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A simple way to derive a priori estimates for
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1. Introduction

This paper summarizes some recent results on several kinds of Keller-Segel systems and
presents how to derive a priori estimates for solutions which play a key role in the analysis
of the systems. These are mainly based on joint works (with Ishida) [14, 15, 16, 17],
(with Ishida and Maeda) [11], (with Ishida and Ono) [12], (with Ishida and Seki) [13],
(with Fujie and Winkler) [4], (with Fujie) [3].

The Keller-Segel system is proposed by Keller and Segel [18] in 1970. This system
describes a part of the life cycle of cellular slime molds with chemotaxis. In more detail,
slime molds move towards higher concentration of the chemical substance when they
plunge into hunger. We denote by u(z,t) the density of the cell population and by v(z, t)
the concentration of the signal substance at place z and time ¢. A number of variations
of the original Keller-Segel system are proposed and studied (see Hillen-Painter [6]).

In this paper we consider some versions of the following Keller-Segel system:

(KS) {“t =V (D(u)Vu - A(w,v)Vv), z€Q, t>0,

TV = Av — v + u, e, t>0,

where @ C RY is a bounded domain or @ = RV, 7 = 1 (parabolic-parabolic system) or
7 = 0 (parabolic-elliptic system), and typical examples of D and A are given by

D(u)=1, D(u)=mu™" (m>1),
Alu,v) =uT! (¢ >2), Au,v) = u% (xo > 0).

This paper deals with the following three topics:
e [P-estimates in (KS) with D(u) = mu™?, A(u,v) =u?7l, 7 =1, Q = RV (Section 2).
e Energy estimates in (KS) with D(u) = mu™', A(u,v) = u?™!, 7 = 1 (Section 3).
e Uniform LP-estimates in (KS) with D(u) = 1, A(u,v) = u% and 7 = 0 (Section 4).

These estimates yield some new results on the global existence, blow-up and boundedness
of solutions. Our way to derive a priori estimates for solutions is much simple, because
we effectively use the structures of the equations in (KS). Indeed, concerning the first
equation in (KS), we will do only multiplication by uP~! and integration by parts. Thus
the key to our derivation of a priori estimates is how we combine the effect by the second
equation with the first one.
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2. Global existence of weak solutions to quasilinear degenerate
parabolic-parabolic Keller-Segel systems on RY

In this section we discuss the global existence of solutions to the following quasilinear
degenerate parabolic-parabolic Keller-Segel system on RY:

(KS)RN
T = Av — v + 1, z€eRN t>0,

{ut =V - (Vu™ —ud V), z€RV, t>0,

with initial condition u(z,0) = uo(z) and v(z,0) = vp(z), where N € N, m > 1, ¢ > 2,
T =1o0r 7 =0. We study the case where 7 = 1; however, we use 7 for the comparison
with the case where 7 = 0. We assume that the initial data (uo, v) satisfies

(21)  wp >0, up € LY(RY) N L=(RY),
(22) v >0, vp e L{RY) N L®(RN), Avy € LP(RY) N L>°(RY) for some py > 1.

Problem (KS)gnv was first studied by Sugiyama [22] when ¢ = 2 and by Sugiyama-
Kunii [23] when g > 2. Their result can be summarized as follows:
(i) 7=1,m>q = (KS) possesses a global weak solution with (large) initial data.
(i) 7=0,m>qg— 2 = (KS) has a global weak solution with (large) initial data.

(iii)7=0,m < ¢— % = (KS) admits a global weak solution with small initial data.

In view of the above result there is a difference between 7 = 1 and 7 = 0. More
precisely, there is a gap % between 7 = 1 and 7 = 0 in the global solvability without any
restriction on the size of initial data (compare (i) with (ii)). Moreover, the case 7 =1
and m < g— % was not discussed. This would be caused by the following difficulty in the
case 7 = 1. Roughly speaking, one can directly substitute the second equation into the
first one in the case 7 = 0. Indeed, the first equation in (KS) is rewritten as

Ou = Au™ — Vu?™l . Vv — uAv.

ot
In the case 7 = 0 one can replace Av with v — u in the third term on the right-hand side,
so that we have the nonlinear effect as u9. Then by comparing the diffusion term Au™
with u9, a priori estimate for u can be obtained when 7 =0 and m > g— % orm<q— %
On the other hand, when 7 = 1, it is impossible to use such direct substitution, because
the second equation has v;. This is the most difficult point in the case 7 = 1.

To overcome the difficulty we employ the following inequality which is a particular

consequence of well-known results on maximal Sobolev regularity in parabolic evolution
equations (see e.g., Hieber-Priiss [5, Theorem 3.1]):

(2.3) | AV oo, T,Le MYy < || A%l Lo®yy + Cpy |l o0, 720 @MY

where Cpy > 0 is a constant. This inequality produces the same situation as in the case
7 = 0. Consequently, we can adjust the difference between 7 = 1 and 7 = 0 in [23].
Before stating our results we define global weak solutions to (KS)g~.
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Definition 2.1. Let T > 0. A pair (u,v) of nonnegative functions defined on R" x (0, T)
is called a weak solution to (KS) on [0,T) if

(8) u € L*(0,T; LP(RY)) (Yp € [1,00]), w™ € L*(0, T; H'(RY)),
(b) v € L>(0,T; HY(RN)),
(c) (u,v) satisfies (KS)gn in the sense of distributions, i.e., for every ¢ € CP(RN x [0, T)),

T

/ / (Vu™ -V —ul™'Vu - Vo — up,) dz dt = / uo(z)p(z, 0) dr,
0 JRN RN

T

/ (Vv -V +vp —up — Tvpy) drdt = 7'/ vo(z)p(z,0) dx.
0 JRN RN

In particular, if T > 0 can be taken arbitrary, then (u,v) is called a global weak solution
to (KS)RN

We now state our main results in this section.

Theorem 2.1 (Ishida-Y. [14]). Let N > 2, m > 1,9¢>2, 7=1, T > 0. Let (up, %)
satisfy (2.1) and (2.2). Assume that

<m
g<m+ .
Then there erists a nonnegative (global) weak solution (u,v) to (KS)gnx on [0,T). More-
over, u™ € C((0,T); LY (R™)) (Vp € [1,00)) and the following estimates hold:

loc
lullLoogo, sr @y + 1Vllzoo 0, T wvy) < K1 (V1 € [1,00)),
l|vell oo 0, 10 (w¥)) + V]| oo 0, 7570 @Ny) < K2,

where Ky = Ky (|luo| L1, [|uoll o=, l[voll 1, [[vol|zeo, | Avo | oo, [| Avol Lo, m, g, N, T) > 0 and
Ky =K,5(K;,T) > 0 are constants.

Theorem 2.2 (Ishida-Y. [15]). Let N > 2, m > 1,¢> 2, 7=1, T > 0. Let (up, )
satisfy (2.1) and (2.2). Suppose that

2
> —.
q_m+N

Then there exist 6, = 6,(m, q, N), 6, = b,(m, q, N) such that if
luollzr < 8uy  Av[|Lr+e-1, [Avollprer < 6, (r = Hezmd )

then (KS)gv admits a nonnegative (global) weak solution (u,v) to (KS) on [0,T). More-
over, u™ € C((0,T); LY (RN)) (Vp € [1,00)) and the following estimates hold:

loc
N
(2.4) wll oo 0, - ®Y) + V]| Loo o, 750 @®y) < K (VT € [5 + 1, OOD,
) N
(2.5) lvell r o, 5@y + )| 2r 0, 73w @iy < Ko, (VT € [5 +.1, OO))»

where Ky = Ki(r, [[uollzs, [[uollze=, l[vollzs, [[vollzee, | Avoll, 41, |Av0] £, m, ¢, N, T) > 0
and Ky =K5(K1,T) > 0 are constants.
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Remark 2.1. Theorems 2.1 and 2.2 improve the pioneer work by Sugiyama-Kunii [23]
in which g < m was assumed and the case ¢ > m was left as an open problem. We solved
this open problem completely (without boundedness).

Remark 2.2. In Theorem 2.2, using the Besov space, we can lessen a kind of differentia-
bility for vy and can construct a global solution under only two kinds of smallness which
is independent of ||upl||:; moreover, we can obtain the same result as Theorem 2.2 aslo
in the one dimensional case (for more details, refer to Ishida-Y. [15]).

Remark 2.3. In Theorems 2.1 and 2.2 we can see that the mass conservation law holds:

lu()l|lL:@yy = lluollzrwyy (¢ 2> 0),
which was rigorously proved by Ishida-Maeda-Y. [11].

Remark 2.4. Theorems 2.1 and 2.2 say only the existence of global weak solutions to
(KS)gw~ and it is open whether the solution is uniformly-in-time bounded or not. Recently,
when ¢ > m+ 2 and the initial data (uo,vo) is small in some sense, Ishida [10] succeeded
in showing uniform-in-time boundedness of weak solutions to (KS)g~. As to the case
g<m+ —1%, boundedness in the Neumann boundary problem on bounded domains was
proved by Ishida-Seki-Y. [13].

Remark 2.5. The constant ¢. := m + % coincides with the critical exponent which
divides the global solvability of the quasilinear parabolic equation

ug = Au™ + uf.

As discussed in the next section, as to the Neumann boundary problem for (KS)g~ in a
ball, if g > m + %, then the solution with large negative energy blows up. Therefore the
condition in Theorem 2.1 might be best possible one in a sense.

We can prove Theorems 2.1 and 2.2 as follows. We first consider an approximate
problem of (KS)g~. Indeed, we replace the diffusion term Au™ with

Alu+e)™ (e >0).

Next we derive some estimates for approximate solutions Finally we discuss convergence
of approximate solutions as € | 0. The key to the proof lies in L™-estimates for the
first component of approximate solutions. In the rest of this section we explain how to
derive a priori estimates for solutions by a formal computation. For the rigorous proof

see [14, 15, 16] and Ishida [9].

Proofs of Theorems 2.1 and 2.2 (L"-estimates). As stated above, we derive only
L -estimates for solutions to (KS)g~. Let r € (1,00). Multiplying the first equation in
(KS)g~ by u™! and integrating it over R, we obtain

(2.6) %%Ilu(t)“;/r(RN) = —/ Vum-Vu"ldx+/ uI Vo - Vo'l dz
RN RN

= —Il + I2.



41

First it follows that

(2.7) /Ot Iids = —m(r - 1) /Ot (/RN U™ Vu - w2V d:v) ds
=—m&—4)/¢(/ =% vw%m>ds

4m r - 1
- / 965 (8)]125 g, ds.

T+m

Next we consider the estimate for I. Integratlon by parts and Holder’s inequality give

IL=(r- 1)/ uI'Vu - vV dr
RN

__r-1 V[u+e?] . Vo de
T+q—2 RN
r—1 +q-2
= — 4 —-Av)d
7“+q—2_/RNu ( U) o

I/\

r—1 _
e O] N IOl PR

Integrating this mequahty over (0,t) and using Holder’s inequality again, we obtain

2.8) / I Weparyd5) ” / I 80(5) [ gy )

We now recall the max1mal Sobolev regularity (2.3):

1A Lo (o, ;o @y < | Aol Lo@yy + Ciyllel| Lo(o, L0 @YY -

Applying this inequality to the right-hand side of (2.8), we see from Young’s inequality
that

(2.9) /Izds ) ”AUO”LP(RN)

p=1 ’t
ds) " Co (| 1ulo) e )

r—1 t
quﬂmmwmm+w@+nln%@mmﬂa}

Integrating (2.6) over (0,t), we deduce from (2.8) and (2.9) that
[e(O Nz @)

r(r—1)
< luollzr @y + ——5 1A% L@y,

i Tg:ll)/o [(C@) + 1)ue(8) 7oy %T%HW ()”Lz(RN)] o

This makes the same situation as in the quasilinear parabolic equation u; = Au™ + uf.
Therefore the standard argument using the Gagliardo-Nirenberg type inequality yields
the desired estimate. O
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3. Blow-up in quasilinear degenerate parabolic-parabolic Keller-
Segel systems on

We discuss the existence of blow-up solutions to the following quasilinear degenerate
parabolic-parabolic Keller-Segel system:
{ut =V (Vu™ —ut"1Vv), z€Q, t>0,

KS
(KS)a v =Av— v+, zeR, t>0,

with u(z,0) = uo(z), v(z,0) = vo(z) and &= = & =0 (z € 69, t > 0), where m > 1,
q > 2 and

Q=B:={zecRV;|z| <1} with N >2.
We assume that the initial data (up,vp) satisfies

up > 0, ug € L*(B) with VuJ* € L*(B),

v 20, v € WH(B).
In the case of nondegenerate diffusion, Winkler [24] showed that there exist initial data
such that the solution blows up in either finite or infinite time under the condition cor-
responding to ¢ > m + Z. Recently, Winkler [25] and Cieslak-Stinner [2] succeeded in
constructing a finite time blow-up solution when N > 3. Thus we can expect that the
same assertion holds in the case of degenerate diffusion. Ishida-Ono-Y. [12] found initial
data such that every radially symmetric strong solution blows up in either finite or infi-
nite time by assuming the existence of radially symmetric “strong solutions”. However,
in general, one can not expect that the system with degenerate diffusion has a strong
solution with nonnegative initial data, so it still remains an open question.

To give an answer to the question, we define “energy solutions” to (KS)gq as follows.

Definition 3.1. Let T € (0,00]. Then a pair (u,v) of nonnegative functions defined on
B x (0,T) is called an energy solution to (KS), on [0, T) if

e u € L®(0,T; L®(B)), Vu™ € L*(0,T; L*(B)), (u™%"), € L*(0,t; L(B)) (Vt < T),
e ve L*(0,T; H\(B)), v, € L*(0, T; L*(B)),
o (u,v) satisfies (KS)g, in the sense of distributions, i.e., for all ¢ € L(0,T; H*(B))N

Wh(0,T; L*(B)) with compact support supp ¢(z) C [0,T) (a.a. x € B),
T
/ /(Vu"‘ -V —uT 'V - Vo — up,) dedt = / uo(z)p(z, 0) dr,
o JB B
T
/ / (Vv -V +vp — up — vy;) dedt = / vo(z)p(z, 0) dz,
o JB B

o (u,v) satisfies the following energy estimate for a.a. t € (0, 7)),

(3.1) = ;2;)2//|u 2 | dxds+—/|\7 t)|?dr < K,

where K is a positive constant depending on |luol|zinzz, ||Vudt|lz, ||vellmawie,
[l L= 0,720 (8)), ™ @, N, | B



We next define a maximal existence time and a blow-up for (KS)g.

Definition 3.2. A mazimal ezistence time Tyax for (KS) is defined as
Tmax := sup {T > 0; there exists an energy solution to (KS) on [0, T)}
Definition 3.3. For T € (0, oo} let (u,v) be an energy solution to (KS) on [0,7). If
ess- lim sup||u(t)|| L (5) = 00,
t—T
ie, VM > 03Ty < TVt >Ty; ||u(s)||rem) = M for a.a. s € (t,T),
then we say that (u,v) blows up at T.

Now, we state the main theorem.

Theorem 3.1 (Ishida-Y. [17]). Let N > 2, m > 1 and q > 2. Then the following hold:
(I) (Local existence) Assume that m and q satisfy

m-+1
>
1=

Then for every nonnegative initial data (ug,vo) € L®(B) x W1*°(B) with VuT' € L*(B),
there exists T > 0 such that (KS)q admits an energy solution (u,v) on [0,T). Moreover,
if (ug,vp) is radially symmetric, then so is (u,v).

(IT) (Blow-up) Assume that m and q satisfy

>m+ 2
q N'
Let Tiax be a mazimal existence time for (KS)q. Then there exists a positive constant
C = C(||uo||lzr, N) such that every radially symmetric energy solution to (KS)q with
nonnegative initial data (up,vp) € L*°(B) x Wh®(B) with Vul* € L*(B) fulfilling

ug fO
drg > 0; G(up) := / / £ d¢do € LY(B)
T0 T0
as well as ) )
L(ug,vg) := / (G(uo) — ugup + =|V|? + —vg) dr < —C,
B 2 2 !

blows up in €ither finite or infinite time.

The strategy for the proof of this theorem follows the well-known strategy introduced
to chemotaxis problems independently in Horstmann [8], Senba-Suzuki [21]. They consist
of finding the lower bound ¢y of the Lyapunov function on the radially symmetric steady
states and showing that one can find initial data admitting the value of the Lyapunov
function smaller than ¢y. However, the proof of Theorem 3.1 has two difficulties. One
is to construct a local-in-time “energy solution”to (KS), the other is to show that any
energy solution satisfies an important estimate for the Lyapunov function for (KS). In
particular, the energy estimate (3.1) plays a central role in our argument that we derive a
contradiction by assuming uniform-in-time boundedness of u(t) on (0, 00), because (3.1)
assures a limit of u(t) as ¢ — oo under boundedness of « via compactness methods.

43
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Proof of Theorem 3.1 (energy estimates). We derive only the energy estimate (3.1)
for solutions to (KS)g, which is key to the proof as stated above. Let n € Nand T € (0, 00].
Let (u,v) be a solution to (KS)q on [0,7). By a suitable approximation procedure we
may assume that u is smooth and the following mass conservation low holds:

(3.2) lu@lze) = luollzr, ¢ €[0,T).
Assume that u is bounded on B x {0, T), that is,
llellze(o,mizee(B)) < 00

Then the standard technique for inhomogeneus linear heat equations entails that the
following estimates hold:

(3.3) lo(@®)llwre(m) < K1 (VE € [0,T)),

(3.4) o (8)]122s) + 2 / (st / Vo(s)dzds < K, (V¢ € [0,T)),

(3.5) HWﬁwam+/e*W/VM®PM@SKsW%ewﬂx
0 B

where

K1 = ||vollwree + (1 4+ C(N) /)|l Loo(o,320B)),
Kj := ||vol|2 + 2K1 ||uo| 1,
= ||V’U0Hi2 + |B|”u”%"°(O,T;L°°(B))v

where C(N) is a positive constant. We now multiply the first equation in (KS), by v and
integrate it over B. Then using the Young inequality and noting

2q—m—-12>0,

we obtain the following estimate:
d u™ 1 2 1 2 m—1 2
(3.6) pr u 2dr < —m |Vl d:c+ =M HVu|* dz
B

T / V) o+ BB, [ 1901

Multiplying (3.6) by €?* and integrating it over (0,t), we see from (3.4) that

6D O+ sy [ 0 [ 10" dsas
K,

q—m—1
< e HlugllFagpy + (1 —e Zt)”u”L‘x’(Oth(B)) * o ||u||L°°(OtL°°(B))

K,

g—m—1

< 6_2t||U0”i2(B) + lB|”u“2L°°(0,t;L°°(B)) + ”U”Lm(otmo(g))

= KZ;-



Next, multiplying the first equation in (KS)q by u™ !u; = 1(u™), and integrating it over

B, we have

/l;um_liutIQd:v—_Q_Zﬁ/ |V (u™ lgd:c"/V (uw™'Vv) vty da.

It follows from the inequality ab < 3(a?® + %) (a,b > 0) that

(3.8) -;—/um”llut|2dw<——————/|v WP dz + = /|V u?” 1Vv)| ™1 dr.
B

We consider the estimate for the last term on the right-hand side of (3.8). Noting that
|V - (AVB)I2 [VA-VB+ AAB|? < 2(|[VA- VB|?> + |AABJ?), we see from (3.3) that

=V (W V) Pumtdr < WA + V() - ol bumt de
2
B B

< Jufzm=2 / Avf? da

L (Bx(0,t))

4(‘1—) 2 n2a-2) )2
T mr? (m +1)? el 2= (09 |V =) da.

Combining this inequality with (3.8) and noting that u™ |u;|? = m| (u™) t’z, we
deduce that

2 il Nk 2q+m—3 2
s L1 o< ot [ 9P+ By [ 100
+ ”(—MI‘H “2(q-2) /BIV(u%LI){Z de.

(m + 1) L= (Bx(0,t))
Multiplying this inequality by e** and integrating it over (0,t) yield that

m+ 12 / 28/' ), dods + 5 /|Vu(tm)|2dx

1 ~ ¢
= 2m Jp )l2dx+_/ /IV(u |2d“"d3+”“||i§(7?3x?fo,t))/o 625/B|Avlzdwds

( ) 2(g—-2
(m+ 1) 1 “ “L:i(B)x(o,t))/ / IV l dxds.
Then, noting that

VP < o )uulle(Mﬂ)N(u%ﬁl"l

we obtain
(3. 9)

(m+1 / (s— t)/ ’ d:z;ds-{-—/]v(u ()™) |2 dz

-2 my|2 2¢+m—3 - 2
< %3 t/Blv(Uo)l da"‘"”““z,ﬁ(rgx(o,t))/o e’ t)/B'AU‘ dzds

4 5 2(g-2) o2
+ (m + 1)2 (||u|lL°°(Bx(0 t)) + (q - 1) KIZHU‘”LfO(BX(O,t)) (s=t) IV | dzds.

45
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Applying (3.5) and (3.7) to the second and last terms on the right-hand side of (3.9),
respectively, we see that

(3.10) (m—iﬁ / te2<s-t) / |(

< —e / |V (ug) |2dx+K3||U”i§(Tax30 (0,8)

2
| dds + / IV (w(®)™)? de
B

- 2
+ "1:"7’— (”u”Tw(Bx(O,t)) + (q ) Kl ”u”Li(B)x(O t)))

where K3 and K are the same constants as in (3.5) and (3.7). Since e?*~Y > e~% for
€ (0,t), the energy estimate (3.1) follows from (3.10). a

4. Boundedness in parabolic-elliptic Keller-Segel systems with
signal-dependent sensitivity on (2
In this section we especially focus on a model of chemotaxis processes where movement
towards higher signal concentrations is inhibited at points where these concentrations are

high. Such saturation effects are usually accounted for by introducing a signal dependent
sensitivity function x(v), i.e., by setting

A(u,v) = ux(v)
in (KS). Here of particular importance seems to be the prototypical choice

x(v) =22, v>q0,
v
with some constant xo > 0, thus meaning that stimulus perception is governed by the
Weber-Fechner law. This model was first proposed by Keller-Segel [19].
Thus we consider the questions of global existence and boundedness in the following
parabolic-elliptic Keller-Segel system with signal-dependent sensitivity:

{ut =Au— V- (ux(v)Vv), z€Q, t>0,

KS) (v
(KS)xw) 0=Av—v+u, e, t>0,

with u(z,0) = uo(z) and & = 22 = 0 on 89, where @ C RV (N > 2) is a bounded
domain with smooth boundary 0€). We assume that

(41) up >0, ug € C(ﬁ), /’U,o > 0,
(4.2) x € CY(0,00)), x>0 gn (0, 00).

When x(v) = &2 (Xo > 0), Biler [1] proved the global existence of weak solutions under the
condition xg < N ; however, the boundedness is left as an open problem. Independently,
Nagai and Senba [20] studied radially symmetric solutions to the same system (KS)_u,
and they showed that solutions are global and remain bounded when either N > 3 and
0<x < N_2, or N = 2 and xo > O is arbitrary. Concerning nonradial solutions, the
boundedness question is still open even for the particular system (KS);vn



The purpose of this section is to report a recent result by Fujie-Winkler-Y. [4] which
gives an answer to the open question not only for x(v) = %2 (xo < £) but also for a rather
general x(v). In order to formulate our main results in this direction, given a nonnegative
0 # up € C°(), let us introduce a positive constant y by defining

> 1 (diam )2
4.3 v = || / —e T @ dt < o0,
( ) ‘ ” 0”1,1(52) 0 (47rt)g

where diam Q := max, ¢ [z — y|. The particular role of v stems from the fact that it
marks an a priori pointwise lower bound on the solution component v, as we shall see
below.

Theorem 4.1 (Fujie-Winkler-Y. [4]). Let N > 2, and suppose that ug and x satisfy (4.1)
and (4.2), respectively. Moreover, assume that x satisfies

x(s) < %%0 for all s € [y, 00),
with some k > 1 and some xo > 0 fulfilling

if k=1,
Xo < Lk o
(]C _ l)k—l

2|zl

if k> 1.

Then (KS)y(v) possesses a unique global classical solution

u € C¥H(Q x (0,00)) NC([0, 00); C°(£D)),
v € C*°(Q2 x (0,00)) N C°((0,00); C°(Q)).

Moreover, the solution component u is uniformly bounded:
(sl < Moo for allt € [0,00)
for some constant M., > 0.

Remark 4.1. We firstly remark that our result for &k = 1 goes somewhat beyond that
given in [1] in that it provides classical solutions, rather than weak solutions, and moreover
it asserts their boundedness, thus ruling out any blow-up phenomenon in infinite time.

Remark 4.2. Secondly, unlike in [1] our proof does not depend on any particular structure
of the system (KS),, with x(v) = X¢.

v

Remark 4.3. We thirdly note that v depends on diam Q in such a way that v — oo as
diam 2 — 0; in particular, in the case k > 1 for each xo > 0 and any choice of the mass
m > 0, our above condition will be satisfied for any Q with sufficiently small diameter
and all nonnegative uy € C°(Q) having mass Jo uo =m.

Remark 4.4. Finally we observe that the assertion of Theorem 4.1 can be generalized
to the case of the system (KS),(,) with the growth (death) term f(u), provided that
A= < f(w) < Ag — paw (Mg, Ag, pu1, pi2 > 0). For details see Fujie-Y. [3].
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We conclude this paper by giving the main part of the proof of Theorem 4.1.

Proof of Theorem 4.1 (LP-estimates). We first give an a priori pointwise lower bound
on the solution component v. In the same way as in the proof of Hillen-Painter-Winkler
[7, Lemma 3.1], we can obtain the pointwise estimate from below

(diam }2 -
eBp(z) > v 1t)ﬁe‘ o /w >0 (reQ,t>0) forall (0<)weC’N),
)z Q

for the Neumann heat semigroup (€'2);o in €. In light of the formula (I — A) 'w =
Ji e te®wdt, we have

o0 oo ( iam !2
I-A)"'w =/ etePwdt > (/ 1 et Rt dt) -/w.
0 o (4mt)? Q

This explains the role of the constant v defined in (4.3). Namely, since (KS),(.) evidently
preserves the norm of the first solution component u in L}(Q) and the second solution
component v is represented by v = (I — A)~!u, we can thereby estimate v from below
according to

© 1 diam 0)2
4.4 1) > ze i Dt / t)d
(4.4 ve.t)> ([ e E0w) - [ e e
© 1 (diam 0)2
— "'(t+ t )
_||Uo||L1(n)/o (m)%e ) dt

=~ forallzeNandte(0,T),

whenever (u,v) solves (KS),(,) in © x (0,T) for some T > 0. We next derive the LP-
estimate for u. By virtue of the first equation in (KS),), we have

d

& v = —o=1) [Vl 45 -1) [ ix@Tu- v
dt Jo Q Q

In light of Young’s inequality we deduce that

(4.5) i/u”g —p—(p—_—l)/u”_2|Vu|2+?L(I—)-——-_—1—)/u”x2(v)|Vv|2.
dt Jo 2 Q 2 Q

Now let ¢ € C*([y,00)) be nonnegative and such that there exists a constant M > 0
satisfying

sp(s) < M for all s € [y,00).

Using the second equation in (KS), ), we see that [, uPo(v)(Av — v +u) = 0. Here from
the Neumann boundary condition it follows that

—p/up_lgo(v)Vu-Vv-/u”cp’(v)|Vv|2—/u”<p(v)v+/u"“cp(’u) =0.
) 0 Q Q



Noting that v > 0 and ¢(v) > 0 imply that f,, u?"¢(v) > 0, we thus find that

~/u”<p’(v)|Vv|2 < p/up‘_lgo(v)Vu-Vv-f-/upa,o(v)v
Q Q

Q

2
< & [wrvup —i—%—/u”go ()| Vo[ —I—M/up
Q
where A := —1)—¢eand B:= ——&— (e < p(p — 1)). This implies that

Vi 1
2 2
(46) /up(—go'( )~ T2(0) IV < A—/u”‘2|Vu|2+M/u”.
Q0 2 2 (9} Q

By assumption we can find a function ¢ such that the Riccati inequality

pip—1 B?
P2 Y)s20) < ) - 2
holds for p € [1 Xlo -(k—%rv ) (for details see [4]). By virtue of this inequality, we

can now combine (4.6) with (4.5) to achieve the inequality

(4.7) %/u” < _p_(pz— 1)/u”_2|Vu|2+p——(p2_ 1)/upxz(v)|Vv|2
Q Q Q
-1 B?
< 222D [rwut+ [ (- 00) - 200) 90
2 Q Q 2

— — 1) —
__p(p 1)/up—2|vul2+p(p ) E/'U;p_2|VU.|2+M/’up
2 Q 2 Q Q2

= —E/ p”2|\7u|2+M/up.
2 Ja Q

Now invoking the Gagliardo-Nirenberg inequality, we see that

IA

2(1-a)

2a 2
(48) / v = uf ) < Con (IVubll iz + Iufl 3, ) b lg 0,

where Cgy is a positive constant and

I D=

(4.9) a:= € (0,1).

Since according to the mass conservation property we have

(4.10) RECOIZ = [ w0 de = [ w@),

+ [rors
2] |
(SIS

4
2

we infer from (4.8) and (4.10) that [, u? < K(HVugHiz(m + 1)a for some K > 0, so that
we have

4 p2_ 4 < 4
4.11 /u”’2 Vul? = —/ Vuz| > /u” - —.
(4.10) ) Vel p? nl | K%p2( Q ) p?
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Inserting (4.11) into (4.7), we obtain

d 2
u”<— 2 (/u" +M/u”+—.
dt Kapz

Consequently, y(t) := [, uP(z,t) dz satisfies y/(t) < —~Cyya(t ) + Cay(t) + C3 with certain
positive constants C;, C, and Cs. In view of (4.9), we have X > 1 and thus a standard
ODE comparison argument implies the boundedness of y on (0 Tmax)- Thus we conclude
that [[u(-,t)ll sy < Mp < oo holds for all ¢ € (0,T) and some M, > 0. From this
estimate we can obtain the assertion of Theorem 4.1 (see [4]). O
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