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Quantum scattering in crossed constant magnetic and
time-dependent electric fields
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1 Introduction

In this article, we would like to mention the results of our paper [1], which is concerned with
the study of the quantum dynamics of a charged particle in the presence of crossed constant
magnetic and time-dependent electric fields.

We consider a quantum system of a charged particle moving in the plane R? in the presence
of the constant magnetic field B which is perpendicular to the plane, and the time-dependent
electric field E(t) which always lies in the plane. For the sake of simplicity, we write B
as (0,0, B) with B > 0, and E(t) = (E;(t), E2(t),0). Then the free Hamiltonian under
consideration is defined by

Hy(t) = Hop — gE(t) -z, Hop = (p—qA(x))*/(2m), (L.1)

where m > 0, ¢ € R\ {0}, z = (z1,22) and p = (p1,ps) = (—1i0;, —i0>) are the mass, the
charge, the position, and the usual momentum of the charged particle, respectively, and

A(z) = (—Bz2/2, Bz, /2)

is the vector potential in the symmetric gauge. Here we put E(t) = (E1(t), Ea(t)). Ho,L is
called the free Landau Hamiltonian. It is well known that

o(Ho,L) = opp(Ho,L) = {]w](n+ 1/2) ] neNU {0}}

holds, where w = ¢B/m. |w| is called the Larmor frequency. Each eigenvalue of H ;, which
is called a Landau level, is of infinite multiplicity (see e.g. Avron-Herbst-Simon [5]). In fact,
this can be seen as follows: First of all, we introduce the momentum D and the pseudomo-
mentum k of the charged particle in the presence of B as

D=p-qA(z), k=p+qA(z).
Writing D and k as (D, D;) and (ky, ks), respectively, we have
(D1, D3) = (p1 + ¢Bz2/2,p2 — qBx1/2), (k1,k2) = (p1 — ¢Bz2/2,pe + qBz1/2).
One of the basic properties of D and k is that

i[Dy, Do) = —qB, ik, ko] =¢B, i[D;k]=0 (j 1€ {1,2}). (1.2)
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Putting
U = ¢'9Bz122/2ip1p2/(4B) ,

we have . . . .
U*D\U = qBze, U*DyU = p,,
U*klg =h, ﬁ*k20=qB$1

(see e.g. Skibsted [22]). In particular, we have
U*Hy U = 1d ® {p2/(2m) + mw?z2/2}

on U*L*(R?) = L*(R,,) ® L*(R,,), which implies the infinite multiplicity of each Landau
level. In order to deal with the one dimensional harmonic oscillator pZ/(2m) + mw?z3/2, we
introduce the annihilation operator @ and the creation operator * as

a = (|g|Bz2 + ip2)/v/2|q|B, @ = (|q|Bx; —ip2)/+/2]q|B.
Then we have
p3/(2m) + mw?z3/2 = |w|(@*d + 1/2).
We also put

b= (|g|Bz1 +1ip1)/\/2)a|B, b = (|g|Bx: —ip1)/+/2l4|B,

and introduce a, a*, b and b* as

a=Ual* = (¢D1/lg| +iD,)/\/20aB, o* =Ua*U* = (¢D:/|g| - iD»)/+/2l4]B,
b=UbU" = (iki + qk2/lq|)//2|a|B, b = Ub*U* = (—ik; + qk2/|ql)/+/2]4|B.

Then we obtain an complete orthonormal system {(b*)* (a*)"¢o/ VI'n!} ¢ mye(Nuoy)? of L*(R?),
which consists of eigenfunctions of Hy;, where ¢o(x) = +/]q|B/(2r)e~191B=*/4, In fact,
(6*)!(a*)"¢o/ VIIn! is an eigenfunction of H, 1, belonging to the Landau level |w|(n + 1/2).

We see that Hy(t) is essentially self-adjoint on C5°(R?) for any t € R, by virtue of Kato’s
inequality associated with Hy ;, and Nelson’s commutator theorem (see e.g. Reed-Simon [19]
and Gérard-Laba [15]). Its closure is also denoted by Hy(t). Then Hy(t) can be written as

Ho(t) = D/(2m) — a(~qB*/2)B(?) - A(k - D)
=D?*/(2m) —a(t)- D+ at) - k (1.3)
= (D — ma(t))?/(2m) + a(t) - k — ma(t)?/2

where
a(t) = (en(t), a2(t)) = (Ez(t)/B, —Er(t)/B) = —2A(E(t))/B®

is the instantaneous drift velocity of the charged particle. Here we used

k—D=2gA(z), A(A@)=-(B/2), y-Al)=—AQ) .



We note that
(a(t),0) = E(t) x B/B?,

and that a(t) is independent of the charge ¢ € R\ {0}. We also see that when a(t) # 0,
o(Hoy(t)) is purely absolutely continuous and

o(Ho(t)) = R,

by virtue of (1.3).

When E(t) = (Ey, E»), that is, E(t) is independent of ¢, Skibsted [22] essentially obtained
the following factorization of the unitary propagator Uy(t, s) generated by Hy(t):

UO (t, 0) =U, (t)e_itHo‘L Uy (0)*, U, (t) — eitmaz/ze—ita-pei(th(a)+ma)-a:, (1.4

where

a = (a1, 0) = (Ey/B,—E,/B) = —2A(E)/B?
is the drift velocity of the charged particle, where E = (Ey, E»). Since Hy(t) is independent
of ¢ in this case, Uy(t, s) can be represented as e~t~*)Ho by writing this time-independent
Hamiltonian Hy(t) as Hy = Hy 1 — ¢F - z. Uy (t) is a version of the Galilei transform which
reflects the effect of the magnetic field B. We note that U;(0) = €™*® # Id because of

a # 0.
After that, for a general time-dependent electric field £(¢), Chee [6] proposed the following

factorization of Uy(t, s):
Us(t,0) = M(R(t))e*Hor J(u(t))*,
M(R(t) = ¢ JE R(s)-qA(R(s)) ds e iR(t)9A(2) e—iR(t)'p, (1.5)

J(u(t)) = ¢ J3 u(s)-qA(u(s)) ds ¢it(t)9A(@) -in(t)p

where R(t) = (Ry(t), R2(t)) and u(t) = (uy(t), ua(t)) are given by

t t o
R(t) = / a(s)ds, u (%) = / C?Sws sinws) fon(s) ds, (1.6)
0 us(t) o \sinws cosws as(s)
with R(t) = dR(t)/dt and u(t) = du(t)/dt. Here we note that R(t) = a(t), and that one has
R(t) = ta when E(t) = E. What we emphasize here is that ¢~ /o B(s)4A(R() ds 1 (R(t)) and

e~i Jo u(s)9A(i(=)) ds J (1 (1)) are just the magnetic translations T'(R(¢)) and S(u(t)) generated by
k and D, respectively, where

T(y) = e~ WIAR) p—iyp — p—iyk S(y) = W 9A@) o—iyp — o—y-D

)
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for y € R? (seee.g. [5] and [15]). For reference, we state one of the features which distinguish
between the Galilei transform U, (t) and the magnetic translation T'(ta), where « is the drift
velocity:

U1(t)‘$U1(t) =z + ta, Ul(t)*DUl(t) = D + ma,
T(ta)'zT(ta) =z +ta, T(ta)’DT(ta) = D.

On the other hand, in the absence of the magnetic field B, it is well known that the following
factorization of Uy(t, s), which is called the Avron-Herbst formula, holds (see e.g. Cycon-
Froese-Kirsch-Simon [7)):

Us (t, 0) — e—iao(t)eibo(t)-ze—-ico(t)~pe—itKo’ (1.7

where Ky = p?/(2m), and

t t t
bo(t) = / qE(s)ds, &(t) = / b2(s)/mds, a°(t) = / b°(s)?/(2m) ds. (1.8)
0 0 0
Inspired by these two formulas (1.5) and (1.7), we have derived an Avron-Herbst type formula
for Uy(t, s):
Theorem 1.1 (Adachi-Kawamoto [11). The following Avron-Herbst type formula for Uy(t, 0)
Uo (t, 0) — e—ia(t) eib(t)czT(c(t))e-—itHo,L’ T(c(t)) — e—ic(t)-qA(a:)e—ic(t)-p (19)

holds, where b(t) = (by(t), b2(t)), c(t) = (c1(t), c2(t)) and a(t) are given by
bi(t)\ _ [*[ cosw(t—s) sinw(t—s)) [gEi(s)
(bg(t)) t— /0 (— sinw(t — ) ::osw(t - 3)) (qu(s)) ds, (1.10)
c(t) =/0 b(s)/mds, a(t)= /0 {b(s)?/(2m) + b(s) - gA(c(s))/m} ds.

Here we note that by taking B as 0 formally in (1.9) and (1.10), one can obtain the Avron-
Herbst formula (1.7) in the absence of the magnetic field B because w = 0 and A(z) = 0.
Hence we have obtained a natural extension of the Avron-Herbst formula to the case of the
presence of the magnetic field B, by virtue of the magnetic translation T'(c(t)).

From now on, we will discuss a scattering problem for the free Hamiltonian Hy(¢) and the
perturbed Hamiltonian H(t) = Hy(t) + V(z), where the time-independent potential V()
satisfies that |V (z)| — 0 as |z| — oo.

Now we explain an advantage of the Avron-Herbst type formula (1.9) from the point of view

of the scattering theory: Put

E,4(t) = Eo(cos(vt +8), sin(vt + 6))
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for Ey > 0, v € Rand § € [0,27). We note that |[E, 4(t)| = Eo. Now we consider the case
where E(t) = E, 4(t). By a straightforward calculation, we have

R(t) = {—EO(((Scos)(Vt), (6sin)(vt))/(vB), v #0,

Ey(tsinf, —tcosb)/B, v=0,
u(t) = —Ey((6 cos)(#t), (dsin)(9t))/(PB), ¥ #0,
Eo(tsinf, —tcos 6)/B, =0,

where we put 7 = v 4+ w, (d cos)(s) = cos(s + ) — cos§ and (é sin)(s) = sin(s + ) — sin 6
for the sake of brevity. Hence we see that R(t) is growing of order |¢| when v = 0 because
of |R(t)| = Ey|t|/B although R(t) is bounded in ¢t when v # 0, and that u(t) is growing
of order |¢t| when 7 = 0 because of |u(t)] = Ey|t|/B although u(t) is bounded in ¢ when
7 # 0. In consequence of (1.5) and the growth of R(t) or u(t), the possibility of the existence
of scattering states for the system under consideration in the case where v = 0 is suggested:
In fact, it follows from

e HorDetHor)  fcoswt —sinwt) (D
e~itHor DyeitHor | = \sinwt coswt D, )’
which can be obtained by (1.2), that

e—itHO’LS(u(t))* — e—itHg,Leiu(t)-D — eiﬁ(t)'De'—itHO,L — S(a(t))*e-—itHo‘L

holds, where @(t) = (4, (t), @2(t)) with

ay(t)\ [ coswt sinwt) [u(t)
dp(t))]  \ —sinwt coswt] \uy(t)
[t cosw(t—3s) sinw(t—3s)) [ai(s) d
- /0 —sinw(t —s) cosw(t—38)/) \as(s) 5
Hence we obtain

Us (t, O) — ei fot R(s)-qA(R(s)) dse—i fot u(s)-gA(u(s)) dsT(R(t))S(ﬁ(t))*e—~itHovL (1.11)

from (1.5) by a straightforward calculation. Let ¢ be an eigenfunction of Hj ;, belonging to
some Landau level A. Here we note that

1F(lz] < Ct)Us (%, 0)8ll 12r2) = [ F (|2 + R(t) — (t)| < C)l| 12 (re)

fort > 0, and |@(t)| = |u(t)|, where F(|z| < Ct) stands for the characteristic function of the
set {z € R? | |z| < Ct}. In the case where v = 0, |R(t) — @(t)| > 3Eot/(4B) holds for
sufficiently large ¢ > 0. Then, by taking C' as E/(2B), we obtain

I1F (2| < Eot/(2B))Us(t,0)¢||L2(r2) < [|F(|z] = Eot/(4B))¢l|L2(r2) — 0
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as t — oo, by virtue of the triangle inequality. This suggests the possibility of the existence
of scattering states in the case where v/ = 0. As is well known, the case where 7 = 0, that
is, v = —uw, is closely related with the phenomenon of the cyclotron resonance. The formula
(1.11) can be also obtained by the idea of Enss-Veseli¢ [12]): We first introduce

Ho(t) = Hop — f®)z + §(t)ps,  Hoo = p2/(2m) + mi2?/2

acting on L%(R,), where z € R and p, = —id/dz. Then one can obtain a factorization of the
propagator Uy (t, s) generated by Hy(t):

Uo(t, 0) = e—ié(t)ei5(t)z e~ ie(t)p: e—itflo,‘;,.
In fact, the differential equations which a(t), B(t) and ¢(t) should obey are as follows:
b0)) _ ( : -mwz) (ém) . (m))
) \ym 0 J\e) \a@))
a(t) = b(t)é(t) - a(t)2/(2m) — md2e(t)2/2

with &(0) = b(0) = &(0) = 0. Then one can obtain

. ; i I R
Iz(t) _ / . (iosw(t s) ) mw sinw(t s) jj(s) ds (1.12)
é(t) o \sin@(t—s)/(mw)  cosw(t—s) §(s)

by a straightforward calculation. Here we note that Hy(t) = Ho 1 — a(t) - D + a(t) - k holds

(see (1.3)). Using U*Hy(t)U = Hy,, — a(t) - D + a(t) - k with z = x5, D = (¢Bzs, po) and
k = (p1,¢Bxz;), we obtain

U*Us(t,0)U = T(t, 0)e~ " ibt)a2 g—ié(t)pz g —itHo

with f(¢) = ¢Bai(t) = gEa(t), §(t) = —ae(t) = Ei(t)/B and R(t) = f; a(s)ds, where
T(t, s) is the propagator generated by a(t) - k = a;(t)p; + gBay(t)z;. In the same way as
above, we obtain the following representation of T(t, 0):

T(t, 0) = e—i&(t)e—ii)(t)xle—-ié(t)m,
t
b(t) = ¢BRy(t), &(t) = Ru(t), a(t) = — / ¢BRy(s)au(s) ds.
0
Noting that ¢ B = mw and using the Baker-Campbell-Hausdorff formula, we have

U, 0) = e~i8® ¢~ ib(t)k2/(4B) p—it(t)k1 ,—id(t) ib(t)D1/(¢B) ,—ié(t) Dz o ~itHo,L

— e—i(é(t)+5(t)é(t)/2)e—i(&(t)—ﬁ(t)é(t)ﬂ)T( R(t))S(ii(t))eitHo
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with

a(t)\ _ [(b®t)/(@B)\ _ [t cosw(t—s) sinw(t—s)\ [a(s) ’
({Lg(t)) B ( —é(t) ) __/0 (—sinw(t—-s) cosw(t—s)) (az(s)) ds.

By a straightforward calculation, we also have

—%(é(t) +b(t)é(1)/2) = R(t) - gA(R(t)), i(&(t) — b(#)e(t)/2) = u(t) - gA(u(t)),

which yields (1.11).
Now we will make a similar calculation on ¢(t). In fact, we have

bi(t) = qEo{sin(vt + 0) — sin(—wt + 6)}/9, ¥ #0,
' gFEyt cos(—wt + 6), v=0,
—qEo{cos(vt + 0) — cos(—wt + 6)}/, P #0,
ba(t) = . _
gEotsin(—wt + 6), v =\,

as for b(t). Here we used 7 — w = v. Hence we have

(— (w/9)Eo{ (6 cos)(vt) /v + (6 cos)(—wt)/w}/B, vi #0,
c1(t) = { Bo{tsin0 — (6 cos)(—wt) /w}/B, v =0,

| Eo{—tsin(~wt + 6) + (8 cos)(—wt)/w}/B, 7 =0,

(——(w/D)EO{((S sin)(vt)/v + (8 sin)(~wt)/w}/B, v #0,
ca(t) = { Eo{—tcosf — (§sin)(~wt)/w}/B, v =0,

| Eo{t cos(—wt + 0) + (dsin)(—wt)/w}/B, v=0,

where we used w = gB/m. Hence we see that ¢(t) is growing of order |t| when vi = 0,
although c(t) is bounded in ¢ when v # 0. We note that when v = 0,

c(t) — Eo(—(d cos)(—wt), —(6 sin)(—wt))/(wB) = ta (1.13)
holds by (Ey, E2) = Ey(cos 0, sin 6), and that when 7 = 0, that is, v = —w,
c(t) — Eo((6 cos)(—wt), (6 sin)(—wt))/(wB) = —ta(t) (1.14)

holds. In consequence of (1.9), the possibility of the existence of scattering states for the
system under consideration in the case where v = 0 is suggested by the growth of ¢(¢) only:

In fact,
I1F(|z] < Ct)Uo(t, 0)8l|L2(m2y = [|1F' Iz + c(t)] < COP||L2(m2)
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holds for some eigenfunction ¢ of Hy 1, and in the case where vi = 0, |c(t)| > 3E,t/(4B)
holds for sufficiently large ¢ > 0. Thus, by the same argument as above, we see that || F(|z| <
Eot/(2B))Uo(t,0) 9| L2(r2) — 0 as t — oo in the case where vi7 = 0. Here we note that

<cl(t)) _ (Rl(t)> B (ﬂl(t)) _ /t (1 —cosw(t—s) —sinw(t—s) ) (al(s)) ds
co(t) Ry (t) to(t) 0 sinw(t—s) 1-—cosw(t—s)/ \ax(s)

(1.15)
can be verified by a straightforward calculation. Moreover, it follows from (1.9) that

Up(t, s) = T (t)e =MoL 7(5)*, T (t) = e~ B ebD2T(c(t)), (1.16)

holds, although such a formula cannot be obtained from (1.5) easily. We note that 7 (0) = Id
by definition. These show an advantage of the Avron-Herbst type formula (1.9).

The existence of scattering states is equivalent to the existence of (modified) wave operators,
as is well known. In this article, we consider the case where E(t) = E, 4(t) with v € {0, —w}
and 6 € [0, 27) only, give a short-range condition on the potential V, which implies the ex-
istence of usual wave operators, and propose a rather simple modifier by which the modified
wave operators can be defined for some long-range potentials. Now we pose the following
assumption (V1) on V:

(V1) V is written as the sum of real-valued functions V*"8, V® and V!, and that V*in8 Vs
and V! satisfy the following conditions: V*¢ is compactly supported, belongs to L?(R?) with
2 < p < oo, and satisfies |VV*"8| ¢ L%/(P+)(R?). V* belongs to C' (R?), and satisfies

V()| < Cofz)™°,  |(VV*)(2)| < Ci(z)™" (1.17)

for some pso > 1 and p;; > 0, where Cy and C) are non-negative constants. V! belongs to
C'(R?), and satisfies

Vi(@)| < Colz)™,  |(VVY)(z)] < Cilz)t" (1.18)

for some 0 < p, < 1, where C, and C, are non-negative constants.
Under this assumption (V'1), we see that the propagator U (¢, s) generated by

H(t) = Ho(t) + V (1.19)

exists uniquely, by virtue of the results of Yajima [23] and 7 (¢) in (1.16). If the local singular-
ity of V*i€ is like |z| =7, and that of | VV*i"8| is like |z| ~1~", then <y should satisfy 0 < y < 1/2.
Then we obtain the following result about the existence of (modified) wave operators:



Theorem 1.2 (Adachi-Kawamoto [1]). Suppose that (V1) is satisfied, and that E(t) = E, 4(t)
with v € {0, —w} and 6 € [0,27). If V! = 0, then the wave operators

W* = s-lim U(t,0)*Uy (%, 0) (1.20)

t—+o0

exist. If V1 # 0, then the modified wave operators
W = s-lim U (2,0)"Up(t, 0)e™ o V' (cl) & (1.21)
exist.

Next we will consider the problem of the asymptotic completeness of wave operators when
v = 0, that is, E(t) is independent of ¢. Since the Hamiltonians under consideration are
independent of t when v = 0, we write Hy(t) and H(¢) as Hy and H, respectively. Then
Us(t,s) and U(t, s) are represented as e~“(*=%)Ho and e~#(t~9)H  respectively. We need the
following assumption (V'2) on V, which is stronger than (V'1) in terms of the regularity of V:
(V2) V is written as the sum of real-valued functions V*® and V', and that V® and V! satisfy
the following conditions: V*® belongs to C?(R?), and satisfies [0*V*(z)| < C, with |a| = 2
in addition to (1.17), where C, is a non-negative constant. V! belongs to C?(R?), and satisfies
|62V!(z)| < C, with || = 2 in addition to (1.18), where C; is a non-negative constant.

The result of the asymptotic completeness obtained in this article is as follows:
Theorem 1.3 (Adachi-Kawamoto [1]). Suppose that (V' 2) is satisfied, and that E(t) is written

as Eyy(t) = Eo(cosb,sinf) with € [0,27). Assume further the short-range condition
V! = 0. Then W+ are asymptotically complete, that is,

Ran W* = L(H), (1.22)
where L2(H) is the continuous spectral subspace of the Hamiltonian H.

Unfortunately the long-range case cannot be dealt with by our analysis. The propagation
estimates obtained in this article (see e.g. Proposition 4.4) are not sufficient for the study of
the long-range case.

In considering the case where v = —w, the rotating frame is useful: For = (z,23) € R?,
we define R(wt)~lz = ((R(wt)~'z),, (R(wt)~'z)y) by

(( ( )“lx)l) _ (coswt —sinwt)~1 (a:l)
( )71z), sinwt coswt T3]’

wt

(wt
and put L = z,py — op;, which is called the angular momentum. Then e~**~ can be repre-
sented as

R
R

(e ¢)(z) = p(R(wt)'z)

27
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(see e.g. Enss-Kostrykin-Schrader [11]). Let ¥(¢, z) be a solution of the Schrédinger equation
i0;¥(t) = H(t)¥(t), H(t)=Hor—qE ,4(t) - z+ V().
For such a ¥ (¢, ), put
®(t,z) = (e U(t))(z) = U(t, R(wt) 'z).

Then one can see that ®(¢, z) satisfies the Schrédinger equation

i0,®(t) = Ht)®(t), H(t) =wL + e “LH(t)e™L.
By a straightforward calculation, we have

H(t) =wL + Hop — gE_o4(t) - (R(wt)'z) + V(R(wt)'z)

= (p+ qA(2))*/(2m) — qEo4(t) -z + V (R(wt)"'z)

= (p + qA(z))?/(2m) — qEy(cos ,sin8) - z + V(R(wt)"'x)

= Hy + V(R(wt) 'z).
Here we used

Hy 1 = p*/(2m) + mw?x?/8 — wL/2.

Hence we see that the problem under consideration can be reduced to the one in the case where
v = 0, the magnetic field is given by —B, and the potential is given as the rotating potential
V(R(wt)~'z), which is periodic in time. In particular, in the case where the regular short-
range potential V' is radial, that is, V' depends on |z| only, the asymptotic completeness can be
guaranteed by virtue of Theorem 1.3, because V (R(wt)~'z) = V(z).

In the same way as above, the scattering problems for the Hamiltonian perturbed by the
rotating potential V (R(wt)z)

H(t)= Hyp — qE_y4(t) - = + V(R(wt)z)
can be reduced to the ones for the time-independent Hamiltonian
ﬁ = ﬁo + V(:L“)

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3, even if the
regular short-range potential V' is not radial.

2 Avron-Herbst type formula

We first give the differential equations which a(t), b(¢) and ¢(t) in (1.9) should satisfy with
the initial conditions a(0) = 0 and 5(0) = ¢(0) = 0, by formal observation: Suppose that (1.9)
holds. By differentiating (1.9) in ¢ formally, one can obtain

iUo(t, O) = e_ia(t)eib(t)'zT(C(t))Ho,Le—itHo’L



+ e—ia(t)eib(t)-ze—ic(t)-qA(a:) (C(t) . p)e—ic(t)‘Pe—itHo,L
+(a(t) = b(t) - 7 + &(2) - gA(2))Us (2, 0).
Here we note that Hy;, = D?/(2m) commutes with T'(c(t)) since the magnetic translation
T(c(t)) is generated by the pseudomomentum k which commutes with D as mentioned before,
and that e~(®)-9A@peict)9A4(®) = p — g A(c(t)) since c(t) - gA(z) = —gA(c(t)) - z. Thus one
has

Ho(t) = (p — b(t) — qA(2))*/(2m) + &(t) - (p — b(t) — gA(c(?)))
+a(t) - b(t) - z + &(t) - gA(x)
= Hop + (=b(t)/m + &(t)) - (0 — gA(x)) = (b(t) + 20 A(())) - =
+a(t) — c(t) - (b() + gA(c(t))) + b(t)*/ (2m)
since iUy (t, 0) = Hy(t)Us(t,0) and é(t) - gA(z) = —qA(é(t)) - z. Tt follows from this that

—b(t)/m+é(t) =0, b(t)+ 2gA(e(t)) = qE(t),
a(t) — &(t) - (b(t) + gA(c(t))) + b(t)*/(2m) = 0.

Thus one obtain the differential equations

b(t) + 2qA(b(t))/m = qE(2),
é(t) = b(t)/m, @.1)
a(t) = b(t)*/(2m) + b(¢) - ¢A(c(t))/m,

for a(t), b(t) and c(t). The first equation of (2.1) is written as

d bl(t) 0 —W b1 (t) . QEl (t)
dt (bQ(t)) " (w 0 ) (bg(t)) B (qEz(t)) @2

with w = ¢B/m. Thus, by putting

bi(t)\ _ [coswt —sinwt) [bi(t)
by(t)] ~ \sinwt coswt | \bao(t))’
the equation (2.2) can be reduced to
d bi(t) _ [coswt —sinwt) [qEi(t) 2.3)
dt \by(t)/ \sinwt coswt qEs(t) '
as is well known. Therefore the solution of (2.1) with the initial conditions a(0) = 0 and

b(0) = ¢(0) = 0 is given by (1.10). This fact yields Theorem 1.1. As for the detailed proof,
see [1].
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Remark 2.1. Recently Asai [2] has used the Avron-Herbst type formula in Theorem 1.1 in the
study of the existence of the wave operators in the case where E(t) is given by

E(t) = Eo(1 + |t])"#(cos(vt + 8),sin(vt + 6)) + E(t),
where 0 < p < 1, v € {0,—w}, and E(t) = (E\(t), E5(t)) satisfies
1—-cosw(t—s) —sinw(t—s) ay(s) . T
‘ / ( sinw(t—3s) 1—cosw(t— s)) (&2(s)> ds’ < Cpmin{le], 7"} 24

with some g such that 4 < p; < 1, where a(t) = (@1(t), @2(t)) = (E»(t)/B, —E\(t)/B).
Then, by virtue of (1.15), one can see that |¢(¢)| is growing of order |t|'~#, which implies that
the potential V(z) satisfying |V (z)| < C(z)~* with p > 1/(1 — p) is of short-range. One of
the typical examples of such E/(t)’s is the one satisfying |E(t)| < C(1 + [t|)~#* with uy > p.
However, E(t) = E,4(t) with v € R\ {0, —w} also satisfies (2.4) with u; = 1 as is seen
above, which implies that the “perturbation” term E(t) is not necessarily decaying faster than
the “leading” term Ey(1 + |t])~#(cos(vt + 0), sin(vt + 6)) of E(t).

3 Existence of wave operators

In the present and next sections, we sometimes use the following convention for smooth
cut-off functions Fj with 0 < Fj < 1 for sufficiently small 6 > 0: We define

Fs(s<d)=1 for s<d-4§, =0 for s>d,
Fs(s>d)=1 for s>d+4, =0 for s<d,
and Fg(d1 < SSdg) =F5(SZ dl)FJ(S < dz).

Throughout this section, we suppose that (V'1) is satisfied, and that E(t) = E,4(t) =
Ey(cos(vt + 0),sin(vt + 6)) with v € {0, —w} and @ € [0, 27). Then it follows from (1.13)
and (1.14) that

lc(t)] > 9Eo}t]/(10B)

for |t| > 20/|w|, because
| Eo((8 cos)(—wt), (§sin)(—wt))/(wB)| = 2Eq| sin(—wt/2)|/(lw|B) < 2Eo/(|w|B)

and |a| = E()/B
The following propagation estimate for Uy (¢, 0) is useful for the proof of Theorem 1.2.

Proposition 3.1. Let ¢ € 9((p? + z2)N) with N € N, ¢ > 0 and o > 0. Then
| Fe(t~% ]z — c(t)] > €)Uo(t, 0)l| 2(m2) = O(t~*N7) 3.1)

holds as t — oo.



In the proof, we have only to use
Uo(t,0)*F.(t ™|z — c(t)| > €)Up(t,0) = e oL F (t7%|z| > €)e " Hor

by virtue of the Avron-Herbst type formula (1.9). As for the detailed proof, see [1].

Now we state the outline of the proof of Theorem 1.2. We first consider the case where
V! = 0. By density argument, one has only to prove the existence of W+¢ for ¢ € #(R?).
Let f € C°(R?) besuchthat 0 < f < 1, f(x) = 1 for |z| < 1and f(z) = O for |z| > 2, and
obesuchthat0 < o0 < 1. Put g = 1 — f. Then we see that

lim U(,0)"9(t™ (z ~ ¢(t)))Uo(t, 0)¢ = 0 (3.2)
by virtue of Proposition 3.1. Thus we have only to prove the existence of
lim U(t,0)° (= (z — e(6)))Ui(t, 0)9. (3.3)
Here we note that on the support of f(t~7(z — ¢(t))),
jz] 2 [e(t)] = |z = ()] 2 le(t)] - 2¢°
holds, and that |c(t)| > 9E,t/(10B) for t > 20/|w| as mentioned above. Thus we see that
VIt (z = c(t)) = O(t™°)

as t — oo by the assumption on V' and o < 1. By virtue of this and Proposition 3.1, one can
obtain

%(U (t,0)"f (¢ (& — ¢(t)))Us(t, 0)§) = Ot ™) + O(t~EN*D°).

By taking N € N so large that (2N + 1)o > 1, one can show the existence of (3.3) because
of psp > 1 and (2N + 1)o > 1, by virtue of the Cook-Kuroda method.

We next consider the case where V! # 0. By density argument, one has only to prove the
existence of W3 ¢ for ¢ € #(R?). Let o be such that 0 < o < p; < 1. In the same way as in
the case where V! = 0, we see that

lim U(t,0)g(t™" (2 — e(t)))Ua(t, 0)e~fo V"N g — (3.4)

by virtue of Proposition 3.1. Here we note that the modifier e~iJo V'(®(#))4s commutes with
Uo(t,0). Thus we have only to prove the existence of

lim U(t,0)*f (7 (= — c(t)))Us(t, 0)e* foviets)dsg, (3.5)

To this end, we will estimate (V!(z) — V(c(t))) £t~ (z — c(t)))Us(t, 0)e= o V(e ds g We
put Vi(t,z) = V(z)g(5Bz/(2Eot)). Then

(Vi(z) = Vi(e@)) ft(z =~ c(?))) = (Vi(t, 2) = Vilt, c() f (£ (z — c(2)))
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holds for t > max{20/|w|, (20B/Ey)'/(~)}, since g(5Bx/(2Eot)) = 1for |z| > 4Eyt/(5B),
and |c(t)| > 9E,t/(10B) for ¢ > 20/|w| as mentioned above. By rewriting V;(¢,z) —
Vi(t, c(t)) as

Vi(t,z) - Vi(t, c(t)) = /Ol(VVl)(t,C(t) +7(z - c(t)) - (z - c(t)) dr

and taking account of sup,cp2 |(VV1)(t,y)| = O(t~'~") by the definition of V; and the as-
sumption on V!, we have

(Vi(z) — VI(c(®)) (@ — c(t)))Uo(t, 0)e fo VicleD dsg — O(g=1-m142),

Therefore, in the same way as in the case where V! = 0, we obtain

%(U (t,0)* £t~ (z — c(t)))Up(t, 0)e=* o V'(el)) ds )

= O(t™"°) + O(t—(2N+1)o) + O(t_(l“""""))

for any N € N. By taking N € N so large that (2N + 1)o > 1, one can show the existence
of (3.5) because of pg 9o > 1, (2N +1)o > 1and 1+ gy — o > 1, by virtue of the Cook-Kuroda
method. As for the detailed proof of Theorem 1.2, see [1].

4 Asymptotic completeness

Throughout this section, we suppose that E(t) = Eg4(t) = Ey(cos 0, sin 8). Then we write
E(t), Ho(t) and H(t) as

FE=(F\,E,;), Hy=Hor—qE-z, H=Hy+YV,

respectively, because E(t), Ho(t) and H(t) are independent of ¢ in this case. Since Hy =
(D — ma)?/(2m) + o - k — ma?/2 (see (1.3)) and V is Ho-compact under the assumption
(V1), we see that

U(HO) = Gus(HO) =R, U(H) = Uess(H) =R

because of o # 0, by virtue of the Weyl theorem. The following result can be obtained by
virtue of the Mourre theory:

Proposition 4.1. Suppose that (V'1) is satisfied. Then the pure point spectrum opp(H) of H
is at most countable, and has no accumulation point. Each eigenvalue of H has at most finite

multiplicity.



In fact, putting A = ¢E - k, we have the Mourre estimate
f(H)i[H, Alf(H) = ¢*|EIf(H)* + K, @.1)

where f € C°(R; R) and K; = — f(H)qE - (VV) f(H), which is compact on L?( R?).
In obtaining some useful propagation estimates for e~*#, we need the assumption (V2).
Here we note that [H, A] and [[H, A], A] are bounded under the assumption (V'2):

Proposition 4.2. Suppose that (V'2) is satisfied. Let cy, ¢; € R be such that ¢y < c; < ¢?|EJ?,
and let € > 0. Then for any real-valued f € C§°(R \ opp(H)), there exists C > 0 such that

*° e —i dt
/1 |Fe(co < A/t < 1) f(H)e tH'/J”i?(Rz)—t- < OlYlZme (4.2)
for any ¢ € L*(R?). Moreover,
*® P . dt
IR < ) fE g T < o0 43
1

forany i € @((A)l/z).

Proposition 4.3. Suppose that (V'2) is satisfied. Let c; € R be such that c; < ¢*|E
€ > 0. Then for any real-valued f € C°(R \ 0,,(H)),

s-lim F(A/t<ec)f(H)e ™ =0 (4.4)

2 and let

holds.
These can be shown in the same way as in Sigal-Soffer [20].
Taking account of
qE - (k — D) = 2¢°F - A(z) = —2¢°A(E) - = = ¢*B%o. - z,
we have
{Feeo S A/t < c1) = Fileo < ¢ B’a- o/t < 1) }f(H) = O(t™),
{F(A/t < e1) = F(¢*B%a -/t <))} f(H) = O(t™).

Hence the next proposition follows from (4.5), Propositions 4.2 and 4.3 immediately:

4.5)

Proposition 4.4. Suppose that (V2) is satisfied. Let ¢y, ¢c; € R be suchthat ¢y < ¢; < ¢?|E|?,
and let € > 0. Then for any real-valued f € C$°(R\ opp(H)), there exists C > 0 such that

= . dt
/; |Fe(co < ¢*B?a - z/t < c1) f(H)e tH%DHiZ(RZ)T < C“’/’”iz(RZ) (4.6)
for any ¢ € L*(R?). Moreover,
s-lim F.(¢*B%c-z/t < c;)f(H)e ™™ =0 4.7

holds.
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Now we will state the outline of the proof of Theorem 1.3: We pute = |a|/10 = |E|/(10B)
and & = a/|al. Since |c(t) — ta| < 2|E|/(|w|B) (see §1), we see that 6 - ta/t = |a| = 10
and

a-c(t)/t > |a| — 2|E|/(lw|Bt) > 9 4.8)

fort > 20/|w|, which is important for understanding the behavior of the charged particle.
Here we note that besides (V'2), the short-range condition V! = 0 is assumed in Theorem
1.3. As is well known, one has only to prove the existence of

s-lime*Hoe~"H p (), 4.9)

t—o0

where P;(H) is the spectral projection onto the continuous spectral subspace L2(H) of the
Hamiltonian H. To this end, we will show the existence of

s-lim o f(H)e ttH (4.10)
—00
for any real-valued f € C§°(R \ opp(H)). By virtue of (4.7), we have

s-lim e F (& - z/t < 8¢)f(H)e ¥ = 0. 4.11)

t—o0
Taking account of that 1 — F,(& - 2/t < 8¢) may be written as F.(& - z/t > T¢) by definition,
we have only to prove the existence of

s-lime™F (& - x/t > Te) f(H)e ¥, 4.12)

t—o0

By taking f; € C{°(R) such that f,(s)f(s) = f(s), one has only to show the existence of

s-lim e®Ho f, (Hy) F, (6 - z/t > Te) f(H)e *H, (4.13)

t—o0

which can be proved by Proposition 4.4 and
V(@) F (& - z/t > Te) = O(t™70) (4.14)

with ps o > 1. This yields the asymptotic completeness of W+.

In dealing with the long-range case, one needs the propagation estimates for e~**# analogous
to Proposition 3.1, which is much sharper than Proposition 4.4. One of the keys in the proof
of Theorem 1.2 is that o in Proposition 3.1 can be taken as 0 < o < p; < 1. Unfortunately

such sharp estimates have not been obtained for e~ yet.
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