<table>
<thead>
<tr>
<th>Title</th>
<th>Discrete Geometry on 3 Colored Point sets in the Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kano, Mikio</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1889: 65-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195754</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Source</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Discrete Geometry on 3 Colored Point sets in the Plane

Mikio Kano
Department of Computer and Information Sciences, Ibaraki University, Hitachi, Ibaraki, Japan
kano@mx.ibaraki.ac.jp http://gorogoro.cis.ibaraki.ac.jp

1 3 colored point sets in the plane

Let R, B and G denote disjoint sets of red points, blue points and green points in the plane, respectively. If no three points of $R \cup B \cup G$ are collinear, we say that R, B and G are in general position in the plane. We always assume that given sets of colored points are in general position.

We begin with the following well-known theorem on two colored point sets in the plane. Notice that a geometric graph is a graph drawn in the plane whose edges are straight line segments, and every edge of an alternating matching joins two points with distinct colors.

Theorem 1 ([3]). If $|R| = |B|$, then there exists an alternating non-crossing geometric perfect matching on $R \cup B$ (see Figure 1).

![Figure 1: An alternating non-crossing geometric perfect matching on $R \cup B$.](image)

We generalize the above theorem by considering 3 colored point sets. The standard proof of the following theorem is basically similar to that of the above Theorem 1, but more difficult.
Corollary 2 (Kano, Suzuki, Uno [4]). If $|R \cup B \cup G| = 2n$, $|R| \leq n$, $|B| \leq n$ and $|G| \leq n$, then there exists an alternating non-crossing geometric perfect matching on $R \cup B \cup G$.

\[\bullet \quad \bullet \quad \circ \]
\[\circ \quad \bullet \quad \bullet \]
\[\bullet \quad \circ \quad \mapsto \quad \circ \]

0 red points O blue points O green points

Figure 2: An alternating non-crossing geometric perfect matching on $R \cup B \cup G$.

It is known as the discrete version of Ham-Sandwich theorem that if $|R| = 2m$ and $|B| = 2n$, then there exists a bisector line l such that $|left(l) \cap R| = m$ and $|left(l) \cap B| = n$. It is easy to see that there exist configurations of 3 colored points in the plane such that there exists no line l such that a half-plane determined by l contains the same number of each colored points. Thus the condition in the next theorem is necessary. For a set X of points in the plane, we denote the convex hull of X by $\text{conv}(X)$.

Theorem 3 (Bereg and Kano [2]). Assume that $|R| = |B| = |G| = n$, where $n \geq 2$. If all the vertices of $\text{conv}(R \cup B \cup G)$ are red, then there exists a line l such that $|right(l) \cap R| = |right(l) \cap B| = |right(l) \cap G| = k$ for some integer $1 \leq k \leq n - 1$ (see Figure 3).

We give one more result on three colored point sets in the plane, and explain a sketch of its proof.

Theorem 4 (Berege and etc. [1]). Assume that n red points and n blue points and n green points lie on a circle in the plane. Then for every integer $1 \leq k \leq n - 1$, there exist two intervals I and J on the circle such that $I \cup J$ contains exactly k red points, k blue points and k green points (see Figure 4).

We give a sketch of its proof.

Lemma 5. Let $n \geq 2$ be an integer. Then every integer $1 \leq k \leq n - 1$ can be obtained from n by applying the following functions f and g some times.

\[f(x) = \lfloor x/2 \rfloor \quad \text{and} \quad g(x) = n - x \]
Figure 3: All the vertices of $\text{conv}(R \cup B \cup G)$ are red; An line l such that $\text{right}(l)$ contains exactly 3 red points, 3 blue points and 3 green points.

Figure 4: Two disjoint intervals I and J that contains exactly 3 red points, 3 blue points and 3 green points.
We show only one example, whose generalization gives us its proof. Suppose that \(n = 30 \) and \(k = 2 \). Then \(\lfloor n/2 \rfloor = 15 \). We construct the following series of intervals as follows: if an interval \([x, y]\) does not contain 15 and \(y < 15 \), then make an interval \([2x, 2y + 1]\). If \([x, y]\) does not contain 15 and \(15 < x \), then make an interval \([30 - y, 30 - x]\). If an interval \([x, y]\) contains 15, then stop. Then we can obtain \(k = 2 \) from \(\lfloor n/2 \rfloor = 15 \) by applying the operations \(f(x) \) and \(g(x) \) as follows.

\[
\begin{align*}
k &= 2 \rightarrow [4, 5] \rightarrow [8, 11] \rightarrow [16, 23] \rightarrow [7, 14] \rightarrow [14, 29] \ni 15 \\
2 &\leftarrow 5 \leftarrow 11 \leftarrow 23 \leftarrow 7 \leftarrow 15
\end{align*}
\]

The next lemma follows immediately from Lemma 5.

Lemma 6. Let \(n \geq 2 \) be an integer, and let \(X \) be a subset of \(\{0, 1, 2, \ldots, n\} \). Define two functions \(f \) and \(g \) as follows:

\[
f(x) = \lfloor x/2 \rfloor \quad \text{and} \quad g(x) = n - x
\]

If \(X \) has the following properties, then \(X = \{0, 1, 2, \ldots, n\} \).

\[
n \in X; \quad \text{and if} \quad k \in X, \quad \text{then} \quad g(k) \in X \quad \text{and} \quad f(k) \in X.
\]

Sketch of the proof of Theorem 4. Let us define

\[
X = \{1 \leq x \leq n : \text{there exist two intervals } I \text{ and } J \text{ on the circle such that } I \cup J \text{ contains exactly } x \text{ red points,}
\]

\[
x \text{ blue points and } x \text{ green points.}
\]

It is easy to see that \(n \in X \), and if \(k \in X \), then the complement \(I \cup J \) on the circle contains exactly \(n - k \) red points, \(n - k \) blue points and \(n - k \) green points, which implies \(g(k) = n - k \in X \). Moreover, we can show that if there exist intervals \(I \) and \(J \) on the circle such that \(I \cup J \) contains exactly \(k \) red points, \(k \) blue points and \(k \) green points, then there exist intervals \(I' \) and \(J' \) in \(I \cup J \) such that \(I' \cup J' \) contains exactly \(\lfloor k/2 \rfloor \) red points \(\lfloor k/2 \rfloor \) blue points and \(\lfloor k/2 \rfloor \) green points. Hence by Lemma 6, \(X = \{0, 1, 2, \ldots, n\} \), which implies that Theorem 4 holds.

References

