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Spectral problems about many-body Dirac operators
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FERFERERBEZAR  K&TE F&F] ! Takashi Okaji
Department of Mathematics
Graduate School of Science,
Kyoto University

This is a joint work with H.Kalf?> and O.Yamada3.

1 Introduction

In [2], Derezifiski mentioned open problems about many-body Dirac operators.
These problems are originally formulated by B. Jeziorski who is a chemist from
University of Warsaw (cf. J. Sucher [8]). Among them there are spectral problems
on Dirac-Coulomb operator Hp¢ for a helium-like ion, which has the form

1

HDO=H(1,Z)+H(2,Z)+———,
[r1 — ro

(1.1)

where 7
H(i,Z) = cap; + mc*B — ol i=1,2 (1.2)
1

is the usual Dirac operator for an electron ¢ in the hydrogen-like ion of charge Z
and of mass m. In the above notation, r; and p;, i = 1,2 are a position vector and
the momentum operator, respectively, of the i-th electron,

r = (z1,22,3), p= —ih grad.

The vector & is a vector operator whose components ai, as, a3, together with the
operator 3 = a4 are Hermitian matrices of order four satisfying the anti-commuting
relations

ajag +aga; = 205 (5,6 =1,2,3,4).

Since the domain of the Dirac operator H (i, Z) is a subspace of four-component
wave functions depending on the three coordinates of the i-th electron, we may
consider that Hpc acts on sixteen-component wave functions, which depend on
the six coordinates of two electrons and have the anti-symmetric property due to
the Pauli principle.

Mathematically, the operator should be written as

1

ol (1.3)

Hpc=H(Z)®I+1® H(Z)+
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where z

H(Z) = cap' + mc?B — l—r—l (1.4)
is an operator in # = L?(R3; C?%). The domain of Hpc is a subspace of the
antisymmetric tensor product H ® 4 H.

In this talk we shall rigorously derive a representation of Hpc as a matrix
operator of order sixteen and give an answer to its spectral problems, especially
essential self-adjointness, continuous (essential) spectrum and absence of eigenval-
ues. Our method is inspired from a consideration on a simple related operator on

[L2(R3) ® L2(R3)]*.

2 Two-electron problems

In the nonrelativistic theory with no effect of spins, Schrédinger’s equation for
atoms having two electrons is

Aju+Au+2(E+—+——-—)u=0. (2.1)
L T2 T2
Here, F is the total energy, Z > 0, r; and r; are the distance of the first and
second electrons from the nucleus, 712 their mutual separation, and u is a function
of the six coordinates (z1,y1,21) := r1 and (x2,y2, 22) := ry which should satisfy
the relation
u(rz,rl) = —u(rl, 1'2) (2.2)

because of the Pauli exclusion principle; these argument, we have used the fact
that
L*(R3 C)®L?*(R?; C) = L*R?%; C). (2.3)

As far as we know, there is no systematic derivation of relativistic systems
in the literature in physics and quantum chemistry, so that two-body relativistic
systems with which we are concerned seem to be less familiar than nonrelativistic
ones. The first relativistic equation for two particles which we find in the book by
H.A. Bethe and E.E. Salpeter [1] is the Breit equation, which has been extensively
used in the past is a differential equation for a relativistic wave function for two
electrons, interacting with each other and with an external electromagnetic field.
It is not fully Lorentz invariant and is only an approximation. It reads

2 2 ~ ~
(E —H[1]- H[2] - :—) U= _5‘% [a‘l el “222(“2 ”2)] U, (24)
12 12 12

where ri2 =r1 —rz, rig = |r12| and
H[j] = —ep(r;) + Bime® + d; - (cpj + eA(r;)) (2.5)

is the Dirac Hamiltonian and the Dirac matrices &; and 3; operate on the spinor
of U (for electron 7). The wave function U depends on the positions r; and r, and
has sixteen spinor components.
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If we neglect the right hand side of the equation (2.4) with A = 0, then we get
the Dirac-Coulomb equation

2
(E ~ Hp[1] - Hp|2] - %) ¥ =0, (2.6)
12
where Hp[j] is the usual Dirac operator acting on the j-th electron:
_(m+V)h G wy oz
HD\II—( ;.7 —(m - V), Sk with V = =k (2.7)

Here, &; = (01,02,03) are Pauli matrices

and s
= Z%Pi-

In the relativistic theory, we have to handle a two-fold tensor product space of
C*-valued functions because the usual Dirac operator acts on four-vectors belong-
ing to L2(R3; C*). For H = L?(R3; C*), the two-fold tensor product H®2 = HOH
can be identified with

HOH = {w(l,z) = {(Dee, Yes, Vs, ¥ss) € LA(RS; C9) | 455 € L*(RS; 04)} ,

Here we have identified L2(R%; C*) with L?2(R%; C?) ® C? in the following way.
Fork=1,2, let

Z
¥4 (rv)
é
PR €3 wk) = | VHH | = (vfer+ hea) ® fo+ (e + 9gea) ® £,
¥3(re)

where

€1 = t(l’o), €2 = t(Oa 1)5 ffz t(l,o)a fs = t(O’ l)

In this notation, we see that any product function

2 2
YW RYER) = D DN Yapii(rnra)(ei ®e) ® (fo ® fr) (2.8)

abe{t,s} i=1 j=1

satisfies

(r1, x2) s b v (r1)uh(rs)
Dap(r1,T2) = %,bg,zgrl,rz; ( vi(r) ) ® < ¥1(r2) ) _| ¥ (1'1;11)2(1'2)
(r1,T2) )

¥5(r1) ¥(r2) Y (r1)vi(r2)
¥4 (r1)y5(r2)
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for any a, b€ {¢, s}.
Now we shall define two subspaces of H®% = H ® H, the anti-symmetric space
and symmetric space, denoted by Hi =H®aH and H% = H s H , respectively.

Definition 2.1

HE ={1/)(l‘1,1‘2) =t (P11, P12, P21, P22) € L2 (RE; C9) | 45 € LA(RS; C¥),
wij = Mat[ihi;] € L2(RS; M(2,C)), ¢ri(re,r1) = =% i(ry,r2), k=1,2,
YP12(ro,11) = —t¢2,1(l‘1,1‘2)},

where
a
Mat[a) = ( o “3) fora=| % | ect (2.9)
a2 Q4 as
a4

and *M stands for the transposed matriz of the 2 x 2 matriz M.

Remark 2.1 The definition 2.1 coincides with the one in the literature on quan-
tum chemistry ([6], [7]), where a slightly different notation from ours is adopted.

;I,szg 2 T%(1,2) = ~§%(2,1)

¥(1,2) = \17“(1, 2 with @ (1,2) = —¥%(2,1) (2.10)
- ’ I ss — _\]ss
Fo0(1.2) U(1,2) U3 (2,1).

Moreover, it should be pointed out that the four components \I_;“, ‘fle", i’“, Jss
in (2.10) are not functions from R3® ® R3 to C*, but they are functions from
(R® x {1, 4})® (R? x {1, 4}) to C.

In a similar way, we can define the symmetric tensor product space which we
shall use in proving our main results.

Definition 2.2
HE ={¢(I‘1,I‘2) =t (11, Y12, Y21, ¥22) € LA(RE; C'6) | gy € L*(RS; CY),
bij = Mat[hi;] € L* (RS M(2,C)), vrk(ra,t1) ="11(r1,12), k=1,2,
Y1,2(r2,11) =t¢2,1(l‘1,!‘2)}-

In the matrix formulation, we define the standard inner product of H2 or H% by

2
(ﬁ,é) = Z /I;ﬁ tr(Fij(rl,rg) E’ij(rl,rg))drldrz. (2.11)

1,5=1



3 Two-electron Dirac-Coulomb Hamiltonian

Let & = (a1,a2,a3) and 8 = ap be 4 x 4 Hermitian matrices satisfying anti-
commuting relations:

oj0E + apo; = 25jk7 0<7,k<3. (3.1)
We denote the Dirac operator for one particle by Hp:
k
Hp=a-p+mB+V(r), V(r) = I—r—IL;, (3.2)
where ' = p1,p2,p3), pj = —10r;, m is a nonnegative number and k € R. We
shall often use the notation
Hy=a -p+mp. (3.3)
Let us consider the Dirac-Coulomb Hamiltonian on ’Hi
HDC=HD®Id+Id®HD+V0(r1,r2), (3.4)
where Vj(r1,12) = ko/|r1 — 1rof.
Lemma 3.1 Let
_( B 4 -
M; = ( 4 B ) € M(2,C), j=1,2. (3.5)

Then it holds that

2B A A O

Ay, 0 O Ay

A, 0 0 A
0 A A, -2B

Mi®Ia+ 1, ® My = (3.6)

Proof: In general, the Kronecker product of two matrices X = (z;;) and ¥ =
(yi) is defined by

XQY = (xin), (3.7)

so that X ® Y is a matrix of size mn x k€ if X and Y are m x n and k x ¢ type,
respectively.

B 0 A 0 B A, 0 0
o B 0o 4 | 4 -B 0 o0
Meh=1,4 o - o |° 2®M=] 4 o B 4
0 A4, 0 -B 0 0 A, -B

(3.8)

QED.

In the previous section, we have defined H®? = H ® H as the 2 x 2 block-
wise tensor product, so that we obtain the following representation of Hpc which
coincides with the operator in the literature on quantum chemistry ([4], [5], [6]).
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Theorem 3.2 Let H®% 5> ¢ =t (J11,1;12,1,Z"21,1;22) € LZ(RS; C4)4. Then it holds
that

omly hy hy 0O Y1
(Ho® Iy + I & Ho)p = Zi 8 g Z; ﬁif . (39)
0 hi hy —-2mly J22
where
h1=(6-p1) ® Iz, ha = I3 ® (¢ - p2). (3.10)

Proof: Denote f; and f,; by i and j, respectively. Let us consider two elements
of H®?

U=0(r)®i+T(r)®j ¥="0()ei+ Ph(r)®], (3.11)
where for k =1, 2,
_ Yr1(r) ) ' _ ( "Mﬂ(r) )
Ui(r) = < ARE U.(r) = vo(r) ) (3.12)
We can regard ¥y (k = 1,2) as functions of x = (r,w) as follows.
U (r,w) = Yp1 (r)x+ (W) + Yra(r)x-(w), (3.13)

where x4+ are two orthonormal functions describing the spin of electrons.
Then it holds that

TRV = ;0¥ ®(i0l)+ ;9 ¥/® (iR])+ P20 ¥ @ (j®1) + P20 UL (i®]), (3.14)

where
wklgrlgwl(rzg Vr1(r1) Yy (r2) (r1)tp (r2)
r_ | ¥r(r)vp(rz) | o ( k(T (r2)  ra(r:)wh, (ra )
U, @V, Vr2(r1) ¥y (r2) Pr1(r1)Why(r2)  Vra(r1)Who(ra) ) (3.15)
Yra(r1)Ypy(r2)
We see that

(Ho® Id)(¥ ® ¥') = (Ho¥) @ ¥’
= {(513\1’2 +mI2\IJ1)i + (5 -]5\1’1 - mIQ\I’z)j} ® ( ,li-’r- \I’lzj)
=[G pU2 +mL¥;) @ V|| ® (i®1) + [(7 - p¥2 + mL¥;) ® U] ® (i®])

+[(@- P —mIp¥2) @ U] ® (j®1) + (7 pT1 — mb¥s) ® U5 ® (j®j()- )
3.16



Since the four vectors i®1i, i®j, j®i, j®j are linearly independent in #®2,
it holds that

(6 -9V + ml¥;) ® ¥}
n_ | (@ p¥+mL¥;) ¥
(Ho® Id)(¥ ® ¥') = @ 701 — mI¥y) @ ¥}
(6 p¥1 — ml¥s) @ T
ml, 0 @-pel 0 e v
_ o mly 0 (G p)® I U ® W
(0-p)® I 0 —mly 0 2 ® ¥y
0 G el 0 —mly V20 ¥,

(3.17)

Similarly, the identity

(Id®Ho)(¥V') = YQ(Ho¥') = (01i+¥2j)®{(FpVs+mIa ¥} )i+(F-p¥) —mI,¥h)j}

(3.18)
implies
(Id ® Hp)(¥ @ ¥')
mliy L ® (0P 0 0 \P1®\I/'1
. L ® (3 . ﬁ) —mly 0 0 ¥ ® ‘I”2
- 0 0 mlis IQ®(0_’-[3) \I/2®\11/1
0 0 I, ® (¢ p) —mls Vo ® ‘11'2
(3.19)
Q.E.D.

4 Main results

For simplicity we assume that ¢ = 1. Instead of the original Hpc, we consider a
slightly general operator, keeping the same notation Hpc, with two real parameters
k and kg as follows.

ko

_——|r1 "l (4.1)

Hpc=H®I+I1I®H +

where H = a - p'+mfB — k/|r|.
The spectral properties of the usual Dirac operator H are well investigated (For
precise informations, see [9]). Let m > 0. Then we know

1. H is essentially selfadjoint on (Cg°(R3)?) if |k| < v/3/2.
2. Oess(H) = R\(—m,m) if |k| < v/3/2.

3. If |k| < v/3/2, then H has no eigenvalues in R\(—m, m) and there are count-
able eigenvalues in (—m, m) whose only accumulating points are +m.
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As for essential self-adjointness, when the scalar potential k/|r| is replaced by any
symmetric matrix potential V (r) satisfying |V (r)] < k/|r|, it holds that
4. Gp+mp + V(r) is essentially selfadjoint on (C(R3))* if |k| < 1/2.

Now we shall state our main results for the Hpc Hamiltonian. These are just
the first attempts to answer the spectral problem.

Theorem 4.1 Suppose that |k| < 1/4. Then for any real ko, Hpc is essentially
selfadjoint on [CP(R3; CH)|®2NHE.

Remark 4.1 The same conclusion is true if we replace the Coulomb potential k/|r|
by any symmetric matriz potentials V (r) satisfying

[V(r)l < k/|r|. (4.2)
The unique self-adjoint extension is denoted by the same symbol Hpc again.
Theorem 4.2 Suppose that |k| < 1/4. Then for any real kg, it holds that

Oess(Hpclyz) = R. (4.3)

Theorem 4.3 Suppose that |k| < 1/4. If ko # 0, then H DCIH?‘ has no eigenvalues
in R.

Remark 4.2 The restriction |k| < 1/4 seems to be too strong because |k| < v/3/2
is sufficient for the essential self-adjointness for the usual Dirac operators with
scalar potentials with finite Coulomb singularities.

Remark 4.3 In the next section we will show that the operator Hpc on the anti-
symmetric tensor product has a matriz representation of order sizteen which is not
elliptic.

We also consider the following simple model operator H

\ ki | ke ko
H:=api+apz+2mB+ — + 17—+ 77—
i el " el T el
which is strongly connected to Hpc in terms of 2 x 2 block tensor product. As for
the operator H, we can prove better results than for Hpc because after making an
orthogonal change of variables in RS, it can be reduced to the Dirac operator with
a double-well potential in L2(R3; C%).

Theorem 4.4 If |k;| < v3/2 (j =1,2), H on CS°(RO)* is essentially self-adjoint
for any ko € R.

(4.4)

Let H denote the unique self-adjoint extension again.

Theorem 4.5 Suppose kg # 0. Then the essential spectrum covers the whole line,
that 1s, oess(H) = R.

Theorem 4.6 Let ko # 0. Then H has no eigenvalues, that is, op(H) = 0.
Theorem 4.7 Let kg # 0. Then the spectrum of H is purely absolutely continuous.



5 Canonical form of Hpc on the anti-symmetric space

We return to the familiar notation x; instead of r;. We may represent Hpc as
follows.

2Cm+V)y hy I 0 11_{1,1(X1, X2)
ho VIf, 0 hi ¥1,2(x1, X2)
H \I’ = - ) 51
be h1 0 Vi hg ¥a,1(x1,X2) (5:1)
0 hi  hy —(2m—-V)I4 D2,2(X1,X2)
V(X1,x2) = V(xl) + V(Xg) + VO(X1,X2). (5.2)

Proposition 5.1 Let ¥ € H®? = L2(R®; M(2,C))*. Then it holds that

2m+ V)L, (h)2 (h)1 0 Y11 Exl, ng
_ (h)2 VI 0 ()1 P1,2(X1, X2
Hoet = (h)1 0 VI (h)2 Yo1(x1,%2) |’ (5:3)
0 (R)1 (h)2 —(2m—-V)I, V2,2(x1,X2)
where

(h)1%45(x1,x2) = Mat [((5"15'1) ® L)y (xa, Xz)} = p1vij(x1, %) - &, (5.4)

(h)2vs(x1,%x2) = Mat[((b R F -ﬁz))fﬁij(xl,xz)] = pa - O1ij (X1, X2). (5.5)

Proof: Let
a
a b c
e @ 0= (56)
d
It follows that
Mat[(A® Io)vecM| = M *A, Mat[(I ® B)vecM] = BM (5.7)

for any 2 x 2 matrices A and M = (¥ ® ¥}), we arrive at the conclusion. Q.E.D.

Proposition 5.2 7-[,24 is an invariant subspace of H®? = H ® H with respect to
the operator Hpc.

Proof:  If Y12(x2,x1) = —( %21)(x1, X2), then (Pah12) (x2, X1) = —(F1 21) (X1, X2).
We shall check the first component of Hpc¥. Recall

h1= (1) ® 2, ho = I ® (G - p2). (5.8)
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It holds that

3
()12 + (R)19pm) (x2,%1) = & - Pavhna(xa,%1) + ) prgoan (X2, %1) (')
=1
3
=~ - p1("21) (x1,%32) — sz,j(t¢12)(x1,x2)( ;)
=1

= —Y((h)1%21) (x1,%2) —* ((h)2¥12) (X1, X2)
= —{(h)2v12 + (h)1%21) (%1, %2). (5.9)

As for the second component, it is seen that

3
((R)2¥11 + (h)1%22) (%2, X1) = G - Patb11 (X2, X1) + Zpl,j¢22(x2;x1)(t‘7’j)
=1

3
= —& - p1(%11) (X1, X2) — ZP2,j(t¢22)(X1,x2)(t‘7j)
j=1

= —Y{((h)1%11) (x1,%x2) —* ((R)2v22) (X1, X2)
= —Y(R)2v11 + (R)1%22) (%1, X2). (5.10)

As for the third and fourth components, the similar computations yield

((R)1%11 + (R)2az) (x2,%1) = —((R)1%11 + (h)2v22) (%1, X2) (5.11)

and
((h)1912 + (h)2¥21) (X2, X1) = —((R)1%12 + (h)2vh1) (X1, X2). (5.12)
Q.E.D.

We shall make an orthogonal change of coordinates

1 1
—(x1 +X2) =y1, —=(X1 —X2) =Yy2. 5.13
\/i( 1+X2) =Yy1 \/i( 1—X2) = Y2 (5.13)
It holds that
1 1 ko
V(x1,%2) = V2k + + . 5.14
(1, x2) (IY2“YI| ly2 +y1|) V2]y2] (5.14)
and 1 1
ﬁxl = —ﬁ@yl +ﬁy2)v ﬁxz = E(ﬁyl _ﬁy'z)' (515)

In the new coordinates (y;,y2) we have the following representation.
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Theorem 5.3 Let

V+2m his ho 0 "%:1,1()’1, YQ)
~ hi2 V 0 ha1 Y1,2(¥1,¥2)
HpoV = ~ 5.16
be ha1 0 Vv h12 Y21 (¥1,¥2) (5.16)
0 ho1 hi2 V —2m Y2,2(¥1,¥2)
with 1 1
hig = Efz ® G Py, ha = —\7—55‘3@1 ® I. (5.17)

If ¥, ® € H?, then
(Hpc¥,®) = (Hpc¥, ®). (5.18)

The anti-symmetric property implies the following identities.

Lemma 5.4 Suppose that F,G € 7-{';’1. Then for any quartet of indices i, j, k, ¢,
(G 51 ® [2)Fy,Gre) = (L ® & - $5) i, Gar), (VFyj, Gig) = (VEji,Gj) (5.19)

if V is a diagonal matriz satisfying
V(x1,%x2) = V(x2,X1). (5.20)

Proof: Letx; = (xg.l) , x§2),x§3) ),7=1,2. Bothy e H3 and p € H?, satisfy that
forany i,7 =1,2and n =1,2,3

8 m Vi (X1, %2) = vec[d, m Wjil(X2,%1), 8 mFij(x1,%2) = —vecld, ) Yol (x2,x1).
2 1 2 1
(5.21)

Hence for any ¢, ¢ € H%,
(I2®d - ngl/_;z'j)(xh X2), Pre(X1,X2))
= /RG tr((6 - Vo %ij) (X1, X2) Bre(x1, X2)) dx1dx2

= /1;6 tT(E -V, tl/)j@(Xg,xl) @k(xz,xl))dxldxz

= /RS tr((Vx,¥ji(x2,x1) *0) Py (x2, X1)) dxadx;
= (5 - Vx, ® Loji(X1,%X2), Bow (X1, X2)). (5.22)
Here, we have used
tr(AB) = tr({AB)) = tr('B 'A) = tr(*A 'B). (5.23)
Similarly, we see that for any 9, ¢ € 7-[124,

(2®0d- sz’»/_"ij)(xl,xﬂ, Pre(x1,X2))
= (5 Vi, ® Dothji(%1, X2), Gow (%1, %2)). (5.24)
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Q.E.D.

Proof of Theorem 5.3 We shall calculate delicate terms of the inner product.
First, consider the inner product of the first components of hpc¥ and ®:

- - . 1 - o L.
(h2¥12 + h1vp21, é11) = \—/—5((12 ® & - Py, Y12, d11) + (5 - Py, ®I2¢21,¢11))

]. - - I g =g n Y
+ 7__5( — (L ® 7 - Py, ¥12, $11) + (G - Py, ® Iaypa, ¢11>)-
(5.25)

By virtue of Lemma 5.4, it holds that
~ (I ® & - Py, %12, 611) + (7 - By, ® Iota1, 1) = 0. (5.26)
Next consider the sum of the second and the third components of hpc¥ and ®:
(hatp11 + habaz, B12) + (a1 + hotdag, da1)
1 o T
=7 ((Iz ® G - Py, V11, $12) + (I2 ® & - Py, V22, P21)
+ (G- By, ® Ipthaz, ra) + (7 Py, ® 121;11,521))
1 - N — - - - - —
+ 7 ((—12 ® G - Py, Y11, $12) + (—12 ® & - Py, 22, P21)
+ (G * By, ® Ixhag, d12) + (7 - By, ® Iahn1, 521))- (5.27)
By virtue of Lemma 5.4, it holds that

(-Ih®d 'ﬁyﬂ/;u,c;u) + (- ®7d- ﬁyﬂ/yzz, ba1)

+ (5 - By, ® Inthag, d12) + (7 - By, ® Inth11, d21) = 0. (5.28)
The fourth components can be calculated by the same manner as for the first
components. Q.E.D.

Theorem 5.5 Let Ty and Ty be two orthogonal transformations in M (16, C) such

that
1 (I Ig 1 (14 14)
Ti=— , T;=85685, == . 5.29

1 \/5(18 —18> =29 v2\ 1+ —Is (5:29)

Then it holds that
T, T HpeTh T

hiog+ho1 +V mly mliy 0
_ mly —hig+ho1 +V 0 mliy
- mly 0 hig —hy1 +V mliy
0 mily mly —hig—ho1 +V

(5.30)
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with
(5.31)

LA )+ ko
lya—yil  ly2+yil/  V2lya|

Remark 5.1 The eigenvalues of the symbol of the operator Hpc with V =0 are

V(Xl,XQ) = ﬁk(

0, \/2lo(Dy,)[? +4m2, —/2lo(Dy,)[2 + 4m?

with multiplicity 8, 4, 4, respectively. Here, 0(Dy,)(£) = £ € R3 denotes the
vector-valued symbol of Dy, .

Dy, u= (2#)_3/ ! 1720 € ey (2)dzde (5.32)
R3IxRS3

foru € C°(R3; C).

6 Proofs of spectral properties of Hp¢

6.1 Essential self-adjointness

Proof of Theorem 4.1: In view of Theorem 5.3, we can identify Hpce with Hpe.
Hereafter we use the same notation Hpc instead of Hpc.

Lemma 6.1 Let o(t) € C°(R)NL*(R). Then
[Hpc, ¢(|x1 — x2)] = 0. (6.1)

Let x € C§°(R) satisfy that 0 < x < 1,

x(t)={ g ‘2 3 (6.2)

and B, be a multiplication operator defined by B, = x(n|x; — x2|) and
Vi, = BnV B, (6.3)

Lemma 6.2 Hpc,, = Hpco + Va is essentially selfadjoint on [CP(R3; C*)|®2n
H,.
Lemma 6.3
lim (H*Bnt, % — Bath) =0 (6.4)
n—oo
for any ¢ € D(H*).
Thanks to Theorem 5.2 of Thaller [10], from Lemma 6.2 and Lemma 6.3, it follows
that Hpc is also essentially selfadjoint on [C$°(R3; C*)]®2 N HY.

In order to prove Lemma 6.2, it suffices to prove that Hpc is essentially self-
adjoint in H®2 because [C°(R3; C*)]®2 N H2 is an invariant subspace.
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We consider an orthogonal transformation 77 in M(16, C)

1 Iy Iy )
T, =— . 6.5
1 \/-2- ( 18 _-[8 ( )
Then it holds that
-1 a 0 _1(fa+b a-b
T (0 b>T1“2(a—b a+b )’ (6.6)
— 0 a a 0
Tll(aO)le(O _a), (6.7)
so that it follows from Theorem 5.3 that
ho1 +Va+m hi2 m 0
1 _ hi2 hoy+V,—m 0 m
Tl HDC,nTl - m 0 —ho1 + Vo+m hio
0 m hi2 —ho1+V,—m
(6.8)
Let us consider an orthogonal transformation 75 in M (16, C)
1 (I, I )
Th=8S®S, S=— . 6.9
2 \/§ ( I4 _14 ( )
Then it holds that
T, ' T ' Hpo n Th T
( hi2 + ha1 + Vp mly mliy 0
_ mly —hia+ho+V, 0 mliy
- mly 0 hia — ho1 +V, mly
\ 0 mly mly —hi2—ha+V,
( Hyy Hyy Hyz Hy
Hsy Hiy; Haz Hoay
= + Vo 1q6. 6.10
H3; Hzp Hsz Hay 16 (6.10)

\H41 Hyo Hys Hyg

Now we may assume that m = 0 because any bounded perturbation does not
affect the essential self-adjointness of our operator. Then Hpc,; can be reduced to
four types of operators H,; (j = 1,2,3,4) acting on LZ(R®)* = L?(R®)?*2, where

-1 . . . .

Hyy =hio+hoy = V2 [I2®(0"p1)+(0’-p1 ®I2], (6.11)
-1 — — - —

Hyp=-hip+hy=v2 [-L& (@ p1)+ (6 p1)® I, (6.12)

H3z3 = —Hjp, Hyy = —Hy;. (6.13)

recall p1 = —~iVy,.



We shall diagonalize H; by using a unitary transformation. For y1 = (n1,72,73)
define p; = —i0,,. Then it holds that

T P3 P1 — P2
o-p= . , 6.14
P ( p1 +1p2 —D3 ) ( )

The two by two matrix operator & - p'is formally supersymmetric, so that it can be
diagonalized by a unitary transformation (cf. [9]).

Lemma 6.4 Let
! ' 1 0
g = (a'la0'2)a P = (p19p2)7 o3 = ﬁZ = 0 —1 (615)

and define a unitary transformation U in Lz(Ri’,l)2 by

— Iy I Loy
(Ipl+ps)a —Bao’-p' 1 _ (lpl+p3)la+B20’-p (6.16)

Vel +p3)2 + PP’ V(pl+ o2+ PR

Then it holds that

(@ - p)U = UlplB2. (6.17)

Remark 6.1 Each element of U is defined as a Fourier multiplier.
oDula) = (2n)* [[ eV ta@ut)dyde, ue IR ©). (6.9
RS

Proof: In view of &-p'= o' - p’ + p3fs, it holds that

(@ - P){(Ipl + pa)Ia — Boo’ - p'} = Balp|* + Iplo” - 0’ + pslp| B
= {(Ipl + ps)I — oo’ - P} |pIB2, (6.19)
{(Ip| + p3)I2 — B2’ - p'}{(Ip| + p3)I2 — B2o’ - P'}"
= {(Ip| +p3)I2 — B20’ - p'}{(lp| + p3) T2 + Bac’ - p'}
= (Ip| + p3)* + Ip'I*. (6.20)

Q.E.D.

Proposition 65 Let T =U®U and ¢ = t(¢11,1/)12,’¢21,’¢22) € L2(R6; 04).
Then, we see that

0 0 0 0 2lpl 0 0 O
_ 0 2p] 0 O _ 0 00 O
VEHRTY =T | o “00 g o |¥ VRHRTU=T| o o o o [|¥
0 O 0 0 0 0 0 —2p

~~~

6.21)
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Proof: We shall use the following unitary transformations in L2(R3)*.

Uy =UQIL, Uy=Lo3AU =UaU. (6.22)
Then it follows that
{(0’ - p' +p3fB2) ® I}Ur = Urlp|B = Ur{|p|I2 ® (—|p|I2)} (6.23)
and
{Led pYUs = (6 -p® 7 - p)Us = Ua(|p|B2 & |p|B2)- (6.24)
Therefore, we see that
lp|B2 O
V2hioUs = Uy = (I, @ U)(I, ® |p|B2), (6.25)
0 |p|Ba
I
Vit = (B2 0 )= ennen. 629
Hence it holds that
V2HT = T{-I, ® |p|B2 + |p|B2 ® Iz} (6.27)
and
V2H\ T = T{L; ® |p|B2 + |p|B2 ® I2}. (6.28)
Q.E.D.

From this proposition, it follows that (Haa + V,14)¥1 = f; is reduced finally to
an equation in L?(RS%; C*%)

0 0 0 0
0 v2p| 0 0 5o — F
0 0 0 0
with
Vo =T W,T, fi=T AT, T = ¢ =t (¥11, Y12, Ya1, ¥22)- (6.30)

Similarly, (Hy1 + V,)¥2 = f2 is reduced finally to

V2l 0 0 0
0 00 0 ~ =

0
0 0 0 —v2p

with T-10 = 9.
Let H be Hy; or Hys, and P and Q are orthogonal projections of L2(R3)* such
that
P+Q=1Id PQ=QP=0 (6.32)



and P and Q are invariant with respect to H. We may assume that by suitable
choices of P and Q

Vel 0 00

T'HT)P=| © —v2lpl 0 0 , (T"'HT)Q = 0. (6.33)
0 0 00
0 0 00

Therefore, each of the equations (6.29) and (6.31) can be represented as follows.

_( K(P)+PV,P PV,Q\ , _
H(P,Q) = ( ov.p ov.0 ) Y=, (6.34)

where

K(p)=v2 ( 'g' —(l)pl ) (6.35)

Recall

V2k V2k
+
ly2 —y1l  ly2+yi

T%T*:x(nlm)[ + \/;(;ﬂ}x(nlyzl)fz- (6.36)

Lemma 6.6 Suppose that |k| < 1/4. Then, H(P,Q) is essentially self-adjoint.

Proof: It suffices to show that for sufficiently large u,

H(P,Q) + pil, = L*(R3; C*). (6.37)
The equation
(H(PvQ) :tZ/LIz) t(ul,u2) = t(f17f2)' (638)
is written as
(K(p) + Wi + ,uz'Ig)ul + Wigua = f1 (6.39)
Waruy + (Wag £ pilp)up = fo, (6.40)
where

Since K (p) + W11 and Wy, are essentially self-adjoint if |k| < 1/2, we denote
their self-adjoint extension by A; and Aj, respectively. Then it holds that the
closure of

(4; % pil)(D(4;)) = L*(RS; C?) (6.42)
and the inverse (A4, + pily)~! exists for any j = 1,2. From the equation
Uy = (A] + /L’i[g)—l(fl — W12U2), (6.43)

it follows that the equation (6.40) gives that
W21(A1 + ,u,iIz)_l(fl — Wiaug) + (A2 + uiIQ)UQ = fa. (6.44)
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Hence, we see that

(= War(A1 £ pila) 'Wig(Az £ pila) ™! + I2) (A2 £ pils)uy

= fo — War (A1 £ pily) "' fi. (6.45)
Combining Hardy’s inequality with a partition of unity, we see that

[Warul < 2lk|IIV2181u]l + Cullull < 21k]| K (p)ull + Ci|lu| (6.46)

and
(1= 2|k I K (p)ull < [|A1u]| + C2||u|l (6.47)

for any u € C{°(R3; C?). Therefore, it holds that there exists a positive constant
C such that

crN— 2|k _
[Wai(Ay £ pily) ™| < 1—_|2—|'7C—| +Cu L. (6.48)
From
[Wi2(Ag £ pila) ™! < 1 (6.49)
it follows that
= CrN— 2|k C
IWa1 (A & pily) ™' Wia(Ag £ pily) 71| < 1—;1-2—:;' o (6.50)

Hence if the right hand side of the last inequality is strictly less than 1, then
~Wa1(A; £ pily) " 1Wig(Ag + pils) ™1 + I is invertible in £(L2(R3; C2)). In view
of (6.43) and (6.45), we can show the surjectivity (6.37) if [k|] < 1/4 and pu is
sufficiently large. Q.E.D.

Lemma 6.7 Suppose that |k| < 1/4. Then for any real kg, H(P, Q) is essentially
selfadjoint on [C§°(RS; C?%)]®2.

Proof: Because of the cutoff function, the scalar potential V,, has singularities
which do not coincide. It is known that a real valued multiplication operator V;, is
a selfadjoint operator (cf. (5.3) in Page 92 of [12]), so that the unitarily conjugated
operator T~1V,,T is also selfadjoint.

On the other hand, as for the remaining operators, we are able to use a technique
similar to the one developed by Vogelsang ([11]); see Lemma 6.8, which is stated
below. Q.E.D.

Lemma 6.8 Let Q € LS, (R:*\{O})‘D(4 be an Hermitian matric with

Q1) < ply1—b™", 0<p<1/2, be R (6.51)
Then for allv € H'(R3)* we have

— 2 —
lly1 = 87 vl L2mey < T———2I/ﬂ“(|pl| + Q(y1)vllL2(rs)- (6.52)



Proof: Hardy’s inequality implies

[ly1 = b~ u|| < 2||B1v)l = 2|||B1lv]l < 2l(1B1] + @)v|| + 2| Qu]), (6.53)

which means
(1 = 2|Dllly1 — b~ ull < 2/(51] + Q). (6.54)
Q.E.D.

Corollary 6.9 Suppose that |k| < 1/4. Then for any real ko, Hpc is essentially
selfadjoint on [CS°(R8)4)®2,

Proof: It holds that HpeT = T(Hpco + M + 17”), where

A1 0 0 0 0 mI4 mI4 0
_ 0 A2 0 0 _ mI4 0 0 mI4
Hpco = V2 00 <A, 0 "M | mi, 0 o0 mi
0 0 0 —A1 0 mI4 mI4 0
(6.55)
with
ol 0 0 O 0 0 0 O
_ 0 00 O 10 lpl 0 O L
A= 000 0 , Ao = 0 0 —lp| 0] p=—iVy,. (6.56)
0 0 0 —|p 0 0 0 0

From Lemma 6.7, it follows that if m = 0, then Hpc is essentially selfadjoint.
Hence, Kato-Rellich theorem yields that Hpc is also essentially selfadjoint. Q.E.D.

The tensor space H®? has an orthogonal decomposition as follows.
H®? = HE o U3, (6.57)

where ’H% is the symmetric tensor space, and ’HzA the anti-symmetric tensor space.
Let us consider the orthogonal projections Pg and P, to H% and H?, respectively.
Hence, from Corollary 6.9, it follows that the closure of

(Hpc +1)([C5°(R%)"]®?)
is equal to #®2, so that the closure of
(Hpc i) ([C(R%)122 nHE) (6.58)

is equal to HZ. Q.E.D.
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Remark 6.2 Let us denote the symbol of the operator Hpco by o(Hpc,)
o (A]) 0 0 0

_ 0 o(A2) 0 0
o(Hpco)©) =V2| 0" _o(hs) O (6.59)
0 0 0 —o(A1)
] 0 0 O 0 0 0 O
1 0 00 O 1ok o0 o 3
U(Al) - 0 0 0 0 ) U(AZ) - 0 0 '—l&' 0 ’ 5 € R”. (660)
0 0 0 —j¢ 0 0 0 O
The set of eigenvalues of the matriz o(Hpc,0) + M consists of
0, V2[|* +4m?, —/2[¢? + 4m?
with multiplicity 8, 4, 4, respectively.
6.2 [Essential spectrum
Proof of Theorem 4.2
Consider the operator in L2(R5)%:
Hy=(@ p1+mB)®I+1&® (a-ps +mp) (6.61)
and
Hpc = Ho + k/|x1| + k/|x2| + ko/|x1 — x2|. (6.62)
Let A > m, p > m. Let take £, n € R3\{0} such that
€2 +m?2 =22, n)?+m2=p? €-7=0. (6.63)
For each £ € R, let u,v € C*\{0} be normalized eigenvectors to the equations
(a-&+mpBlu= Ay, |u|lcs =1, (6.64)
(a-&+mBv=—pv, |v|cs =1, (6.65)
respectively. Define two functions by
Un(2) = Xn(2)eCu(f), vn(e) = xn(2)e v (§), (6.66)
where x, € C$°(R3) is a nonnegative function such that
/ Ixn(@)[2dz = 1, suppxn C {z € R® | n < |z] < 2n}. (6.67)
R3

Then it holds that {un(z)} and {vn(z)} are two sets of singular sequences in
L?(R3)* such that

”"U’"«HL2 = "’Un"L2 = 15 Up — Oa Up — Oa weaklya (668)
[Ho+mfB — Nup — 0 (n — 00), suppu, C {z € R* | n < |z| <2n} (6.69)
[Ho +mpB + v, — 0 (n— 00), suppvn C {z € R® | n < |z| < 2n}. (6.70)

Now we shall construct a singular sequence in H3.



Lemma 6.10 )

= E{unz ® Vp — Up @ Up2} € H, (6.71)
Proof: Let us consider F = fi ®i+ f2®j, G =91 ®i+ g2 ®j € L?(R3)*, where
fi» 95 € L*(R3®)2. Recall the definition of u ® v:

wn’

FQG = (/1®91)®(i®1)+(f1®92)®(I®])+(fo®91)®(i®1)+(f2®92)®(j®]), (6.72)

where f; ® gx (j,k = 1,2) are defined as

u1; ® vk u1,;(x1)v1,5(x2)
u1,; ® vk u1,5(X1)v2,k(X2)
i Qg = = ) 6.73
I3 ® 9% ug,j @ vik ug,j(x1)v1,k(x2) (673)
Un,j ® V2,k ug,j(X1)va,k(X2)

Ui,z Ui,k
for fj={ "™ )andgo=( " ).
or Js (Uz,j ) ane gk (Uz,k)
It follows that
FRG-GRF=(fi®n-n1®f1)®([(0)+(fi®gp-9® f)®(1®])

+ (2091 —920f1) Q)+ (2092 —92® f2) ®((®])
€ M. (6.74)

Q.E.D.

From Lemma 6.10, it follows that {wy} becomes a singular sequence of Hpo —
A + p. In fact, it satisfies that as n — 0o

k k
Wn + Wy, + EITO;Q—Iwn —0, (6.75)

k
(Hpc — (A — ) | o]
wn = 0, [lwal = 1. (6.76)

The last assertion ||wy,|| = 1 follows from the fact that the eigenvectors u(¢), v(§)
corresponding to the different eigenvalues are orthogonal to each other. Since

(m’ OO) + (—OO, _m) = (-—OO, OO),

we can conclude that oess(Hpc) = R. Q.E.D.

6.3 Absence of eigenvalues

Theorem 6.11 Let m > 0. Suppose that |k| < 1/4. Then for any real ko, Hpc
has no eigenvalues in R\(—2m,2m).
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Proof of Theorem 6.11
It suffices to prove that there exist no eigenfunctions in H®2?. We can regard

Hpc as a sum of three operators on H®?:
Hpc=Hi+V(z)+mpBy +mp_, (6.77)

where H; is a symmetric differential system of first order with constant coefficients
satisfying
’i[Hl,.'l'-p] =H1, (6.78)

V is a scalar homogeneous function of degree —1, and

I, 0 0 0 Iy 0 0 O
o1 o o o -, 0 0

Ar=1 10 o -Iy 0 B-=1 90 o I, 0 (6.79)
0 0 0 -I4 0 0 0 -I4

In view of Theorem 4.1, we can prove our statement by use of a technique of
Weidmann ([12] Theorem 10.38) and Kalf [3] because A — (mfB4+ + mp-) is strictly
positive or strict negative if |A\| > 2m. Q.E.D.

Proof of Theorem 4.3 We first consider the case where m > 0. In order
to prove the absence of eigenvalues in the whole line R, it suffices to investigate
the eigenvalues in (—2m,2m) of the following operator Hy, in L?(R3)1® with a
parameter yo

H11 mI4 mI4 0
mI4 H22 0 mI4

- -1
Hy, = mly 0 —Hy mls + TV, T, (6.80)
0 mI4 mI4 —H11
where
Hiy =T Y(hig + ho1)T, Hyo = T~ (=hia + ha1)T. (6.81)

Since the essential spectrum Hy, coincides with (—oco, —2m] U [2m, 00) and +2m
are not eigenvalues, the multiplicity of every eigenvalue in (—2m, 2m), if it exists, is
finite. Hence it follows from the analytic perturbation theory that the eigenvalues
A;j(y2) are real-analytic in |ys|. Therefore, if they existed, we would have

Aj(y2) = I—:%l (6.82)

for small |y2|. This is a contradiction because |A;(y2)| < 2m and kg # 0. When

m = 0, we can modify the above reasoning to arrive at the conclusion. Q.E.D.
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