A proof of the existence of indiscernible trees without Erdos-Rado theorem (Model theoretic aspects of the notion of independence and dimension)

Kobayashi, Munhehiro

数理解析研究所講究録 (2014), 1888: 9-16

2014-04

http://hdl.handle.net/2433/195748

Departmental Bulletin Paper

Kyoto University
A proof of the existence of indiscernible trees without Erdős-Rado theorem

Munhehiro Kobayashi
Institute of Mathematics
The University of Tsukuba

Our interest in this paper is to see the similarity between Erdős-Rado theorem and compactness argument using Ramsey theorem in model theory. Erdős-Rado theorem is a theorem in infinitary combinatorics that generalizes Ramsey theorem to handle uncountable situations. In model theory, compactness arguments are available, so arguments tend to be settled in countable situation.

We give a proof without Erdős-Rado theorem to the next theorem.

Theorem 3.1.16. Let B be a set of parameters, and $\Gamma(x_{\omega}^{<\omega})$ be a set of \mathcal{L}_{B}-formulas. If $\Gamma(x_{\omega}^{<\omega})$ has \mathcal{L}_{S}-subtree property, then Γ is realized by an \mathcal{L}_{S}-indiscernible tree over B.

This theorem is proved with Erdős-Rado theorem in [2] and [3], while we use compactness arguments and Ramsey theorem.

Byunghan Kim, Hyeung-Joon Kim, and Lynn Scow recently revised their preprint[4], and it contains essentially the same argument of this paper. We have constructed the content independently.

We work in a complete theory T in a language \mathcal{L} throughout this paper. Let M be a big model of T. We write $\langle n_{1}\ldots n_{k}\rangle$ to refer the element of $\omega^{<\omega}$ of length k whose i-th value is n_{i}. For $\eta_{1}, \eta_{2} \in \omega^{<\omega}$, we write $\eta_{1}\eta_{2}$ to refer the concatenation of η_{1} and η_{2}. For a set S and an indexed set $(a_{s})_{s\in S}$, we write a_{S} to denote $(a_{s})_{s\in S}$.

1 Theorems in infinitary combinatorics

1.1 Ramsey’s theorem and Erdős-Rado theorem

Infinite Ramsey’s theorem and Erdős-Rado theorem are theorems in infinitary combinatorics. Erdős-Rado theorem is a generalization of Ramsey’s theorem to uncountable situations.

Definition 1.1.1. For cardinals α, β, γ and for $n < \omega$, we write

$$\alpha \rightarrow (\beta)^{\gamma}_{n}$$

whenever $|X| = \alpha$ and $f : [X]^{n} \rightarrow \gamma$, there exists $Y \subset X$ with $|Y| = \beta$ such that $f([Y]^{n})$ is a singleton.

Theorem 1.1.2 (Infinite Ramsey’s Theorem). For all $k, n \in \omega$,

$$\aleph_{0} \rightarrow (\aleph_{0})^{k}_{n}.$$
Theorem 1.1.3 (Erdős-Rado Theorem). For all $n \in \omega$ and infinite cardinal κ,
$$\exp_n(\kappa)^+ \rightarrow (\kappa^+)^{n+1}_\kappa,$$
where $\exp_n(\kappa)$ is inductively defined by $\exp_0(\kappa) = \kappa$, $\exp_{n+1}(\kappa) = 2^{\exp_n(\kappa)}$.

2 Indiscernible structures

We introduce indiscernible sequences and L_S/L_1-indiscernible trees. We also define subsequence property and L_S/L_1-subtree property, which later we prove that they induces the existence of indiscernible structures.

2.1 Indiscernible sequences

Definition 2.1.4 (Indiscernible sequences). Let $L_o = \{<\}$ and L_o-structure I be a totally ordered set, and let $B \subset M$. For $a_I \subset M$, we say a_I is an indiscernible sequence over B if for all $I_0, I_1 \subset I$ such that $I_0 \upmodels I_1$, it holds that $\text{tp}(a_{I_0}/B) = \text{tp}(a_{I_1}/B)$.

Be careful the index set I is not a subset of the big model M and the I-indexed set a_I is a subset of M.

Subsequence property was introduced by Tsuboi in his lecture note in 1999.

Definition 2.1.5 (Subsequence property). Let $L_o = \{<\}$ and L_o-structure I be a totally ordered set. For a set of formulae $\Gamma(x_I)$, we say Γ has subsequence property if
$$\bigcup \{ \Gamma(x_{\sigma(I)}) \mid \sigma : I \rightarrow I \text{ is an } L_o\text{-embedding} \}$$
is consistent.

Example 2.1.6. Let $\Gamma(x_\omega)$ be the set of formulas expressing "x_ω is an indiscernible sequence." Then, Γ has subsequence property. Γ can be concretely written as
$$\left\{ \varphi(x_I) \leftrightarrow \varphi(x_J) \mid \varphi \in L, \ I, J \subset \omega, \ I \upmodels J \right\}.$$

Example 2.1.7. Let $\Gamma(x_\omega, y_\omega)$ be the set of formulas expressing "$(x_i, y_i)_{i \in \omega}$ witnesses the order property of $\varphi(x, y)$." Then, Γ has the subsequence property.

Γ can be concretely written as
$$\{ \varphi(x_i, y_j) \mid i < j < \omega \} \cup \{ \neg \varphi(x_j, y_i) \mid j \leq i < \omega \}.$$

The following lemma guarantees the existence of indiscernible sequences.

Lemma 2.1.8 (Tsuboi 1999). Let B be a set of parameters, and $\Gamma(x_\omega)$ be a set of L_B-formulas. If $\Gamma(x_\omega)$ has subsequence property, then Γ is realized by an indiscernible sequence over B.

Proof. We show $\Gamma(x_\omega) \cup \text{"}x_\omega\text{" is an indiscernible sequence over } B$" is consistent, where
$$\text{"}x_\omega\text{" is an indiscernible sequence over } B =$$
$$\left\{ \varphi(x_I) \leftrightarrow \varphi(x_J) \mid \varphi \in L_B, \ I, J \subset \omega, \ I \upmodels J \right\}.$$
We use compactness argument. We fix \mathcal{L}_B-formulas $\varphi_1, \ldots, \varphi_m$ each of which has n free variables from x_I. It is sufficient to show

$$\tilde{\Gamma} = \Gamma \cup \left\{ \varphi_k(x_{I_0}) \leftrightarrow \varphi_k(x_{I_0}) \right\} \quad \left| k = 1, \ldots, m, \ I_0, I_1 \in \omega, \ I_0 _{\text{elem}} \supseteq I_1 \right.$$

is consistent. We fix a realization $A \models \Gamma$, and we define $F : A^n \rightarrow 2^n$ by

$$F(\bar{a}) = \sum_{k=1}^{n} i_k 2^k,$$

where

$$\begin{cases} i_k = 0 & \text{if } \neg \varphi_k(\bar{a}) \text{ holds} \\ i_k = 1 & \text{if } \varphi_k(\bar{a}) \text{ holds.} \end{cases}$$

for $\bar{a} \in A^n$

By Ramsey’s theorem, there is an infinite $A' \subset A$ such that $F|_{A'^n}$ is constant. This A' is a witness of $\tilde{\Gamma}$, for φ_k have the same truth value on A'^n, and $A' \models \Gamma$ by subsequence property. \hfill \square

2.2 Indiscernible trees

Definition 2.2.9. Let $\mathcal{L}_1 = \{ \cap, <\text{len}, <\text{lex}, <\text{ini} \}$, and let $\mathcal{L}_S = \mathcal{L}_1 \cup \{ P_n \mid n \in \omega \}$.

Here, we use the notation \mathcal{L}_S instead of the original notation \mathcal{L}_0 in [2].

Definition 2.2.10. Let the interpretation of \mathcal{L}_1 and \mathcal{L}_S in $\omega^{<\omega}$ as follows:

- $\eta \cap \nu$ is the longest common initial segment of η and ν.
- $\eta <\text{len} \nu \iff \eta$ has the less length than ν.
- $\eta <\text{lex} \nu \iff \eta$ is less than ν in the lexicographic order.
- $\eta <\text{ini} \nu \iff \eta$ is a proper initial segment of ν.
- $P_n(\eta) \iff \eta$ has the length of n.

We refer \mathcal{L}_S or \mathcal{L}_1-substructures of $\omega^{<\omega}$ by the word ‘trees’.

Definition 2.2.11 (Indiscernible trees). Let $B \subset M$.

1. Let S be an \mathcal{L}_S-substructure of $\omega^{<\omega}$. For $a_S \subset M$, we say a_S is an \mathcal{L}_S-indiscernible tree over B if for all $S_0, S_1 \subset S$ such that $S_0 \equiv S_1$, it holds that $\text{tp}(a_{S_0}/B) = \text{tp}(a_{S_1}/B)$.

2. Let S be an \mathcal{L}_1-substructure of $\omega^{<\omega}$. For $a_S \subset M$, we say a_S is an \mathcal{L}_1-indiscernible tree over B if for all $S_0, S_1 \subset S$ such that $S_0 \equiv S_1$, it holds that $\text{tp}(a_{S_0}/B) = \text{tp}(a_{S_1}/B)$.

Be careful the index set S is not a subset of the big model M and the S-indexed set a_S is a subset of M.

Example 2.2.12. For $\eta, \nu \in \omega^{<\omega}$, we say η is an ancestor or a descendant of ν if either of the nodes is a proper initial segment of the other, and we say η and ν are siblings if η and ν has the same length n and the length of $\eta \cap \nu$ is $n - 1$.

Let T be the theory of random graph in the language $\{ R(*, *) \}$. For distinct vertices $a_\omega^{<\omega}$ in the big model that satisfies for all $\eta, \nu \in \omega^{<\omega}$

$$\models R(a_\eta, a_\nu) \iff \text{"\eta is an ancestor or a descendant of } \nu\text{"}$$
form an L_S and L_1-indiscernible tree.

Let $b_{\omega^{<\omega}}$ be the tree-indexed subset such that for all $\eta, \nu \in \omega^{<\omega}$,

$$\models R(a_\eta, a_\nu) \iff \text{"\eta is an ancestor or a descendant of \nu" or "\eta and \nu are siblings."}$$

Then, b_ω is an L_S-indiscernible tree but not an L_1-indiscernible tree. In fact,

$$\{ \emptyset, (0), (1) \} \subsetneq \{ \emptyset, (00), (10) \} \text{ but } \models R(b_{\langle 1 \rangle}, b_{\langle 1 \rangle}) \wedge \neg R(b_{\langle 0 \rangle}, b_{\langle 1 \rangle}).$$

Definition 2.2.13 (Subtree property [2], [3]). Let $B \subset M$.

1) Let S be an L_S-substructure of $\omega^{<\omega}$. For a set of L_B-formulas $\Gamma(x_S)$, we say Γ has L_S-subtree property if

$$\bigcup \{ \Gamma(x_{\sigma(S)}) \mid \sigma : I \rightarrow I \text{ is an } L_S\text{-embedding} \}$$

is consistent.

2) Let S be an L_1-substructure of $\omega^{<\omega}$. For a set of L_B-formulas $\Gamma(x_S)$, we say Γ has L_S-subtree property if

$$\bigcup \{ \Gamma(x_{\sigma(S)}) \mid \sigma : I \rightarrow I \text{ is an } L_1\text{-embedding} \}$$

is consistent.

Example 2.2.14. $\Gamma(x_{\omega^{<\omega}}) = \{ x_{\omega^{<\omega}} \text{ witnesses the k-tree property of } \varphi(x, y) \} \text{ has the } L_S\text{-subtree property (if } \Gamma \text{ is consistent).}$

Γ can be concretely written as

$$\Gamma(y_\omega \times \omega) = \bigcup_{i \in \omega} \{ \exists x \left(\bigwedge_{j=0}^{k} \varphi(x, y_{\langle j \rangle}) \right) \mid j_0, \ldots, j_{k-1} \in \omega \} \cup \bigcup_{\nu \in \omega^\omega} \{ \exists x \left(\bigwedge_{i \in \omega} \varphi(x, y_{\nu|_i}) \right) \mid n \in \omega \}.$$

3 Existence of indiscernible trees

In this section, we prove that subtree property implies the existence of an indiscernible tree without Erdös-Rado theorem.

The existence of L_S-indiscernible trees is proved with the following theorem in [2], [3].

Theorem (Shelah, Theorem 2.6 of [5, p.662]). For all $k, n \in \omega$ and ordinal μ, there exists an ordinal λ such that for any $f : (\lambda^{<\omega})^k \rightarrow \mu$, there is an L_S-substructure $S \subset \lambda^{<\omega}$ with $S \simeq \omega^{<\omega}$ satisfying $f(X) = f(Y)$ for all $X, Y \in S^k$ with $X \simeq \omega^{<\omega}$. S

This is a variation of Erdös-Rado theorem regarding trees. We want to show the existence of indiscernible trees without this theorem.

3.1 L_S-indiscernible trees

Proposition 3.1.15 ([3]). Let B be a set of parameters, and $\Gamma(x_{\omega^{<\omega}})$ be a set of L_B-formulas for $n \in \omega$. If $\Gamma(x_{\omega^{<\omega}})$ has the L_S-subtree property, then Γ is realized by an L_S-indiscernible tree over B.

Proof. We show $\Gamma(x_{\omega<n}) \cup \{x_{\omega<n}\}$ is an \mathcal{L}_S-indiscernible tree over B^ω is consistent, where

$$\{x_{\omega<n}\}$$

is an \mathcal{L}_S-indiscernible tree over B^ω.

$$\{ \varphi(x_S) \leftrightarrow \varphi(x_T) \mid \varphi \in \mathcal{L}_B, S, T \subset \omega^{<n}, S \simeq_T \}.$$ We show this by induction on n. The case $n = 1$ is clear because $\omega^{<1} = \{\emptyset\}$.

Suppose the n case holds. We write $k\omega^{<n}$ to denote the set $\{\sigma \in \omega^{<n+1} \mid \sigma(0) = k\}$ and X_k to denote the set of variables $x_k\omega^{<n}$.

Claim A. $\Gamma(x_{\omega<n+1}) \cup \bigcup_{k \in \omega} \Sigma_k(x_{\omega<n+1})$ is consistent, where

$$\Sigma_k = \"X_k is an \mathcal{L}_S-indiscernible tree over $Bx_0 X_1 \ldots X_{k-1} X_{k+1} \ldots\"$$

$$= \left\{ \varphi(x_S) \leftrightarrow \varphi(x_T) \mid \varphi \in L(Bx_0 X_1 \ldots X_{k-1} X_{k+1} \ldots), S, T \subset k\omega^{<n}, S \simeq_T \right\}.$$ Proof of Claim A. Let $a_{\omega^{<n+1}} = a_0 A_1 A_2 \ldots \models \Gamma$, where $A_k = a_k\omega^{<n}$. First, observe that for any tree S with $S \simeq_{\mathcal{L}_S} \omega^{<n}$, the tree $0 0 S \Gamma \omega^{<n}$ becomes an \mathcal{L}_S-subtree that is isomorphic to the whole $\omega^{<n+1}$. Therefore $\Gamma(a_0 X_0 A_1 A_2 \ldots)$ has \mathcal{L}_S-subtree property over $a_0 A_1 A_2 \ldots$ by the \mathcal{L}_S-subtree property of $\Gamma(x_{\omega<n})$. By induction hypothesis, $\Gamma(a_0 X_0 A_1 \ldots)$ is realized by A'_0, which is an \mathcal{L}_S-indiscernible tree over $a_0 A_1 A_2 \ldots$, $i.e.$ $\Gamma \cup \Sigma_0$ is consistent.

Similarly, $(\Gamma \cup \Sigma_0)(a_0 A'_0 X_1 A_2 \ldots)$ has subtree property over $a_0 A'_0 A_2 \ldots$. Again by induction hypothesis $((\Gamma \cup \Sigma_0)(a_0 A'_0 X_1 A_2 \ldots))$ is realized by A'_1, an \mathcal{L}_S-indiscernible tree over $a_0 A'_0 A_2 \ldots$. Notice A'_0 is still an \mathcal{L}_S-indiscernible tree over $a_0 A'_1 A_2 \ldots$, since especially $\Sigma_0(a_0 A'_0 A_1 A_2 \ldots)$ holds. Hence, $\Gamma \cup \Sigma_0 \cup \Sigma_1$ is consistent.

Iterating this procedure m times, $\Gamma(x_{\omega<n+1}) \cup \bigcup_{k=0}^{m-1} \Sigma_k(x_{\omega<n+1})$ is consistent. By compactness, we have shown the claim. end of the proof of Claim A

Let $\Gamma'(x_{\omega<n+1}) = \Gamma(x_{\omega<n+1}) \cup \bigcup_{k \in \omega} \Sigma_k(x_{\omega<n+1})$.

Claim B. $\Gamma'(x_{\omega<n+1}) \cup \{x_0 X_1 \ldots \text{is an indiscernible sequence over Bx_0^ω}\}$ is consistent, where

$$\Gamma'(x_{\omega<n+1}) \cup \{x_0 X_1 \ldots \text{is an indiscernible sequence over Bx_0^ω}\}$$

$$= \{ \varphi(x_{i_0}, \ldots, X_{i_m}) \leftrightarrow \varphi(x_{j_0}, \ldots, X_{j_m}) \mid \varphi \in L(Bx_0^\omega), i_0 < \cdots < i_m, j_0 < \cdots < j_m \}.$$ Proof of Claim B. First, observe that for any subsequence $(i_k \omega^{<n})_{k \in \omega}$, the tree $x_0 i_0 \omega^{<n} i_1 \omega^{<n} i_2 \omega^{<n} \ldots$ is \mathcal{L}_S-isomorphic to the whole $x_{\omega^{<n}}$. Since $\Gamma'(x_{\omega^{<n+1}})$ has subtree property over B, $\Gamma'(x_0 X_0 X_1 \ldots)$ has subtree property over Bx_0. Therefore, there is a realization $a_{\omega^{<n+1}} = a_0 A_1 A_2 \ldots$ of Γ', where $A_k = a_k\omega^{<n}$, such that $A_0 A_1 \ldots$ is an indiscernible sequence over Bx_0. This can be shown by an argument similar to the proof of Lemma 2.1.8. end of the proof of Claim B

Let $\Gamma''(x_{\omega<n+1}) = \Gamma'(x_{\omega<n+1}) \cup \{x_0 X_1 \ldots \text{is an indiscernible sequence over Bx_0^ω}\}$.

Claim C. A realization of $\Gamma''(x_{\omega<n+1})$ is an \mathcal{L}_S-indiscernible tree realizing Γ.
Proof of Claim C. Let \(\varphi \in \mathcal{L}_B \), \(S, T \subset \omega^{<n+1} \) such that \(S \simeq T \), and \(\theta \equiv \varphi(x_S) \leftrightarrow \varphi(x_T) \). We show \(\Gamma'' \vdash \theta \). \(S, T \) have the form of

\[
S = \bigcup_{k=1}^{m} S_{i_k}, \quad S_{i_k} = \{ \nu \in S \mid \nu(0) = i_k \}, \quad i_0 < \cdots < i_m, \\
T = \bigcup_{k=1}^{m} T_{j_k}, \quad T_{j_k} = \{ \nu \in T \mid \nu(0) = j_k \}, \quad j_0 < \cdots < j_m.
\]

Let \(\sigma : \bigcup_{k=1}^{m} i_k \omega^{<n} \to \bigcup_{k=1}^{m} j_k \omega^{<n} \) be the natural isomorphism. Since \(\Gamma''(x_{\omega^{<n+1}}) \supset \text{"}X_0X_1\ldots\text{"} \) is an indiscernible sequence over \(Bx_\emptyset \),

\[
\Gamma''(x_{\omega^{<n+1}}) \vdash \varphi(x_\emptyset x_{S_{i_0}} \ldots x_{S_{i_m}}) \leftrightarrow \varphi(x_\emptyset x_{\sigma(S_{i_0})} \ldots x_{\sigma(S_{i_m})}).
\]

We have \(S \simeq T \) and so \(\sigma(S_{i_k}) \simeq T_{j_k} \) for each \(k = 1, \ldots, m \). Since \(\Gamma''(x_{\omega^{<n+1}}) \supset \text{"}X_k\text{"} \) is an \(\mathcal{L}_S \)-indiscernible tree over \(Bx_\emptyset X_0X_1\ldots X_{k-1}X_{k+1}\ldots \) for all \(k \in \omega \), it holds that

\[
\Gamma''(x_{\omega^{<n+1}}) \vdash \varphi(x_\emptyset x_{\sigma(S_{i_k})} \ldots x_{\sigma(S_{i_m})}) \leftrightarrow \varphi(x_\emptyset x_{T_{j_k}} \ldots x_{T_{j_m}}).
\]

Thus we have shown \(\Gamma''(x_{\omega^{<n+1}}) \vdash \theta \).

From the above argument, we have shown the \(n+1 \) case of proposition. \(\square \)

Theorem 3.1.16 ([3]). Let \(B \) be a set of parameters, and \(\Gamma(x_{\omega^\omega}) \) be a set of \(\mathcal{L}_B \)-formulas. If \(\Gamma(x_{\omega^\omega}) \) has the \(\mathcal{L}_S \)-subtree property, then \(\Gamma \) is realized by an \(\mathcal{L}_S \)-indiscernible tree over \(B \).

Proof. This is an immediate consequence from Proposition 3.1.15 and Compactness. \(\square \)

Example 3.1.17. \(\Gamma(x_{\omega^\omega}) = \text{"}x_{\omega^\omega}\text{"} \) witnesses the \(k \)-tree property of \(\varphi(x, y) \)" is realized by an \(\mathcal{L}_S \)-indiscernible tree (if \(\Gamma \) is consistent).

3.2 \(\mathcal{L}_1 \)-indiscernible trees

Definition 3.2.18 ([3]). Let \(X \) be a substructure of \(\omega^\omega \), i.e. \(X \) is closed under the binary function \(\cap \). We define \(\text{level}(X) \) by \(\text{level}(X) = \{ \text{dom}(\eta) \mid \eta \in X \} \).

Lemma 3.2.19 ([3]). Let \(n \in \omega \) and \(X, Y \) be \(n \)-element substructures of \(\omega^\omega \). \(X \simeq Y \) if and only if \(X \approx Y \) and \(\text{level}(X) = \text{level}(Y) \).

Proof. If we have \(X \simeq Y \), then \(X \approx Y \) and \(\text{level}(X) = \text{level}(Y) \) clearly holds.

Suppose \(X \simeq Y \) and \(\text{level}(X) = \text{level}(Y) \) holds. We put \(l = |\text{level}(X)| = |\text{level}(Y)| \) and fix the \(\mathcal{L}_1 \)-isomorphism \(\sigma : X \to Y \). Let \(\eta_i \in X \)\(\omega^x \) enumerates \(X \) and \(\nu_i = \sigma(\eta_i) \) for \(i < n \).

There are \(i_1, \ldots, i_l \) such that \(\eta_{i_1} <_{\text{fin}} \cdots <_{\text{fin}} \eta_{i_l} \) and so \(\nu_{i_1} <_{\text{fin}} \cdots <_{\text{fin}} \nu_{i_l} \). By the condition \(\text{level}(X) = \text{level}(Y) \), we have \(\text{dom}(\eta_{i_k}) = \text{dom}(\nu_{i_k}) \) for each \(1 \leq k \leq l \). Since \(\mathcal{L}_1 \)-isomorphisms do not change the relation of having the same length, we have \(\text{dom}(\eta) = \text{dom}(\sigma(\eta)) \) thus \(P_m(\eta) \leftrightarrow P_m(\sigma(\eta)) \) for all \(\eta \in X \) and \(m \in \omega \). Hence \(\sigma \) is the \(\mathcal{L}_S \)-isomorphism between \(X \) and \(Y \). \(\square \)

Theorem 3.2.20 ([3]). Let \(B \) be a set of parameters, and \(\Gamma(x_{\omega^\omega}) \) be a set of \(\mathcal{L}_B \)-formulas. If \(\Gamma(x_{\omega^\omega}) \) has the \(\mathcal{L}_1 \)-subtree property, then \(\Gamma \) is realized by an \(\mathcal{L}_1 \)-indiscernible tree over \(B \).
Proof. We show the set of L_B-formulas

$$\Gamma(x_{\omega^{<\omega}}) = \Gamma \cup \left\{ \varphi(x_{X_1}) \leftrightarrow \varphi(x_{X_2}) \mid \varphi \text{ is an } L_B\text{-formula, } \right. \\
\left. X_1, X_2 \text{ are finite subsets of } \omega^{<\omega} \text{ with } X_1 \simeq_{\xi_i} X_2 \right\}$$

is consistent.

Claim. For a finite substructure X of $\omega^{<\omega}$ and an L_B-formula $\varphi(x_X)$,

$$\Gamma_\varphi(x_{\omega^{<\omega}}) = \Gamma \cup \left\{ \varphi(x_{X_1}) \leftrightarrow \varphi(x_{X_2}) \mid X_1, X_2 \text{ are subsets of } \omega^{<\omega} \text{ with } X_1 \simeq_{\xi_i} X_2 \simeq_{\xi_1} X \right\}$$

is consistent.

Proof of Claim. We put $k = |\text{level}(X)|$. Γ has L_1-subtree property so L_S-subtree property. By Proposition 3.1.16, Γ has a realization $a_{\omega^{<\omega}}$ that is an L_S-indiscernible tree over B. We define the function $f: [\omega]^k \to \{0, 1\}$ by

$$f(\{n_1, \ldots, n_k\}) = \left\{ \begin{array}{ll} 1 & \text{if } \varphi(a_Y) \text{ holds for all } Y \simeq X \text{ with level}(Y) = \{n_1, \ldots, n_k\} \\
0 & \text{if } \neg\varphi(a_Y) \text{ holds for all } Y \simeq X \text{ with level}(Y) = \{n_1, \ldots, n_k\}. \end{array} \right.$$

This is well defined because $X \simeq Y$ and $\text{level}(X) = \text{level}(Y)$ imply $X \simeq Y$ and $a_{\omega^{<\omega}}$ is an L_S-indiscernible tree over B. By Ramsey’s theorem, there is an infinite $H \subset \omega$ such that f is constant on $[H]^k$. Let h_ω enumerate the elements of H in increasing order. For $\eta \in \omega^{<\omega}$ we define $\sigma_H: \omega^{<\omega} \to \omega^{<\omega}$ by $\text{dom}(\sigma_H(\eta)) = h_{\text{dom}(\eta)}$ and

$$\sigma_H(\eta)(n) = \left\{ \begin{array}{ll} 0 & \text{if } n \notin H \\
\eta(i) & \text{if } n = h_i \end{array} \right.$$

i.e. $\sigma_H(\eta) = \left(\begin{array}{c} 0 \ldots 0 \eta(0) 0 \ldots 0 \eta(1) 0 \ldots 0 \ldots \eta(d-1) 0 \ldots 0 \eta(d-1h_d-1^\check{h_d-1}0\ldots0) \end{array} \right)$, where $d = \text{dom}(\eta)$.

Observe that for $\eta, \mu, \nu \in \omega^{<\omega}$ if $\eta <_{\text{len}} \nu, \eta <_{\text{lex}} \nu, \eta <_{\text{lex}} \mu, \eta \cap \nu = \mu$ holds, then we have $\sigma_H(\eta) <_{\text{len}} \sigma_H(\nu), \sigma_H(\eta) <_{\text{lex}} \sigma_H(\nu), \sigma_H(\eta) \cap \sigma_H(\nu) = \sigma_H(\mu)$ respectively. Thus σ_H is an L_1-embedding.

By the L_1-indiscernibility of Γ, $(a_{\sigma_H(\eta)}(\eta) \in \omega^{<\omega})$ is also a realization of Γ, and by the choice of H, $(a_{\sigma_H(\eta)}(\eta) \in \omega^{<\omega})$ satisfies Γ. Hence Γ_φ is consistent. \hspace{1cm} \text{end of the proof of Claim}

Since for any L_B-formula φ and $X \subset \omega^{<\omega}$, Γ_φ in the above claim also has the L_1-subtree property, we can show the finite satisfiability of Γ using the claim iteratively. \hspace{1cm} \Box

Example 3.2.21. Let T be NTP$_2$ theory. If $\varphi(x, y)$ has the k-tree property, then there exists $k' \in \omega$ such that the set of formulas $\Gamma_{k'}(x_{\omega^{<\omega}}) = \{x_{\omega^{<\omega}} \text{ witnesses the } k'\text{-tree property of } \varphi(x, y)\}$ has the L_1-subtree property, hence $\Gamma_{k'}$ is realized by an L_1-indiscernible tree.

Here, we give a proof for this example.

Proof. Since the theory is NTP$_2$, there is $l \in \omega$ that satisfies the following condition: for all array of parameters $c_{i, \omega^{<\omega}}$, if $\{\varphi(x, c_{i, j}) \mid j \in \omega\}$ is k-inconsistent for all $i < l$, then there exists $\nu \in \omega'$ such that $\{\varphi(x, c_{i, \omega^{<\omega}}) \mid i < l\}$ is inconsistent. Let $k' = k \times l$, and for $N \in \omega$, let $\Gamma_N(y_{\omega^{<\omega}})$ be the set of formulas "$y_{\omega^{<\omega}}$ witnesses the N-tree property of $\varphi(x, y)$"
Claim. Γ_k' has the L_1-subtree property.

Proof of Claim. We confirm the consistency of $\bigcup \{ \Gamma_k'(x_{\sigma(I)}) \mid \sigma : I \rightarrow I \text{ is an } L_1 \text{-embedding} \}$. Since Γ_k has the L_8-subtree property, we can apply Theorem 3.1.16 to obtain an L_8-indiscernible tree $b_{\omega} < \omega$ which realizes Γ_k. Clearly, $b_{\omega} < \omega$ also realizes Γ_k'. We show $b_{\omega} < \omega$ is a realization of $\Gamma_k'(y_{\sigma(\omega_1 < \omega)})$ for all L_1-embedding σ. The condition $\{ \varphi(x, b_{\sigma(\nu_n)}) \mid n \in \omega \}$ is consistent for all $\nu \in \omega^\omega$ clearly holds because an L_1-embedding sends a path into a path and $b_{\omega} < \omega$ is a witness of the k-tree property of φ.

For the condition $\{ \varphi(x, b_{\sigma(\nu_1)}) \mid n \in \omega \}$ is k'-inconsistent for all $\eta \in \omega^{< \omega}$, since an L_1-embedding preserves the relation of having the same length, it suffices to show any subset $A \subset \omega^{< \omega}$ of k' elements that have the same length, $\{ \varphi(x, b_{\eta}) \mid \eta \in A \}$ is inconsistent. Let A be a subset of k' elements in $\omega^{< \omega}$ each of which element has the same length, then either the case happens:

(1) There is k-element subset $A_1 \subset A$ that belongs to the same sequence of siblings.
(2) There is l-element subset $A_2 \subset A$ whose parents are pairwise distinct.

In the case (1), $\{ \varphi(x, b_{\eta}) \mid \eta \in A_1 \}$ is inconsistent, since all elements in A_1 are contained in a particular sequence of siblings and $b_{\omega} < \omega$ is a witness of the k-tree property of φ.

In the case (2), we put $A_2 = \{ \eta_1, \ldots, \eta_l \}$ and let $\theta^i \subset \omega^{< \omega}$ be the sequence of siblings that contains η_i for $i = 1, \ldots, l$. Observe $\{ \varphi(x, b_{\mu}) \mid \mu \in \theta^i \}$ is k-inconsistent for each $i = 1, \ldots, l$. Because of the way we chose l, there is a path ν in the array $(b_{\theta^1}, \ldots, b_{\theta^l})$ such that $\{ \varphi(x, b_{\varphi(i)}) \mid i = 1, \ldots, l \}$ is inconsistent. By L_8-indiscernibility of $b_{\omega} < \omega$, it holds that $b_{\omega(1)}, \ldots, b_{\omega(l)} \equiv b_{\eta_1}, \ldots, b_{\eta_l}$, thus $\{ \varphi(x, b_{\eta_i}) \mid i = 1, \ldots, l \}$ is inconsistent. \[\text{end of the proof of Claim}\]

By the Theorem 3.2.20, we have Γ_k' is realized by an L_1-indiscernible tree. \[\square\]

References