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1 Introduction
In experimental designs, $E$–optimal designs are defined as designs which min-

imize the maximum eigenvalue of the covariance matrix of the estimator. The
Tchebycheff systems sometimes play an important role in optimal designs.

We firstly give a brief introduction to E–optimal designs and Tchebycheff systems
as preliminaries. Then an approximate approach to $E$-optimal designs for weighted
polynomial regression is proposed.

2 $E$-optimal designs for linear regression and Tchebycheff
systems

2.1 Linear regression and its $E$-optimal designs

A weighted linear regression model is defined by

$Y=\theta^{T}f(x)+\epsilon(x)$

$=$ $(\theta_{0}$ $\theta_{1}$ . . . $\theta_{m-1})(\begin{array}{l}f_{0}(x)f_{l}(x)|f_{m-1}(x)\end{array})+\epsilon(x)$ ,

where $f(x)=(f_{0}(x), f_{1}(x), \ldots, f_{m-1}(x))^{T}$ is a vector of known linearly inde-
pendent continuous functions, $\theta=(\theta_{0}, \theta_{1}, \ldots, \theta_{m-1})$ is a vector of unknown pa-
rameters, and $\epsilon(x)$ denotes a random error term. We call the functions $f_{0}(x)$ ,
$f_{1}(x),$

$\ldots,$
$f_{m-1}(x)$ basis functions. Here we assume that the error term satisfies

$E[\epsilon(x)]=0, V[\epsilon(x)]=\frac{\sigma^{2}}{w(x)},$

where $\sigma^{2}$ is a positive constant and $w(x)\geq 0$ is called a weight function of regres-
sion.

Consider making $N$ observations at experimental conditions $x_{1},$ $x_{2},$ $\ldots,$
$x_{N}\in \mathcal{X}$

such as

$y_{i}=\theta^{T}f(x_{i})+\epsilon_{i}, i=1,2, \ldots, N$
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to estimate all unknown parameters $\theta_{0},$ $\theta_{1},$

$\ldots,$
$\theta_{m-1}$ . Here the design space $\mathcal{X}$

denotes the set of all possible points where observations can be made. Throughout
this paper, we assume that different errors are uncorrelated, namely,

$E[\epsilon_{i}]=0, V[\epsilon_{i}]=\frac{\sigma^{2}}{w(x_{i})}, E[x_{i}x_{j}]=0, i,j=1,2, \ldots, N, i\neq j$

even if they has the same experimental conditions $x_{i}=x_{j}$ . From Gauss-Markov’s
theorem, the best linear unbiased estimator $\hat{\theta}$ of the parameter vector $\theta$ is

$\hat{\theta}=(X^{T}WX)X^{T}Wy$ , (1)

where

$X=(f(x_{1}), f(x_{2}), \ldots, f(x_{N}))^{T}\in M_{N,m}(\mathbb{R})$ ,
$W=$ diag $(w(x_{1}), w(x_{2}), \ldots, w(x_{N}))\in M_{N}(\mathbb{R})$ ,
$y=(y_{1}, y_{2}, \ldots, y_{N})^{T}$

It is well known that the its covariance matrix is

Cov $[\hat{\theta}]=\sigma^{2}(X^{T}WX)^{-1}$ (2)

Note that the weighted least squares estimator of the parameter vector $\theta$ is also
given by (1).

The multiset $\{x_{1}, x_{2}, \ldots, x_{N}\}$ of the experimental conditions is called a design,
and it is considered as a probability measure $\mu$ such that

$\mu(\{x\})=\frac{\#\{i|x_{i}=x,i=1,2,\ldots,N\}}{N}.$

Hereinafter we consider designs as probability measures. Since accuracy of esti-
mators depend designs, it is important to choose a good design. There are various
criteria for good designs, and some of them minimize the covariance matrix of esti-
mators in some sense. In this paper, we consider $E$-optimal designs which minimize
the maximum eigenvalue of the covariance matrix. Using the Fisher information
matrix

$M_{f,w}( \mu)=\int_{\mathcal{X}}w(x)f(x)f(x)^{T}d\mu(x)$

$= \int_{\mathcal{X}}(\sqrt{w(x)}f(x))(\sqrt{w(x)}f(x))^{T}d\mu(x)$ ,

the covariance matrix (2) is rephrased as

Cov $[ \hat{\theta}]=\frac{\sigma^{2}}{N}M_{f,w}(\mu)^{-1}$
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Hence E–optimal designs are defined as the probability measures which maximize
the minimum eigenvalue of the Fisher information matrix. Namely, $E$-optimal
designs are defined as the optimal solutions of the optimization problem

maximize $\lambda_{\min}(M_{f,w}(\mu))$ subject to $\mu\in \mathcal{P}_{\mathcal{X}}$ (3)

where $\lambda_{\min}(A)$ denotes the minimum eigenvalue of the matrix $A$ , and $\mathcal{P}_{\mathcal{X}}$ denotes
the set of all probability measures on the Borel sets of $\mathcal{X}$ . If the sample size
$N$ is fixed, all probabilities corresponding to the design $\mu$ must be multiple of
$1/N$ , however we do not consider this constraint. In this case, $E$–optimal designs
are sometimes called approximate E–optimal designs instead of exact E–optimal
designs. Thus, in this paper, we consider approximate E–optimal designs defined
by (3), whose probabilities may be rounded to be multiples of $1/N$ in order to
consider the corresponding multiset $\{x_{1}, x_{2}, \ldots, x_{N}\}$ . Then E–optimal designs no
longer depend on the sample size $N$ , they depend only the vector of functions

$g(x)=(g_{0}(x)$ $g_{1}(x)$ . . . $g_{m-1}(x))^{T}$

$=$ $(\sqrt{w(x)}f_{0}(x)$ $\sqrt{w(x)}f_{1}(x)$ . . . $\sqrt{w(x)}f_{m-1}(x))^{T}$ (4)

For convenience, if the design $\mu$ is a discrete probability measure, then we write

$\mu=(\begin{array}{llll}\mathcal{S}_{1} s_{2} \cdots s_{n}\rho_{1} \rho_{2} \cdots \rho_{n}\end{array}),$

where $s_{1},$ $s_{2},$
$\ldots,$

$s_{n}$ denote the support points of $\mu$ , and $\rho_{k}=\mu(\{s_{k}\})$ , $k=$

$1,2,$
$\ldots,$

$n.$

See [3, 6] for details of optimal designs and other optimality criteria.

2.2 Tchebycheff systems and their applications to $E$-optimal
designs

Let $u_{1},$ $u_{2},$ $\ldots,$
$u_{n}$ : $Iarrow \mathbb{R}$ denote linearly independent continuous functions

defined on a closed finite interval $I=[a, b]$ . If there exists $\delta\in\{1, -1\}$ such that

$a\leq t_{1}<t_{2}<\cdots<t_{n}\leq b$

$\Rightarrow\delta\det(u_{i}(t_{j}))_{i,j=1}^{n}=\delta\det(\begin{array}{llll}u_{l}(t_{1}) u_{1}(t_{2}) \cdots u_{1}(t_{n})u_{2}(t_{1}) u_{2}(t_{2}) \cdots u_{2}(t_{n})\vdots \vdots \ddots \vdots u_{n}(t_{1}) u_{n}(t_{2}) \cdots u_{n}(t_{n})\end{array})>0,$
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then the set $\{u_{1}, u_{2}, \ldots, u_{n}\}$ of functions is called a Tchebycheff system on $I.$

Similarly, if there exists $\delta\in\{1, -1\}$ such that

$a\leq t_{1}<t_{2}<\cdots<t_{n}\leq b\Rightarrow\delta\det(u_{i}(t_{j}))_{i,j=1}^{n}\geq 0,$

then the set $\{u_{1}, u_{2}, \ldots, u_{n}\}$ of functions is called a weak Tchebycheff system on
I. It is well known [4, Theorem II 10.2] that the set $\{u_{1}, u_{2}, \ldots, u_{n}\}$ is a weak
Tchebycheff system if and only if there exists a unique function $\kappa(t)$ given by

$\kappa(t)=\gamma^{T}u(t)$ ,

$\gamma=$ $(\gamma_{1}$
$\gamma_{2}$

. . . $\gamma_{n})^{T}\in \mathbb{R}^{n},$ $u(t)=(u_{1}(t)$ $u_{2}(t)$ . . . $u_{n}(t))^{T}$

which satisfies the following two properties:

(a) $|\kappa(t)|\geq C$ for all $t\in I,$

(b) There exist $n$ points $s_{1},$ $s_{2},$ $\ldots,$
$s_{n}$ such that $a\leq s_{1}<s_{2}<\cdots<s_{n}\leq b$ and

$\kappa(s_{k})=(-1)^{k}C,$ $k=1,2,$ $\ldots,$
$n.$

Here $C$ is a fixed positive constant, usually which is set as 1. In this paper, we
call the function $\kappa(t)$ a Tchebycheff function, and we call the points $s_{1},$ $s_{2},$ $\ldots,$

$s_{n}$

Tchebycheff points.
If the set $\{g_{0}(x), g_{1}(x), \ldots, g_{m-1}(x)\}$ is a weak Tchebycheff system on $\mathcal{X}$ , then we

can construct a design, called a Tchebycheff design, by the following procedure.
Here $g_{k}(x)=\sqrt{w(x)}f_{k}(x)$ , where $w(x)$ denotes a weight function of regression,
$f_{k}(x)$ denotes a basis function. Let the Tchebycheff function $\kappa(x)$ be

$\kappa(x)=\gamma^{T}g(x) , \gamma\in \mathbb{R}^{m},$

and let the Tchebycheff points of the Tchebycheff function $\kappa(x)$ be $s_{1},$ $s_{2},$
$\ldots,$

$s_{m}\in$

$\mathcal{X}$ . Then the Tchebycheff design $\mu^{*}$ is defined by

$\mu^{*}=(\begin{array}{llll}s_{1} s_{2} \cdots s_{m}\rho_{1} \rho_{2} \cdots \rho_{m}\end{array}),$

$(\rho_{1}$
$\rho_{2}$

. . . $\rho_{m})^{T}=\frac{F^{-1}\gamma}{\gamma^{T}\gamma},$ $F=((-1)^{j+1}f_{i-1}(s_{j}))_{i,j=1}^{m}$ (5)

If the linear regression with the basis functions $f_{0}(x),$ $f_{1}(x),$
$\ldots,$

$f_{m-1}(x)$ has a
unique $E$-optimal design, then the Tchebycheff design is the $E$-optimal design [5,
pp. 94-97].

See [4] for more details of Tchebycheff systems.
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3 An approximate approach to $E$-optimal designs for weighted
polynomial regression

3.1 The proposed algorithm

Consider weighted polynomial regression, that is, consider the case of $f(x)=$
$(1, x, \ldots, x^{m-1})^{T}$ . Thus $g(x)$ defined by (4) is $g(x)=\sqrt{w(x)}(1, x, \ldots, x^{m-1})$ here.
In this section, we propose an approximate approach to E–optimal designs for
polynomial regression with almost general weight function.

At first we introduce to the E–optimal designs calculated exactly. The following
theorem is shown by Dette [2].

Theorem 3.1. Let the design space be $\mathcal{X}=[-1,1]$ , and let the weight function of
regression be

$w(x)=(1-x)^{\alpha}(1+x)^{\beta},$ $\alpha,$ $\beta\in\{0,1\}$ . (6)

Then the set $\{g_{0}(x), g_{1}(x), \ldots, g_{m-1}(x)\}$ is a weak Tchebycheff system, and the
function

$(1-x)^{\alpha/2}(1+x)^{\beta/2}J_{m-1}^{\alpha-1/2,\beta-1/2}(x)$ (7)

is the Tchebycheff function. Here $J_{n}^{a,b}(x)$ denotes a Jacobi orthogonal polynomial

$J_{n}^{(a,b)}(x)= \frac{(-1)^{n}}{2^{n}n!(1-x)^{a}(1+x)^{b}}\frac{d^{n}}{dx^{n}}((1-x)^{n+a}(1+x)^{n+b})$

$= \frac{1}{2^{n}}\sum_{k=0}^{n}(\begin{array}{l}n+an-k\end{array})(\begin{array}{l}n+bk\end{array})(x-1)^{k}(x+1)^{k}.$

And the Tchebycheff function, calculated by (5), is the $E$-optimal design for poly-
nomial regression with weight function (6).

We generalize this theorem by focusing that the Jacobi polynomial $J_{n}^{a,b}(x)$ is the
orthogonal polynomial with respect to the weight function $\eta(x)=(1-x)^{a}(1+x)^{b},$

namely,

$l_{1}^{1}J_{m}^{(a,b)}(x)J_{n}^{(a,b)}(x) \eta(x)dx=\frac{2^{a+b+1}\Gamma(n+a+1)\Gamma(n+b+1)}{(2n+a+b+1)\Gamma(n+a+b+1)n!}\delta_{m,n},$

where $\delta_{m,n}$ denotes the Kronecker delta. See [1, 7] for more details of orthgo-
nal polynomials. Our method is applicable to almost general weight functions,
however our method construct E–optimal designs approximately, not exactly, via
approximate Tchebycheff functions. Next we define the approximate Tchebycheff
functions, and its Tchebycheff points.
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Definition 3.2. Suppose that the design space $\mathcal{X}=[-1,1]$ . For a general weight
function $w(x)$ of regression such that if $-1<x<1$ then $w(x)>0$ , the function
$\kappa^{\uparrow}(x)$ obtained the following steps is called an approximate Tchebycheff function.

(a) Compute the $(m-1)$ -th degree of the orthogonal polynomial with respect to
the weight function

$\eta(x)=\frac{w(x)}{\sqrt{1-x^{2}}}$ . (8)

Let the orthogonal polynomial be $v_{m-1}(x)_{f}$ then

$\nu_{m}(x)=$ const. $\cross\det(\begin{array}{lllll}c_{0} c_{1} c_{2} \cdots c_{m-1}c_{1} c_{2} c_{3} \cdots c_{m}\vdots \vdots \vdots \vdots c_{m-2} c_{m-1} c_{m} \cdots c_{2m-3}1 x x^{2} \cdots x^{m-1}\end{array}),$ $c_{k}=l_{1}^{1}x^{k}d\eta(x)$ .

The orthogonal polynomial $\nu_{m-1}(x)$ can be calculated by the above formula,
or the $Gram-$Schmidt orthogonalization for example.

(b) Obtain $\kappa^{\uparrow}(x)=\mu,(x)\sqrt{w(x)}.$

Then the Tchebycheffpoints $s_{1},$ $s_{2},.,$$s_{m}\dagger\dagger..\dagger$ of the approximate Tchebychefffunction
$\kappa\dagger(x)$ are defined as local maximum points and local minimum points.

Note that if the assumption $w(x)>0$ for $-1<x<1$ is almost violated, ap-
proximate Tchebycheff functions and Tchebycheff points sometimes are not well-
defined. However, in most cases, approximate Tchebycheff functions are similar
to Tchebycheff functions. We show some examples of approximate Tchebycheff
functions by Figures 1-2. Figures 1-4 indicate that an approximate
Tchebycheff function $\kappa\dagger(x)$ has local maximums and local minimums whose abso-
lute values are almost the same but not exactly the same. Figures 5-8 show the
case where the assumption $w(x)>0$ for $-1<x<1$ is almost violated, because
$w(-1/2)=0.001$ is close to $0$ . In this case the Tchebycheff points cannot be
defined as local maximum points and local minimum points for $m=4,10,20.$

It is also noted that if the weight function of regression is given by (6), then
the approximate Tchebycheff function is equal to (7). Thus, in this case, the
approximate Tchebycheff function is the exact Tchebycheff function.

By using the approximate Tchebycheff function, the proposed algorithm for cal-
culating the approximation of $E$-optimal designs, as an approximate Tchebycheff
designs, for weighted polynomial regression is described as follows.
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Figure 1: The approximate Figure 2: The approximate
Tchebycheff function for $m=$ Tchebycheff function for $m=$
$3,$ $w(x)=(1-x)^{1/2}(2+x)^{1/2}$ 10, $w(x)=(1-x)^{1/2}(2+x)^{1/2}$

Figure 3: The approximate Figure 4: The approximate
Tchebycheff function for $m=$ Tchebycheff function for $m=$
$3,$ $w(x)=e^{x}$ 10, $w(x)=e^{x}$
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Figure 5: The approximate Figure 6: The approximate
Tchebycheff function for $m=$ Tchebycheff function for $m=$
$4,$ $w(x)=(x+0.5)^{2}+0.001$ 10, $w(x)=(x+0.5)^{2}+0.001$

Figure 7: The approximate Figure 8: The approximate
Tchebycheff function for $m=$ Tchebycheff function for $m=$
$20,$ $w(x)=(x+0.5)^{2}+0.001$ 32, $w(x)=(x+0.5)^{2}+0.001$
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Algorithm 3.3. Suppose that the design space $\mathcal{X}=[-1,1]$ . For a general weight
function $w(x)$ of regression such that if $-1<x<1$ then $w(x)>0$ , the design $\mu^{\uparrow}$

is called the approximate Tchebycheff design.

(a) Compute the approximate Tchebycheff function $\kappa^{\uparrow}by$ the Definition 3.2.

(b) Compute the Tchebycheff points $s_{1}^{\dagger},$ $s_{2}^{\dagger},$

$\ldots,$
$s_{m}^{\uparrow}$ of the approximate Tcheby-

cheff function $\kappa^{\uparrow}.$

(c) Compute the design $\mu^{\uparrow}$ given by

$\mu^{*}=(\begin{array}{llll}s_{1}^{\dagger} s_{2}^{\dagger} \cdots s_{m}^{\uparrow}\rho_{1} \rho_{2} \cdots \rho_{m}\end{array}),$

$(\rho_{1}$
$\rho_{2}$

. . . $\rho_{m})^{T}=\frac{F^{-1}\gamma}{\gamma^{T}\gamma},$ $F=((-1)^{j+1}f_{i-1}(s_{j}^{\dagger}))_{i,j=1}^{m}$

In the next subsection, we show some results of numerical examples in order to
verify that approximate Tchebycheff designs are close to E–optimal designs.

3.2 Numerical examples

In this subsection, we give numerical examples corresponding to the approximate
Tchebycheff functions of Figures 1-4. These 4 examples indicate that approximate
Tchebycheff designs have tendency to be close enough to E–optimal designs.

(a) The case of $m=3,$ $w(x)=(1-x)^{1/2}(2+x)^{1/2}$ : the corresponding Tcheby-
cheff functions are shown in Figure 1. The approximate Tchebycheff design
is

$\mu^{\dagger}\approx(\begin{array}{lll}-l.000 -0.1252 0.92l50.1721 0.4896 0.3383\end{array})$

The optimal value of the optimization problem is

$\lambda_{\min}(M_{f,w}(\mu^{\dagger}))\approx 7.693\cross 10^{-3}.$

The E–efficiency of the approximate Tchebycheff design $eff^{E}(\mu^{\uparrow})$ satisfies

$1-eff^{E}(\mu^{\dagger})\approx 8.720^{-5},$

where the $E$-efficiency is defined

$eff^{E}(\mu^{\dagger})=\frac{M_{f,w}(,\mu\dagger)}{\sup_{\mu}M_{fw}(\mu)},$

thus $1-eff^{E}(\mu^{\dagger})$ denotes a relative error in some sense. Here $\sup M_{f,w}(\mu)$

are calculated approximately by a random optimization.
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(b) The case of $m=10,$ $w(x)=(1-x)^{1/2}(2+x)^{1/2}$ : the corresponding
Tchebycheff functions are shown in Figure 2. The approximate Tchebycheff
design is

$\mu^{\dagger}\approx(\begin{array}{llll}x_{1} x_{2} \cdots x_{10}\rho_{1} \rho_{2} \cdots \rho_{10}\end{array}),$

where

$x_{1}=-1.000, \rho_{1}=0.03909,$

$x_{2}=-0.9407, \rho_{2}=0.08305,$

$x_{3}=-0.7710, \rho_{3}=0.09785,$

$x_{4}=-0.5126, \rho_{4}=0.1201,$

$x_{5}=-0.1969, \rho_{5}=0.1395,$

$x_{6}=0.1396, \rho_{6}=0.1423,$

$x_{7}=0.4592, \rho_{7}=0.1261,$

$x_{8}=0.7269, \rho_{8}=0.1031,$

$x_{9}=0.9118, \rho_{9}=0.08509,$

$x_{10}=0.9949, \rho_{10}=0.06379.$

The optimal value of the optimization problem is

$\lambda_{\min}(M_{f,w}(\mu^{\dagger}))\approx 1.714\cross 10^{-6}.$

The $E$-efficiency of the approximate Tchebycheff design $eff^{E}(\mu\dagger)$ satisfies

$1 -eff^{E}(\mu^{\dagger})\approx 3.334^{-5}$

(c) The case of $m=3,$ $w(x)=e^{x}$ : the corresponding Tchebycheff functions are
shown in Figure 3. The approximate Tchebycheff design is

$\mu^{\dagger}\approx(\begin{array}{lll}-1.000 0.2405 1.0000.3204 0.5360 0.1436\end{array})$

The optimal value of the optimization problem is

$\lambda_{\min}(M_{f,w}(\mu^{\dagger}))\approx 1.976\cross 10^{-1}$

The E–efficiency of the approximate Tchebycheff design $eff^{E}(\mu^{\uparrow})$ satisfies

$1-eff^{E}(\mu^{\dagger})\approx 4.082^{-8}$
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(d) The case of $m=10,$ $w(x)=e^{x}$ : the corresponding Tchebycheff functions
are shown in Figure 4. The approximate Tchebycheff design is

$\mu^{\dagger}\approx(\begin{array}{llll}x_{1} x_{2} \cdots x_{10}\rho_{1} \rho_{2} \cdots \rho_{10}\end{array}),$

where

$x_{1}=-1.000, \rho_{1}=0.04351,$

$x_{2}=-0.9326, \rho_{2}=0.09338,$

$x_{3}=-0.7416, \rho_{3}=0.1119,$

$x_{4}=-0.4566, \rho_{4}=0.1360,$

$x_{5}=-0.1190, \rho_{5}=0.1494,$

$x_{6}=0.2267, \rho_{6}=0.1404,$

$x_{7}=0.5399, \rho_{7}=0.1164,$

$x_{8}=0.7876, \rho_{8}=0.09315,$

$x_{9}=0.9457, \rho_{9}=0.07880,$

$x_{10}=1.000, \rho_{10}=0.03710.$

The optimal value of the optimization problem is

$\lambda_{\min}(M_{f,w}(\mu^{\dagger}))\approx 1.660\cross 10^{-6}.$

The E–efficiency of the approximate Tchebycheff design $eff^{E}(\mu^{\dagger})$ satisfies

$1-eff^{E}(\mu^{\dagger})\approx 2.998^{-9}.$

3.3 Properties and conjectures

In previous subsection, we ascertain that approximate Tchebycheff designs have
tendency to be close to E–optimal designs. Here we show that exact Tchebycheff
designs gives E–optimal designs for weighted polynomial regression if regression
has a unique E–optimal design.

Theorem 3.4. Let $w(x)$ be the weight function of polynomial regression with the
design space $\mathcal{X}$ , and let $g_{k}(x)=x^{k}\sqrt{w(x)}$ . Then the set $\{g_{0}(x), g_{1}(x), \ldots, g_{m-1}(x)\}$

is a weak Tchebycheff system on $\mathcal{X}$ . Let polynomial regression with weight func-
tion $w(x)$ have a unique $E$-optimal design. Then the Tchebycheff system is the
$E$-optimal design.
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Proof. This theorem can be shown by using [4, pp. 9-20] and [4, Theorem II
10.2]. $\square$

We have the following conjecture, which is derived from Figures 5-8 for exam-
ples.

Conjecture 3.5. Approximate Tchebycheff functions converge exact Tchebycheff
functions in some sense as $m$ goes to infinity.

At last, we note that if the design space is $\mathcal{X}=[a, b]$ , then we can discuss the
almost same results by using

$\eta(x)=\frac{w(x)}{\sqrt{(x-a)(b-x)}}$

instead of (8).

4 Conclusions
In this paper, we first indicate a new definition of approximate Tchebycheff func-

tions. By using this definition, we propose a new algorithm for constructing the
approximate Tchebycheff designs for weighted polynomial regression with almost
general weight functions. After that, we verify that the approximate Tchebycheff
designs are close to E–optimal designs by numerical examples.

As future works, it is necessary to discuss the definition of approximate Tcheby-
cheff functions more strictly. We must clarify how much gaps of the absolute values
of local maximums and local minimums of approximate Tchebycheff functions are
admitted.

References
[1] Chihara, T. S.: An introduction to orthogonal polynomials, Gordon and Breach,

New York, 1978.

[2] Dette, H.: A note on $E$-optimal designs for weighted polynomial regression,
Ann. Stat., 21 (1993), 767-771.

[3] Fedorov, V. V.: Theory of Optimal Experiments, Academic Press, New York,
1972.

[4] Karlin, S. and Studden, W. J.: Tchebycheff Systems: With Applications in
Analysis and $Stati_{\mathcal{S}}tics$, Vol. 376, Interscience Publishers, New York, 1966.

[5] Melas, V. B.: Functional Approach to Optimal Experimental Design (Lecture
Notes in Statistics), Vol. 184, Springer-Verlag, New York, 2005.

63



[6] Pukelsheim, F.: Optimal Design of Experiments, Wiley, New York, 1993.

[7] Szeg\"o, G.: Orthogonal Polynomials, Vol. 23, American Mathematical Society,
Rhode Island, 1939.

64


