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1 Problem

We shall consider a semilinear parbolic evolution equation arising from fluid
mechanics. More specifically, we deal with the following system of equations of
the motion of incompressible micropolar fluids.

%?—MAuﬁ—(u-V)u-#—VP:f-i—QXVX (w—%qu),

B o = BV(Y -w)+ (u- V= g~ tx (- 5V xu)
V-u=0,

where the unknown functions are the velocity vector field u, the microrotation
vector w and the pressure p, and f and g are given vector fields, o, 8, p, x are
constants satisfying a >0, a+ 8> 0, p > 0 and x > 0.

Micropolar fluid model is one of generalizations of the classical Navier-Stokes
model. We shall discuss the solvability of the initial-boundary value problem of
this system of equations in a bounded domain £ with smooth boundary 99 in
R3.

As for the boundary conditions, we assume that

o
ulon =0, wlsgn= =V xu| |,
2 a0

where 6 is a constant belonging to the interval [0, 1] (see [1], [3])-

For the case where 6 = 0, i.e., both u and w yield the homogeneous Dirichlet
boundary conditions, there have been many results concerning this system of
equations [4]. On the other hand, the case where 6 # 0 is not fully pursued yet.
Furthermore, this boundary condition is not based on any physical principles,
the well-posedness of the initial-boundary value problem is not clear. That is
why we consider this problem.

Let us introduce a new variable v := w — gV x u and change the variables
(u,w) to (u,v). Then the original system of equations for v and w will be



rewritten in the following form.

%—(u+x)Au+(u-V)u+Vp=f+2xV><'u—0xAu,
%—aAv—,BV(V-v)+(u-V)v+4xv+0xV><(Vx_v)
0 0
=g—§V><f—§{(u+(l—0)x—a)VxAu
+((V xu) V)u}+2(1 - 6)xV x u,
V-u=0,
ulan = 0, vleq = 0,

u(-,O) = uO(')v ’U(-,O) = 1’0(')'

Notice that the boundary condition for the new unknown function v is reduced
to the homogeneous boundary condition.

Our aim is to show the existence of a solution (u,v) local in time to this
system of equations in the L2-framework.

2 Function spaces and operators

We refer the details of mathematical facts to be mentioned below to the books
[2], [4] and [5].

Let C°(f2) be the set of all smooth solenoidal vector functions in Q with
compact support, and L2(Q) and HL(Q) the closure of C2°() in L2(2) and in
H! () respectively. We denote by |- | the norm of L2(f), (-, -) the inner product
of L2(2); | - |, the norm of L2(f), (-,-), the inner product of L2(Q); | - || the
norm of H}(€), ((-,-)) the inner product of H3(Q2); || - ||, the norm of HL(Q),
((,+))s the inner product of HZ (). Due to the Poincaré inequality, we equip
H! (Q) and H}(2) with the norm

1/2
lulle = ( / |Vu|’dz> |
€
1/2
o= ( [ 19vPac)
Q

for u € HL(Q) and v € H}(Q), respectively.

The orthogonal projection from L2(Q2) to L2 (1) is denoted by P. The Stokes
operator A is defined by A := —PA with D(A) = H2(Q) NH. (7).

Let (-,-) denote the duality pairing between H=1(2) and H}(£2). The differ-
ential operator L, which maps H}(Q2) to H~!(Q), is defined by

(Lv,w) := a/ Vv - dez+ﬁ/(V : v)(V-w)d:z:+4x/ vwdz (1)
Q Q Q
for all v, w € H}(f2). By integration by parts, we obtain

/|Vw|2da:=/ |V~w|2da:+/ |V x w|?dz (2)
Q Q Q
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for w € H}(£2). Hence there are positive constants o, and o* such that
o[Vl + dx|w|? < (Lw, w) < o*|Vw|? + 4x|w|? (3)

for w € H3(Q).
For v € L2(Q), we also define V x v € H~1(Q) by

(V x v,w) ::/v-wadx (4)
Q
with w € H}(Q).

We identify the space L2(f2) with its dual. Then ||V x v||, < |v| holds for
v € L?(92), where || - ||, stands for the norm of the space H~1(£2).

3 Main result

In the above settings, our system can be regarded as a system of abstract evo-
lution equations.of the following form.

% + (b +x)Au=Pf + b1 (u,v) in LE(Q),
‘é_;’ +Lv=g-— gv X f +ba(u,v) in HH(9),

u(0) = uo,  0(0) = vo,
where by (u,v) and ba(u,v) are defined by
bi(u,v) :=2xV x v + OxAu — P(u - V)u,
ba(u,v) := —g{(,u +(1-0)x —a)Vx Au+ ((Vxu)-V)u}
— (u-V)v+2(1—-6)xV x u.

Notice that V x w € L2 () whenever w € H}(f2) since C3°(Q) is dense in H} ()
and if wo € CX(Q) and g € H!(Q), the integration by parts gives

(V xwp,Vg) = (—=V - (V x wp),q) =0.
Now our main result reads as follows.

Theorem There exists a constant 6y € (0, 1] satisfying the following property:
Given 6 € [0,6p], T > 0, (uo,vo) € HL(Q) x L2(Q), f € L?(0,T;L3(Q)) and
g € L*(0,T;H~Y(Q)), there exist a Ty, € (0,T) and a unique solution (u,v) to
our system on the time interval (0, T,) with

u € C([0, TL]; Hy (2)) N WH2(0, Ty LE(92)),
v € C([0, T L?(2)) N WH2(0, To;; H 1 (2)).
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4 Sketch of a proof of Theorem

Our idea for proof is the following: First, solve a linear problem

d
=+ (n+x)Au=Pf+h inL2(®),

dv . 0 . -1
E—I—Lv—g—Efo%-k in H™*(Q),

u(0) = up, v(0) = vo,

for given h € L2(0,T;L2(Q)) and k € L?(0,T;H1(R)). It is well-known that
there is a unique solution (u,v) such that

u € C([0, T); HY(Q)) nWH?(0, T; LI (%)),
v € C([0,T); L*(Q)) nWh2(0, T; H™H(Q)).

Then one can define a mapping § from L?(0, T;L2(Q)) x L%(0, T; H~1(Q)) into
itself as S(h,k) := (b1(u,v),ba(u,v)). If S has a fixed point, then (u,v) is a
solution of our problem. Since b; and by are sums of terms which are linear
or quadratic in u and v, it is natural to expect that S would be a contraction
mapping. This conjecture turns out to be true with the following trick. Let
n € (0,1] be a constant to be fixed later and U := nu.Then our system becomes
as follows.

au
= T (b +x)AU =1Pf + Bi(U,v) in L3(Q),

% +Lv=g- g_v x f+ Bz(U,v) in H_I(Q)’

U(0) = nuo, v(0) = vo,
where B;(U,v) and By (U, v) are defined by

1
B (U,v) :=2nxV x v + 6x AU — EP(U -V)U,

Ba(U,v) i= —%(u + (1= 0)x—a)V x AU — ;#((v < U)-V)U

2(1 - 0)x

1
—E(U~V)v+ V xU.

We are going to show this modified system of equations has a solution (U, v).
Let data T > 0, ug, vo, f and g be given and take a positive number R

satisfying

R > max{||uo|lo, [vol, Il fllz2(0,riL20))s 9l L2 0,751~y }-

Let 7 be a positive number in (0, 7] and is also to be fixed later. Denote by Br
the set of functions (h, k) such that h € L2(0,7;L2(R)) and k € L2(0, 7; H~1(Q))
with [|All 20,12 (2)) < B and ||kl L20,-m-1(0)) < R

It is well-known that there is a unique solution (U, v) to the problem

dU
— +(B+X)AU =nPf+h inL(Q), (5)
%+Lv=g—ngf+k in H-1(Q), (6)

U(O) = nuo, U(O) = Vo, (7)
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which satisfies
U € C([0,7); Hy () N L2(0, 7, HA(Q) N H (2)) N WH3(0, 75 L2(9)),
v € C([0,7); L3(Q)) N L*(0, ; HY () N W30, r; H™H(Q)).
Multiplying (5) by U, we get

1d

5 IV + s+ )V I2 < €51+ Rl)U

Here and henceforth C or C; (i is a positive number) denotes a constant which
may depend only on u, X, a, 8, Q and may take different values line by line. Then
we have

[UllL=(0,rL2(q2)) < C1R,
IUllz20,rm () < C2R.
Multiplying (5) by AU, we have

1d

5 NUI2 + (u 4 014U 2 < C(Uf1+ [R1,) AU,

whence follows
U1l Loo (0,11 (2)) < C3R,
MUl 20,7m2 ()rm2(02)) < C4R.
We here use the estimate from the elliptic regularity theory:
wllgz@) < CollAwlls,

which holds for w € D(A).
Taking the duality pairing between (6) and v, we obtain

1d
2dt
From this it follows that

o + e ol + 4xPof? < C(llgls + 171 + kD)ol

”U”Lw(o;r;u(n)) < CsR,
”U”LZ(O,T;]H[(I)(Q)) S CGR

Now we shall show 7, § and 7 can be chosen so that (B;(U,v), Ba(U,v)) also
belongs to the set Bg.

Let ¢ and 9 be scalar functions. D¢ denotes any one of the partial derivative
of ¢. We need the following well-known inequalities in order to estimate the
nonlinear termes.

If ¢ € HY(), we have

161l sy < Clldl otay Il iy,
l9llze) < Clloll a1(q)-
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If we assume further that ¢ € H?(f), then ¢ € L>®(f2) and
I6ll ooy < Clllly lellaq)-

If ¢ € H}() and o € H2(Q) or ¢-€ HZ(Q) and ¢y € H}(Q), the product ¢pDy
belongs to L2(€2) and

C||¢|ll/2||¢||l/2||¢||m for ¢ € H(R), ¢ € H2(Q),

8
Clolm [WI2I012 for 6 € H2Q), ¢ € HY(Q). )

16Dl {
From} these estimate, we obtain
[ 1Pw v < [ 1w s
< [ IWEPI(E)lmds

)
s@@#/uwmmw
0

< C3C B3 T2 U || 20,mim2 () ()
< C3C4CrRY Y2,

Therefore
| B1(U, v)|| 20,7512 (2))
1
< an”v X UIILQ(O,T;L(%(Q)) + GX“AU”LZ(O,T;L?'(Q)) + E”(U : V)U”Lz(o’f;]_‘z(ﬂ))

¢y’ 2RT1/4> .
n

< (20677)( + Cabx +

Suppose that wy, wa, ws € H(), V-w; = 0 and at least one of these functions
vanishes on the boundary 8Q. Then ((w; - V)ws, w3) is well-defined and it holds
that ((w; - V)ws, ws) = —((w1 - V)ws, w).
For w € H}(2) we have
H{V x AU, w)| = |(AU,V x w)|
< Cs||U|lmz( lwll,
((V xU) - V)U,w)| = [(V x V) - V)U,w)|
= |- ((VxU)-V)w,U)|
< C|IVU ||Lsy || Vwllrz@) U l|Ls )
< Col| U132 |U " el
KU - V)v,w)| = |((U - V)v, w)|
=|= (U - V)w,v)|
< C||U||IL6(Q)||Vw]|L2(Q)“U“L3(n)
< Cyol|Ullo o /2w 2 |fwl]
(V x U,w)| < |Ulg||wl,
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and further
| B2(U, v)| 2 (0,r;1-1(02))

o 0 _3/241/2 1/4
< %C4C8(M+X+a)+—2—r—ﬁc3 Cy/*CyRrY/

030;/26';/201012’7’1/4 2XC171/2>
+ ; L i—

R.

Next, let (h;, k;) (¢ = 1,2) be taken from Bg and (U;,v;) (3 = 1,2) be the
solution of

du;

dtz + (u + x)AU; = nPf + h;,
dv; 6

dt +Lvi=g—§V><f+ki,

U;(0) = nug, v;(0) = vp.

Then it is easy to see that the differences U:= Uiy — Uy and ¥ := v1 — vg can be
estimated as
U] oo (0,712 () < Call 20,2 (1)),
101122 (0,713 (2 < CrzllBllL20,r12 205
1T oo (0,2 () < Ciallhll 20,12 ()
1T 20,51 )z (y) < Crallhllz2(o,m12 (@)
19l L= 0,ms12¢0)) < Cisllkllz2o,rm-1(c))
151l 22 (0,rm1(52y) < Caellkll 20,11 ()

Since
-1 . .
B1(U1,v1) — B1(Ua,v2) = 2nxV x 4 + AU — ;[P(Ul -V)U + P(U - VU,
then

1 B1(U1,v1) — B1(Usz, v2)|| L2(0,7i12 ()

2C5C14°Cy{> R/
n

< 20X Cyellkll L2 (0. m-1(62y) + [excm + IRl 22 (0,r12 ()

Similarly we obtain
| B2(U,v1) — Ba(Uz, v2) || 2(0,rm-1(52))
Cy*Cs*CrRr/* | G320y *CrgRr'/*
n n?
CsCiL*Ci4* Rr/*

6
< | =
< [271014(” +x+a)+

+ 2xCnir 172
n
Now, set the number n € (0, 1} so that the following inequalities hold:

1Bl 20,722 () + & 22 0,7s8-1 02))-

1 1
2Csxn < 2’ 2C16xn < T



After that, chose 6 € (0, 1] and 7 € (0,7 so small that
| B1(U, V)| L2¢0,riL2 1)) < R,
| B2(U,v) || L2 (0,71-102)) < R,

1 .
1B1(U,v) = Bi (U, v)llz2(0,raz (@) < 5lIRllz2(0,m02 @)
1 -
| B2(U,v) — B2(U,v)|| 120,71~ (02)) < §||k”L2(o,T;H—1(n))-

Thus the mapping (h, k) — (B;1(U,v), Bo(U,v)) turns out to be a contraction,
and the existence of a solution to our problem follows. The uniqueness of solu-
tion (U, v) logically follows from the above argument.
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