ is an indiscernible se-
quence, we have $J\equiv AJ\backslash \{b_{0}\}\equiv A\{b_{i}’:i>0\}$ . So we have

$\alpha=D(\{\varphi(x, b_{i}) : i>0\}, \varphi(x, y), k)$ .

However, $\varphi(x, a_{0})$ divides over $A\{b_{i}’ : i>0\}$ , so we must have $D(\{\varphi(x, a_{0})\}\cup\{\varphi(x, b_{i})$ :
$i>0\},$ $\varphi(x, y),$ $k)<\alpha$ . This is a contradiction. $\square$

Proposition 8. For $i=1,$ $\ldots,$
$m$ , let $\varphi_{i}(x, a)$ be a formula that divides over A. Then

$_{i=1,\ldots,m}\varphi_{i}(x, a)$ divides over $A.$

Proof. Choose $J$ as in Lemma 7, then for each $i$ there is $k_{i}$ such that $\{\varphi_{i}(x, b) : b\in J\}$

is $k_{i}$-inconsistent. Let $k= \max\{k_{1}, \ldots, k_{m}\}$ . Then $\{_{i=1,\ldots,m}\varphi_{i}(x, b) : b\in J\}$ is mk-
inconsistent. Hence $_{i=1,\ldots,m}\varphi_{i}(x, a)$ divides over A. $\square$

Lemma 9. Suppose that $p(x)\in S(A)$ does not divide (fork) over $A_{0}\subset A.$ For any
$B\supset A$ , there is $a\models p$ such that tp $(a/B)$ does not divide over $A_{0}.$

Proof. Let $\Psi(x)$ be the following set of $L(B)$ -formulas:

$p(x)\cup$ { $\neg\varphi(x)\in L(B)$ : $\varphi(x)$ divides over $A_{0}$ }.

$\Psi(x)$ is consistent, since otherwise we would have that $p(x)$ forks over $A_{0}$ . Let $a\models\Psi(x)$ .
Then it follows that tp $(a/B)$ does not divide over $A_{0}.$ $\square$

Proposition 10 (Symmetry). tp $(a/Ab)$ does not divide over $A\Rightarrow$ tp $(b/Aa)$ does not
divide over $A.$

Proof. First we inductively choose $a_{i}$ ’s such that

$\bullet a_{i}\models tp(a/Ab)$ ;

$\bullet$ tp $(a_{i}/A\cup\{a_{j} : j<i\})$ does not divide over $A.$

This process can be done by an iterative use of Lemma 9. As in the proof of Lemma
7, by compactness, we can assume that $I=\{a_{i} : i\in\omega\}$ is an $A$-indiscernible sequence
satisfying the conditions

1. tp$(\{a_{i}:i>0\}/Aa_{0})$ does not divide over $A(i\in\omega)$ ;

2. By letting $q_{a}(x)=$ tp $(b/Aa),$ $b$ is a common solution of $q_{a_{i}}(x)(i\in\omega)$ .

Thus $q_{a}(x)$ does not divide over $A$ , by Lemma 7. $\square$
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