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REMARKS ON STRICHARTZ ESTIMATES FOR SCHRODINGER
EQUATIONS WITH POTENTIALS SUPERQUADRATIC AT INFINITY

HARUYA MIZUTANI

1. INTRODUCTION

This note is a review of author’s recent work [8] which is concerned with the Strichartz
estimates for variable coefficient Schrodinger equations with electromagnetic potentials
growing supercritically at spatial infinity.

Consider a Schrédinger operator with variable coefficients and potentials:

~ 1 : )
P= E(Dj — Aj(2))g"*(z)(Dx — Ak(z)) + V(z), D; := —id/dz;, = € R
with the standard summation convention. We impose the following.

Assumption A.
o g’ A;,V € C*(R%R).
e (¢°*(z));x is symmetric and uniformly elliptic:
" (@)Ei&k > clé)?
on R? with some positive constant ¢ > 0.
e There exists m > 2 such that, for any a € Z% := N?U {0},

0267 (2)] + () %102 Ay (2)] + (2) 182V (2)] < Caz) ™. (L1)
e P is essentially self-adjoint on CP(RY).

Remark 1.1. If we assume in addition to the first three conditions as above that V >
—C(z)? with some constant C' > 0, then P is essentially self-adjoint. It is also known that
this condition is almost optimal for the essential self-adjointness of P. However, P can
be essentially self-adjoint even if V < —C(x)k with k > 2 if strongly divergent magnetic
fields are present near infinity. More precisely, we set

d 1/2
B@)| = (3 1Ba@I) ", Bi = 0,4k — 8A;.
k=1
Note that |B(z)| < (z)™*" under the above assumption. Then, Iwatsuka [4] proved that
If V(z) + |B(z)| 2 —(z)? then P is essentially self-adjoint on C$°(R?).

Let us denote by P the self-adjoint extension of P on L?(R?). Then we consider the
time-dependent Schrédinger equation
i0u = Pu, t € R; wuli=0 =1uo € L2(]Rd). (1.2)
The solution is given by u(t) = e~*Fu, by Stone’s theorem, where e~ denotes a unitary
propagator on L?(R¢) generated by P.
In this paper we are interested in the (local-in-time) Strichartz estimates of the forms:

lle™* ol 110 < CrlI(H) ol 2, (1.3)



where v > 0, L5.L? := LP([-T, T}; L%(R%)) and (p, q) satisfies the admissible condition
2<p,g<oo, 2/p=d(1/2+1/q), (d,p,q)+# (2,2 00) (1.4)

Strichartz estimates can be regarded as LP-type smoothing properties of Schrodinger
equations and have been widely used in the study of nonlinear Schrodinger equations

(see, e.g., [2]).
If P satisfies Assumption A with m < 2, the nontrapping condition (see below) and
the following long-range condition:

10%(g7(x) — 636)| < Calz) ™, p>0,

then it has been shown in [6, 7] that e~#Fuq satisfies (1.3) with v = 0 which is the same
as in the free case at least locally in time.

When m > 2 the situation becomes considerably different. More precisely, if g*¥ = §;i
and A = 0, then the following has been proved by Yajima-Zhang [13]:

Theorem 1.2 (Theorem 1.3 of [13]). Let H = —A/2+ V satisfy Assumption A and
V(z) = C{@)™ for |z| 2 R, (1.5)
with some R,C > 0. Then, for any e, T > 0 and (p,q) satisfying (1.4),
e o]l g 10 < Crel |(H)F G710 . (16)

The aim of this note is to extend their result to the variable coefficient case. Moreover,
we will remove the additional e-loss in the flat case (i.e., g/* = §;x).

To state our main results, we here introduce some notations on the classical system.
Let k(z,£) = 397 (z)&;& be the classical kinetic energy function and (yo(t, z,£), n0(2, 7, €))
the Hamilton equation generated by k:

Yo(t) = Vek(yo(t), mo(t)), Mo(t) = —Vk(yo(t), mo(t))

with the initial condition (yo,70)|t=0 = (z,£&). Note that the Hamiltonian vector field
Hy = V¢k -V, — Vk - Ve is complete on R* and (yo(t), 70(t)) thus exists for all ¢ € R.

Assumption B.
e Nontrapping condition: For any (z,£) € R? with £ # 0,

lyo(t,z,&)| — +o00 ast — zoo.
e Convexity near infinity: There exists f € C®(R?) satisfying
f=1 | llim f(z) =400, 8%f € L®(R?) for any |a| > 2
T|— =400

and constants ¢, R > 0 such that

where {k, f} = Hf is the Poisson bracket.

Remark 1.3. It is easy to see that if supja<s (z)'*'|02 (g% () — ;)| is sufficiently small,
then 82(|yo(t)|?) 2 |€|* and hence Assumption B holds with f(z) = 1 + |z|?. For more
examples satisfying Assumption B, we refer to [3, Section 2].

We now state main results.
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Theorem 1.4. Let d > 2 and P satisfy Assumptions A and B. Then, for any T,e > 0
and (p,q) satisfying (1.4), there exists Cre > 0 such that

i 112 ifm _
||e—uPu0HL’1’,L‘1 < CT,E(IKD);’(I m)+€u0HL2 + H(x)ﬂ(z 1)+5u0”L2). (17)
For the flat case, we can remove the additional e-loss as follows.

Theorem 1.5. Let d > 3 and H = (D — A(z))? + V(z) satisfy Assumption A. Then,
for any T > 0 and (p, q) satisfying (1.4) there exists Cr > 0 such that

el .50 < Cr(IDY | za + 11 (@) 3 (F gl 2). (18)

Remark 1.6. Suppose that V satisfies (1.5). Then we can assume P > 1 without loss of
generality and P hence is uniformly elliptic in the sense that p(z,£) = |£]? + (z)™, where

1 .
p(z,§) = 59”‘(93)(&1 — A;j(z)) (& — Ax(z)) + V().
By the standard parametrix construction for P, we see that, forany 1 < ¢ < ocoand s > 0
1P20]l 0 + [0ll e = I{D)*0]1 0 + [1{@)™"20] | 1o-

(see, e.g., [13, Lemma 2.4]). The right hand side of (1.7) (resp. (1.8)) is thus domi-
nated by ||(P)(1/2_1/m)/p+5u0||m (resp. ||(H)(1/2_1/m)/puo||L2). Therefore, our result is a
generalization and improvement of Theorem 1.2.

Remark 1.7. The additional e-loss in (1.7) is only due to the use of the smoothing effect:
e) ™/ Byyme ™ol g 15 < Crelluoll s & >0,

where E; is a pseudodifferential operator with the symbol (k(z,£) + (z)™)*/2. It is well
known that this estimate does not holds when ¢ = 0 even for P = —1A + (z)™ (see [9]).

1.1. Notations. We write L? = LI(R¢) if there is no confusion. W*? = W*4(R?) is
the Sobolev space with the norm ||f|lysq = |[(D)"f|| .. For Banach spaces X and Y,
[| - || x_y denotes the operator norm from X to Y. For constants A, B > 0, A < B means
that there exists some universal constant C' > 0 such that A < CB. A~ B means A < B
and B < A. We always use the letter P (resp. H) to denote variable coefficient (resp.
flat) Schrédinger operators. For h € (0, 1], we set

P(2,6) = 30*(2)(§ — h4s(2)) & — hAW(®)) + WV (2).
2. PRELIMINARIES

In this section we record some known results on the semiclassical pseudodifferential
calculus and the Littlewood-Paley theory. This section also discuss local smoothing effects
for the propagator e~*F under Assumption B.

First of all we collect basic properties of the semiclassical pseudodifferential operator
(h-UDO for short). We omit proofs and refer to [10] for the details. Set a metric on
the phase space T*R? = R defined by g = dz?/(z)? + d¢2/(£)?. For a g-continuous
weight function m(z, £), we use Hormander’s symbol class S(m, g), which is the space of
smooth functions on R?? satisfying |8§8? a(z, )| < Cagmi(z, £)(z) (€)™, To a symbol
a € C*°(R%) and h € (0, 1], we associate the h-¥DO a(z, hD) defined by

a(z, kD) (z) = (2nh)~ / Sz ) f(y)dyde, | € S(RY),



where §(R?) is the Schwartz class. For a h-UDO A, we denote its symbol by Sym(A),
i.e., A = a(z,hD) if a = Sym(A). It is known as the Calderén-Vaillancourt theorem
that for any symbol a € C*®(R??) satisfying 16;*8? a(z,€)| < Cup, a(z,hD) is extended
to a bounded operator on L2(R?%) with a uniform bound in h € (0,1]. Moreover, if
|8§8§ a(z,€)| < Cop(€)”” with some v > d, then a(z,hD) is extended to a bounded
operator from L? to L™ with bounds

la(z, AD)|| o rr < quh—d(l/q—lma 1<g<r<oo, (2.1)

where C,, > 0is independent of h € (0,1]. These bounds follow from the Schur lemma and
the Riez-Thorin interpolation theorem (see, e.g., (1, Proposition 2.4]). For two symbols
a € S(my,g) and b € S(ma,g), a(z,hD)b(z,hD) is also a h-TDO with the symbol
afh(z, &) = ePPrP=q(z, n)b(2, €)|s=zy=¢ € S(Mimg,g), which has the expansion

el
b~ 3 eofa- o8b € S(h (@) M) Vmums, ). (2.2)

|aj<N

In particular, we have Sym([a(z, hD),b(z, hD)]) — 2{a,b} € S(h2(z)72(€) 7%, g), where
{a,b} = Oca - 0,b — O,a - O¢b is the Poisson bracket. The symbol of the adjoint a(z, hD)*
is given by a*(z,€) = e*PrP=q(2,7)| .=z p=¢ € S(m1, g) which has the expansion

. hled e ~ ~
a —l‘IZ, 0e0za € S (@) N (©) i, g). (2.3)
al<N

We also often use the following which is a direct consequence of (2.2):

Lemma 2.1. Leta € S(my,g) and b € S(ma,g). Ifb=1 on suppa, then for any N > 0,
a(z,hD) = a(z,hD)b(z,hD) + hNrx(z, hD) = b(zx, hD)a(z, hD) + hN7n(z, hD)

with some ry,7x € S{(z) "N (€) V' mym,, g).

2.1. Littlewood-Paley estimates. We here prove Littlewood-Paley estimates, which

will be used to reduce the proof of the estimates (1.7) to that of energy localized Strichartz

estimates. Here and in what follows, the summation over h, ), means that h takes all
h

negative powers of 2 as values, i.e., Y, = ), .
h h=2-4,5>0

Proposition 2.2. For h € (0, 1], there ezist two symbols U2 and U% such that the follow-
ing statements are satisfied with constants independent of h:
(1) (Symbol estimates) {UF}ne(,y are bounded in S(1,h*™dz? + de?/(€)?), i.e.,

1020/ W} (2, €)] < Cagh®™Iele)™, & =0,1.
(2 (Support property)
supp g C {(z,€); K*@)™ S 1, € ~ 1}, (24)
supp U7 C {(z,€); ¥ )" ~ 1, [¢]* S 1} (2.5)
(3) (Littlewood-Paley estimates) For any q € [2,00),

olle S llolls + 3 (S Ik DI, ) (26)

k=0,1
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In order to prove Proposition 2.2, we prepare two lemmas. Let ¢ € C§°(R) be such
that suppy C [-1,1], ¢ =1o0n [-1/2,1/2] and 0 < p < 1. We set

@)
¢[e]

where € > 0 is a sufficiently small constant such that p(z,£) = |£|2 if ()™ < g[¢[?. Tt is

easy to see that supp ¢y C {(z,&); ()™ < €2|€]?}, supp e (e) C {(z,&); (z)™ > €2|¢]?/2}
and that o, ¢y € S(1,g) for each € > 0.

1110(15,5):‘/?( ), Y1 =1~ 1y,

Lemma 2.3. For any 0 € C°(R?) supported away from the origin and any N > d, there
ezists a bounded family {U:}neon C S(1, R4 ™dz? + d€?/(€)°) satisfying (2.4) such that

|16(D)o(z, D) — ¥§(z, hD)|| o, o < ConhN~421D - h e (0,1], g € [2,00)
Moreover, if we set
Ui(z,€) := O(R™ 2z (z, &/ R),
then {¥*}ne(0) is bounded in S(1, h*/™dz? + de2/(€)?) and satisfies (2.5).

Proof. Choose = C$°(R9) so that g is supported away from the origin and that g=1
on supp 8. Then we learn by (2.2) (with h = 1) that
6(hD)yo(, D) = 8(hD)B(hD)o(z, D) = 6(hD)}(z, D) + 6(hD)¥% (z, D),
where ¢f € S(1,g) and 7, € S((z) (€)™, g). Since || ~ h~! on supp §(kE), we have
10(AD)7x (2, D)I 210 < 10(RD)(D) ™" || 2, all{DY V7 (&, D)l o2 S RN 4/271/0),

For the main term, we see that supp Ph(-,-/h) C {(z,€); (@)™ 51, || ~ 1} and that
{w&(-,/h) }neco, 1] is bounded in S(1,g). In particular, (z, D) can be regarded as a h-
UDO with the symbol ¥2(-,-/h). (2.2) again implies that there exist bounded families
{¥h}heoy C S(1,9) and {rfi}rey € S({x) " (€)™, g) such that

0(hD)y! (z, D) = W(z, kD) + hVrk(z, D).

It is easy to see that U} obeys the desired properties.
On the other hand, since supp 838? 11 C suppyp for any |a + 3| > 1, we learn |¢] =

R?(z)™ ~ 1 on supp8(h*™z) N supp(?gafwl(z,f/h) as long as |a + | > 1. Hence
{¥%}he(0,1) is also bounded in S(1, h*/™dx* + d€?/ (6)?) and satisfies (2.5). O

Lemma 2.4. Let ¢ > 1 and consider a c-adic partition of unity:

00,0 € C°(RY), suppf C {1/c < |z] <c}, 0< 6,0 <1, bo(z) + ZG(C":C) = 1.

1>0

Then, for any 2 < q < 00,

olze < lolza + (3 N6 Do) ™, (27
!
e < 10o(aollye + (10 2)lls) " (28)
l

Proof. We refer to [11] for the details of the proof. O



Proof of Proposition 2.2. Set h = 27!, We plug vy(z, D)v into (2.7) with ¢ = 2. By
virtue of Lemma 2.3, the contribution of the error term 8(hD)7% (z, D) + hNrh (z, hD) is
dominated by [|v||;. provided that N > d(1/2 — 1/q). We hence have

2 \1/2
[%o(z, DYollza S Ilollz + (3 %5, hDllZ:)
h

The proof of the estimate for 1;(z, D)v is similar O

2.2. Local smoothing effects. We here prove the local smoothing effects for e=#*F. Set
eo(z,€) = (ka(2,€) + ()" + L(s))"*, s €R,

where ka(z,€) = $¢%(2)(§; — A;(2))(& — Ax(z)) and L(s) is a constant depending on s.
Then, e, € S(e,,dz?/(z)* + d€?/€?), that is

10200 €a(,€)| < Cap €a-ig(x, £)(z) . (2.9)

Let E, = e,(z, D) and B* := {f; (z)°f € L?, (D)*f € L?}. Then, for any s € R, there

exists L(s) > 0 such that E, is a homeomorphism from B™+* to B" for all 7 € R, and E;!

is also a UDO with the symbol &_, in S(e_,, dz?/{x)? + dé2/e?) (see, [3, Lemma 4.1]).
We first show the energy estimates.

Lemma 2.5. For any s € R there exists C; > 0 such that

||Ege'itPUOHL2 < eCs|t|

lEsuolle, t € R.

Proof. Set By = [E,, P]E;!. Then, (2.9) and the symbolic calculus show that, for any
s € R, B, — B! is bounded on L2. Set v(t) = Ese~"*Fuy and compute
d ) .
Eillv(t)Hiz = (= i(P+ Bs)u(t), v(t)) + (v(t), —i(P + Bs)v(t))
= —i((Bs — B{)v(t),v(t))
< Collv(®)]] 2
The assertion then follows from Gronwall’s inequality. a

We now state the local smoothing effects for the propagator e,

Proposition 2.6. Assume Assumptions A and B. Then, for anyT > 0, v > 0 and s € R,
there exists Cr,s > 0 such that

||<x)—1/2—UEs+l/me—itPu0| |L%L2 < CT,V,slIEsU()”LQ. (210)

Proof. By time reversal invariance, we may replace the time interval [—T,T] by [0, T]
without loss of generality. Robbiano-Zuliy [9] proved the case when s = 0 only. However,
by virtue of Lemma 2.5, general cases can be verified by an essentially same argument.
We hence omit details. O

Remark 2.7. Assumption B is only needed for Proposition 2.6.
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3. PARAMETRIX CONSTRUCTION

Write T*(L) := {(z,£); |€|*> + h*(z)™ < L}, where L > 1 is a large constant such
that supp ¥# c Th(L), k = 0,1. This section is devoted to construct the parametrices of
propagators, localized in this energy shell, in terms of the semiclassical Fourier integral
operator (h-FIO for short).

Let us first consider the solution to the Hamilton system:

. aph . 8ph

X;==—(X,Z), &,=—5

J a{? ( ’ ) J 6113_7'

The flow is well-defined for [t| < §h=%/™ and (z,&) € T*(L) with sufficiently small § > 0.
More precisely, we have an a priori bound:

12, z,6))? + KX (t,z,))" < C, (t,z,6) € [-8h™™,8h~Y™] x TH(L).

(X,2); (X(0,2,€),2(0,,¢)) = (,€) € TH(L).

Using this bound, we further obtain more precise behavior of the flow (see [8] for the
detail of the proof).

Lemma 3.1 (General case). Set Q*(R, L) := {|z| > R} N T*(L). For sufficiently small
0 < § < &g, the following statements are satisfied:
(1) For any h € (0,1, 1 < R< h™%™ (t,2,€) € [-6R,0R] x Q*(R, L),
1 X (t) — z| + (2)|E(t) - ¢| < Clel, (3.1)

0202 (X () — 2)| + (2)| 0507 (E(t) — &) < Cag(z)'Jtl, la+821,  (32)
where constants C, Cop > 0 may be taken uniformly in h, R and t.
(2) If (Y(t,z,£),£) denotes the inverse map of A(t), then bounds (3.1) and (3.2) still hold
with X (t) replaced by Y (t) for (t,z,€) € [-6R,6R) x Q*(R, L).
(3) The same conclusions also hold with R = 1 and with Q"R, L) replaced by I'*(L), i.e.,
X(t) and Y (t) satisfy (3.1) and (3.2) uniformly in h € (0,1] and (¢,z,£) € [-6,8] xT*(L).

Lemma 3.2 (Flat case). Assume that ¢’* = §;,. Then, for sufficiently small 0 < & < &y,
the followings hold uniformly with respect to h € (0, 1):
(1) For any (t,2,£) € [-6h~%/™ §h=%/™] x Th(L), we have

X (t) — z| + R¥™[E() - €] < Ol (3.3)
16267 (X (1) = 2)| < Cagh®™t], |+ B 21, (34)
|02()] < Cah® ™) I8, 10¢(E(t) — )] < Cah®™t],
16267 (B(t) — €)| < Caph™™(@)7lt], lo+ 6] 2 2
(2) Denote by (Y (t,z,£), &) the inverse map of A(t). Then the bounds (3.3) and (3.4) still
hold with X (t) replaced by Y (t).
We next turn into the construction of parametrices. We begin with the general case.
Theorem 3.3. There ezists § > 0 such that, for any h € (0,1] and 1 < R < h™™ the

following statements are satisfied with constants independent of h and R:
(1) There exists a solution S* € C®((—0R,8R) x R?%) to the Hamilton-Jacobi equation:

{ 8,SM(t,z,€) + pM(x,8,5"(t,z,6)) =0, (t,z,€) € (—6R,5R) x Q*(R/3,3L),

Sh0,z,6) =z-& (z,€) € Q*(R/3,3L), (3.5)



such that
1020 (S"(t, ,€) — - € + tp"(z,€)) | < Caglz) ™" bD g2, (3.6)

uniformly in (t,z,€) € (=6R,6R) x R%.
(2) For any x" € S(1, g) supported in Q"(R, L) and integer N > 0, there erists a bounded
family {a"(t);|t| < 6R, h € (0,1]} C S(1,g) with suppa”(t) C Q"(R/2,2L) such that

e /MM (z,hD) = Jgn(a®) + Q(¢, N),
where P* = h?P and Jgn(a?) is the h-FIO defined by

T (@)f(a) = b [ "m0V bt 3, ()

and the remainder Q"t, N) satisfies
sup ||Q"(t, N)l| arpe < CnAN 172, (3.7)
[t|<6R

Furthermore, if K"(t,x,£) denotes the kernel of Jgn(a®) then
|K™(t, z,y)| < min{h~¢, |th|"%?}, z,£ € R?, he(0,1], |t| <IR. (3.8)
Proof. Construction of the phase S*: Define S* on (—dR,§R) x Q"(R/4,4L) by

t
Sh(t,:v,f) =z +A Lh(X(s,Y(t,:L‘,f),g),E(S,Y(t,w,f),f)ds,

where L = £ - ;p" — p" is the Lagrangian afsociated to p". A direct computation yields
that S" solves (3.5) and satisfies (0:S",8,5") = (Y(¢,,£),2(,Y(¢,2,£),£)). Further-
more, the conservation law, p*(z,8,5"(¢,x,£¢)) = p"(Y (t,z,€),&), holds. By virtue of
Lemma 3.1 (2), taking § > 0 smaller if necessary we see that

R2(Y (t,z,6)™ < 5L, (t,z,£) € (—6R,5R) x Q*(R/4,4L)

and hence
Ip"(z,8:5") — p"| S|V () — = /0 [(Gp™) Az + (1 = MY (2),£)dA S () 7" [t]-

The estimates for derivatives can be proved by an induction. Integrating with respect to

t and using Hamilton-Jacobi equation (3.5), we see that S" satisfies (3.6) on Q"(R/4,4L).

We finally extend S™ to the whole space R?¢ such that S* = z - £ — tp" on Q*(R/3,3L).
Construction of the amplitude a”: Let us make the following ansatz:

/ei(sh(t,z,ﬁ%yf)/hah(t, z,€) f(y)dydg,

vit,e) = (2wh)d

where a® = Z;V:BI hial. In order to approximately solve the Schrodinger equation
(hD; + PMu(t) = O(AY);  vli=o = X"(x, RD)u,
the amplitude should satisfy the following transport equations:
dial + X - Opa0 + Yal = 0;  al|imo = X,
{&a;‘ + X - 0za; +Ha§‘ +iKa;?_1 =0, a;-‘|t=0 =0, 1<j<N-1,
where K = —20,¢7%(x)0k, a vector field X and a function Y are defined by
X(t,z,€) = (Bep")(z, 5" (2, 2, €)), Y(t,2,€) := [k(z,0:)S™ + i (z, B5™)](¢, 2, €).

(3.9)
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The system (3.9) can be solved by the standard method of characteristics along the flow
generated by X(t,z,£). More precisely, let us consider the following ODE

0i2(t, 8, z,€) = X(t, 2(t, s, 2,8),€);  2(s,8) ==z.
Then, there exists § > 0 such that, for any fixed h € (0,1], 1 < R < h=2/™, 2(t,s,x,€) is
well-defined for ¢,s € (—dR,dR) and (z,§) € Q(R/3,3L), and satisfies
|2(t,8) — ol S Clt s, 19208(a(t,) — 2)] < Cogl@) e — 8], la+ Bl 21 (3.10)
We then define a;, j =0,1,..., N — 1, inductively by

a0(t, 7,€) = x*(2(0, 1,2, £), ) exp ( [ v6s, z(s,t,z,o,s)ds) ,

a;(t,z,§) = —/0 (iKaj_1)(s,2(s,t,z,§),€) exp (/ Y(u, 2(u, t, z, E),f)du) ds.

It is easy to see from (3.10) and the support property supp x* C Q*(R, L) that suppa; C
Q*(R/2,2L) for all |t| < §R. Furthermore, taking § > 0 smaller if necessary we see that a;
are smooth on Q(5R/12,12L/5). Since Q*(R/2,2L) € Q(5R/12,12L/5) € Q(R/3,3L),
if we extend a; to the whole space R?® so that a; = 0 outside "*(R/2,2L), then a; are
still smooth. We further learn that a; € S(1, g) uniformly with respect to |t| < §R and
h € (0,1]. Finally, one can check by a direct computation that a; solve the system (3.9).

Justification of the parametrix and dispersive estimates: (3.6) implies |0; ®
0:S"(t,z,€) — Id| < 1/2 for (t,z,€) € (—6R,0R) x Q*(R/3,3L). Therefore, for any
amplitude b* € S(1, g) supported in Q*(R/2,2L),

sup [|Jgn (0|22 $1, h€(0,1), LS RS A™¥™,
jtI<éR

Assume t > 0 without loss of generality. By the Duhamel formula, we have

. ot

e~ 4P /hyh (g WD) = Jgn(a®) — % / e =P MR D, + PP)Jgn(a”)|emsds.
0
By (3.5), (3.9) and direct computations, we obtain
(th + Ph)Jsh (ah) = —ithsh (Ka’}v_l).

Since supp Kaf,_; C A(R/2,2L) and Ka};_, € S(1,g), Js»(P"ak_,) is bounded on L?
uniformly in k € (0,1], 1 < R < h™%™ and 0 < t < 4R, and (3.7) follows. The dispersive
estimate is verified by the stationary phase method. O

Remark 3.4. It can be verified by the same argument and Lemma 3.1 (3) that for any
symbol x* € S(1,9) supported in T*(L), e~#*P"/*x"(z, hD) can be approximated by a
time-dependent h-FIO as above if [t| < §, and in particular obeys the dispersive estimate

|le®P" /Ayt (2, RD)|| 11 oo S min{h™%, |th|~%2}, |t| < 6, h € (0,1].
We next state the flat case.

Theorem 3.5 (Flat case). Suppose that g’ = 6;x and L > 1. Then, there ezists § > 0
such that the following statements are satisfied with constants independent of h € (0, 1]:
(1) There exists S* € C°((—6h=%/™ 6h=4™) x R?) such that

8,S"(t,z,€) + p"(z,8:5"(t,2,£)) =0, (t,z,£) € (—6h~2/™,6h~%™) x T"(3L),
S"0,z,8) =z - &, (z,¢) € TH3L),



and that
1020¢ (S (t,2,6) — x - £+ p"(3,£)) | < CophG/mUFmintlebiljg2,

(2) For any x* € S(1, g) with supp x* C T*(L) and integer N > 0, there ezists {a"(t);t €
(=6h~%™ §h=%™) h € (0,1]} C S(1,g) with suppa®(t) C T"(2L) such that

ey e~ 5" /hxh(z, AD) — Jon(a™)|| o,za < CnRN 172/,
[t|<6h—2/m

where the kernel of Jgn(a®) satisfies (3.8) for |t| < SA™2/™.
The proof is analogous to the general case and the only difference is to use Lemma 3.2
instead of Lemma 3.1.
4. PROOF OF MAIN THEOREMS

In this section we prove Theorems 1.4 and 1.5. For simplicity, we only consider the case
d > 3. The following which is a direct consequence of Theorem 3.3 and Remark 3.4.

Theorem 4.1. (1) For any symbol X% € S(1,9) supported in {|z| > R} "T*(L),
lIx2(z, hD)e™*PXf(w, hD) || 1 pee < Colt|™2, 0 < |t| < SRR,
(2) For any symbol x" € S(1,g) supported in T*(L),
X" (@, AD)e™* x" (2, hD)*|| 110 < Cslt|™¥%, 0 < |t] < 6h.

Using Theorem 4.1, Keel-Tao’s abstract theorem (see [5]) and the Duhamel formula,
one can obtain the following semiclassical Strichartz estimates with an inhomogeneous
term. The proof is same as that of [7, Proposition 7.4] (see also [1, Section 5]).

Proposition 4.2. Let 2* = 2d/(d — 2). Under conditions in Theorem 4.1, we have
lIxk(z, hD)e™*Fuoll 2 12 S hlluoll g2 + Xk (2, AD)uoll 2
+ (hR) 72| xk(z, hD)e " ug|| 13 1
+ (hR)?||[H, xk(z, hD)le™Fuoll 2 12,
[Ix" (2, AD)e™*Fug|l 2 12+ S Rlluoll2 + lIx" (2, hD)uol| 2
B (@, D) Pl
+ hV2(|[H, x"(z, hD)le™* uo|| 13 12,
uniformly with respect to h € (0,1] and 1 < R < h™2/m,

Proof of Theorem 1.4. First of all, Proposition 2.2 and Minkowski’s inequality show
—i —i 2 1/2
|le tPUOHL:f’rLz‘ S [luollpe + Z (Z ||} (z,hD)e tPUOHL%L”) )
k=01  h

with U7 € S(1, h¥/mdz? + de2/(€)?) satisfying supp ¥% < {(z) < %™, |¢| ~ 1} and
supp ¥ C {(z) ~ h=%/™, |¢| < 1}
We first study ¥%(z, hD)e~F. The expansion formula (2.2) shows

supp Sym([P, ¥*(z, hD)]) C supp ¥?, Sym([P, ¥}(x,hD)]) € S(h~1+2m g).
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Therefore, using Lemma 2.1 we have

1P, Wz, D)l *Puqllyg 1z S b+ T(e, AD)e Pl 3 12 + hlluol 2, (4.1)

~s

where U € S(1,9) is of the form Uh(z,£) = O(h¥™z)¢(z,£/R) with § € C(RY)
supported in {|z| ~ 1} and with ¢; € S(1,g) supported in {|¢]* < (z)™}. In particular,
U? = 1 on supp ¥?. Applying Proposition 4.2 to U*(x, hD)e~*F with R ~ h~%™ and
using (4.1), we then obtain

|19} (2, hD)e™*Fuy| |L§,L2‘
< hlluoll 2 + 10(h*/ ™) (z, DYuolla + 1B(™2) (&)™~ /2 (2, D)e*Puoll 13 12

where, in the last line, we have used the fact that h~1/2+1/m ~ ()™*41/2 on supp Th.
Combining this estimate with the following the norm equivalence

m 2 ~ oim 2
lollzs = Y I6(R*™z)oll = Y [16(R™2)o[1a,
h h

we have

. 2 _ -~ g 2
> 119t (@, AD)e P uq|lpz o S lluollzz + 11(2)™* 724 (z, D)e™*Pug| 13 12
h

Since (z)™/? < e,(z, ) for any v > 0 we conclude

—i 2
Z “\I’?(x’ hD)e tPUO”L';’,LZ" 5 ”E1/2—1/mu0“iz- (4-2)
h

Next we study W2(z, hD)e *Fuy. Choose a dyadic partition of unity:

w-_1(z) + Z p(279z) =1, z € m (supp ¥}),

0<j<jn

where j, < (2/m)log(1/h) and p_;, p € C(R?) with supp ¢_; C {|z] < 1} and supp ¢ C
{1/2 < |z| < 2}. We set p;(z) = @(277z) for j > 0. Since p,q > 2, it follows from
Minkowski’s inequality that

—i 2 —i 2
195 (2, hD)e *Puollpa e < D lls(@)¥5(x, RD)e ™ Fugllp 1or-

—1<j<jn

We here take cut-off functions @_,,% € C°(RY) and \‘Ivl(’)‘ € S(1, g) supported in a small
neighborhood of supp ¢_1, supp ¢ and supp Ul respectively, so that ¢_; = 1 on supp ¢_i,
@ =1 on suppy and V¢ = 1 on supp ¥§. Set @;(z) = §(279z) for j > 0. Then,

supp 3; U8 C {|z| ~ 2, (|~ 1}, @;Uh =1 on suppy,; V.
Since the symbolic calculus shows supp Sym([P, ¢;(z)¥%(z, hD)]) C supp(p;¥¢) and
Sym([P, p;(z)¥5(z, hD)]) € S(277h71, g),
we learn by Proposition 4.2 with R = 27 that
ll0s(2) %o (2, hD)e™*Fug| 13 1~
S hlluoll 2 + llios(2) U (z, RD)uo| . + [155(z) () ~*(D) V2 ¥g (2, AD)e™*Fuoll . 1o



The almost orthogonality of ¢, and @; then yields

—f 2
S lles(e) ¥z, AD)e P uql 2y
—1<j<jn
S hlluollfs + 1198z, hD)uo| |7, + | (z) ™/ (D) Th(z, hD)e™*Fug||a 2.
We further obtain by the symbolic calculus that

)™ *(DY 2T, hD)e gl 1o ST (a, hD) )™/ Br e Pl 1+ B ol .

Now we choose a smooth cut-off function § € C$*(R?) supported away from the origin
such that = 1 on 7¢(supp ¥!). Lemma 2.1 then yields

W8 (z, hD)(1 — 8(hD))|l 2_, 1 + 12 (z, AD)(1 — §(hD))|| ;2,10 < Ch

for 2 < g < coand h € (0,1]. We hence may replace ¥§(z,hD) and Uk(z, hD)
by ¥§(z,hD)f(hD) and W(z,hD)8(hD), respectively. Then the L*-boundedness of
Ul(z,hD) and the almost orthogonality of §(h¢) imply

~ 2
>~ (klluol 32 + 14(z, AD)B(AD)uol 1) 5 lfol 35,
h

~ ~ _ — 2 _ _ 2
S 114z, AD)B(RD) @)™ Byyoe™ Pl 12 < @)™ Bujoe™Ful 1o
h

Furthermore, we have
||(x>~1/2E1/26_itPu0”L%Lz 5 ”(x>—l/2—mu/2E1/2+ye—it‘Pu0’|L%L2_
We now apply Proposition 2.6 with s =1/2 — 1/m + v to obtain

— 2
> 14(z, AD)e ™ Pug|[;z 1o < Crul|Brj-rjmivtiollzes T >0, (4.3)
h

provided that v > 0.
Summering the estimates (4.2) and (4.3) we conclude that

”e_itPuOHL2 o < CT’V||E1/2—1/m+U'U/OHL2
T

< Cro D) * ™ ug|| 1o + Cry [l &) ™47 2 g1

for any admissible pair (p, ¢) with ¢ < oo and v > 0. Finally, Theorem 1.4 can be verified
by interpolation with the trivial Ly L2-estimate. We refer to e.g., [12] for the interpolation
in weighted spaces. O

Next we prove Theorem 1.5. Hence, in what follows (in this section), we suppose that
H = L(D — A(z))? + V() satisfies Assumption A. In this case, we first obtain a slightly
long-time dispersive estimate which is better than Theorem 4.1 (2).

Theorem 4.3. Let I &€ (0,00) be an interval and § > 0 small enough. Then, for any
h € (0,1] and symbol x" € S(1,g) supported in T*(L),

|Ix"(, AD)e™ ¥ x*(z, AD)*|[ 1 1o < Cilt|™¥2, 0 < |t| < SH1=2/m,

We also learn by this theorem and the TT*-argument that
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Proposition 4.4. Under conditions in Theorem 4.3, we have
lIx"(z, hD)e_itHUOHLZTLZ‘ < hlluoll 2 + [Ix" (2, AD)uq| 12
+ RV I (2, hD)e™*Hug|| 12 12
+ RV | [H, xM(z, hD)le™ ™ gl 13 12, b € (0,1].

Proof of Theorem 1.5. The proof is analogous to that of Theorem 1.4. The only difference
compared to the previous one is the following fact:

Sym([H, ¥§(z, hD)]) = A% Sym([H", U}(z,hD)]) € S(h~1*™ g), (4.4)
which can be verified by the symbolic calculus. By Proposition 4.4 and (4.4), we have
15 (2, hD)e™ Hug|| 3 12 S 1195 (2, AD)uol| 12 + [1¥4 (2, AD) Eyj2-1/me™ o] a2
By Lemma 2.5, we then conclude
Y 119G (e, AD)e ™ ug|l7s 1o S (| Bjomtjmtl 2,
h

which, together with the estimates (4.2) and Lemma 2.2, implies

He—itHUOHLg.L?‘ < C’THE1/2_1/mu0”Lz.
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