On a semilinear evolution equation (New Role of the Theory of Abstract Evolution Equations: From a Point of View Overlooking the Individual Partial Differential Equations)

Author(s)

Matsuura, Kei

Citation

数理解析研究所講究録 (2014), 1892: 13-20

Issue Date

2014-04

URL

http://hdl.handle.net/2433/195809

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
On a semilinear evolution equation

Kei Matsuura
Research Institute for Science and Engineering,
Waseda University

This talk is based on a joint work with Professor Mitsuharu Ôtani from Waseda University.

1 Problem

We shall consider a semilinear parabolic evolution equation arising from fluid mechanics. More specifically, we deal with the following system of equations of the motion of incompressible micropolar fluids.

\[
\frac{\partial u}{\partial t} - \mu \Delta u + (u \cdot \nabla) u + \nabla p = f + 2\chi \nabla \times \left(\omega - \frac{1}{2} \nabla \times u \right),
\]

\[
\frac{\partial \omega}{\partial t} - \alpha \Delta \omega - \beta \nabla (\nabla \cdot \omega) + (u \cdot \nabla) \omega = g - 4\chi \left(\omega - \frac{1}{2} \nabla \times u \right),
\]

\[\nabla \cdot u = 0,\]

where the unknown functions are the velocity vector field \(u \), the microrotation vector \(\omega \) and the pressure \(p \), and \(f \) and \(g \) are given vector fields, \(\alpha, \beta, \mu, \chi \) are constants satisfying \(\alpha > 0, \alpha + \beta > 0, \mu > 0 \) and \(\chi > 0 \).

Micropolar fluid model is one of generalizations of the classical Navier-Stokes model. We shall discuss the solvability of the initial-boundary value problem of this system of equations in a bounded domain \(\Omega \) with smooth boundary \(\partial \Omega \) in \(\mathbb{R}^3 \).

As for the boundary conditions, we assume that

\[u|_{\partial \Omega} = 0, \quad \omega|_{\partial \Omega} = \frac{\theta}{2} \nabla \times u\bigg|_{\partial \Omega},\]

where \(\theta \) is a constant belonging to the interval \([0, 1] \) (see \([1], [3])\).

For the case where \(\theta = 0 \), i.e., both \(u \) and \(\omega \) yield the homogeneous Dirichlet boundary conditions, there have been many results concerning this system of equations \([4]\). On the other hand, the case where \(\theta \neq 0 \) is not fully pursued yet. Furthermore, this boundary condition is not based on any physical principles, the well-posedness of the initial-boundary value problem is not clear. That is why we consider this problem.

Let us introduce a new variable \(v := \omega - \frac{\theta}{2} \nabla \times u \) and change the variables \((u, \omega) \) to \((u, v) \). Then the original system of equations for \(u \) and \(\omega \) will be
rewritten in the following form.

\[
\begin{align*}
\frac{\partial u}{\partial t} - (\mu + \chi) \Delta u + (u \cdot \nabla) u + \nabla p &= f + 2\chi \nabla \times v - \theta \chi \Delta u, \\
\frac{\partial v}{\partial t} - \alpha \Delta v - \beta (\nabla \cdot v) + (u \cdot \nabla) v + 4\chi v + \theta \chi \nabla \times (\nabla \times v) &= g - \frac{\theta}{2} \nabla \times f - \frac{\theta}{2} \{((\mu + (1 - \theta)\chi - \alpha) \nabla \times \Delta u \} + 2(1 - \theta)\chi \nabla \times u, \\
\nabla \cdot u &= 0, \\
u|_{\partial \Omega} &= 0, \quad v|_{\partial \Omega} = 0, \\
u(\cdot, 0) &= u_0(\cdot), \quad v(\cdot, 0) = v_0(\cdot).
\end{align*}
\]

Notice that the boundary condition for the new unknown function v is reduced to the homogeneous boundary condition.

Our aim is to show the existence of a solution (u, v) local in time to this system of equations in the L^2-framework.

2 Function spaces and operators

We refer the details of mathematical facts to be mentioned below to the books [2], [4] and [5].

Let $C_0^\infty(\Omega)$ be the set of all smooth solenoidal vector functions in Ω with compact support, and $L_2^2(\Omega)$ and $H^1_0(\Omega)$ the closure of $C_0^\infty(\Omega)$ in $L^2(\Omega)$ and in $H^1(\Omega)$ respectively. We denote by $|\cdot|$ the norm of $L^2(\Omega)$, (\cdot, \cdot) the inner product of $L^2(\Omega)$; $|\cdot|_\sigma$ the norm of $L_2^2(\Omega)$, $(\cdot, \cdot)_\sigma$ the inner product of $L_2^2(\Omega)$; $\|\cdot\|$ the norm of $H^1_0(\Omega)$, (\cdot, \cdot) the inner product of $H^1_0(\Omega)$; $\|\cdot\|_\sigma$ the norm of $H^1_\sigma(\Omega)$, $(\cdot, \cdot)_\sigma$ the inner product of $H^1_\sigma(\Omega)$. Due to the Poincaré inequality, we equip $H^1_\sigma(\Omega)$ and $H^1_0(\Omega)$ with the norm

\[
\|u\|_\sigma := \left(\int_\Omega |\nabla u|^2 dx\right)^{1/2},
\]

\[
\|v\| := \left(\int_\Omega |\nabla v|^2 dx\right)^{1/2}
\]

for $u \in H^1_\sigma(\Omega)$ and $v \in H^1_0(\Omega)$, respectively.

The orthogonal projection from $L^2(\Omega)$ to $L^2_\sigma(\Omega)$ is denoted by P. The Stokes operator A is defined by $A := -P\Delta$ with $D(A) = H^2(\Omega) \cap H^1_\sigma(\Omega)$.

Let (\cdot, \cdot) denote the duality pairing between $H^{-1}(\Omega)$ and $H^1_0(\Omega)$. The differential operator L, which maps $H^1_0(\Omega)$ to $H^{-1}(\Omega)$, is defined by

\[
(Lv, w) := \alpha \int_\Omega \nabla v \cdot \nabla w dx + \beta \int_\Omega (\nabla \cdot v)(\nabla \cdot w) dx + 4\chi \int_\Omega vw dx \tag{1}
\]

for all $v, w \in H^1_0(\Omega)$. By integration by parts, we obtain

\[
\int_\Omega |\nabla w|^2 dx = \int_\Omega |\nabla \cdot w|^2 dx + \int_\Omega |\nabla \times w|^2 dx \tag{2}
\]
for \(w \in \mathbb{H}_0^1(\Omega) \). Hence there are positive constants \(\alpha_* \) and \(\alpha^* \) such that

\[
\alpha_*|\nabla w|^2 + 4\chi|w|^2 \leq \langle Lw, w \rangle \leq \alpha^*|\nabla w|^2 + 4\chi|w|^2
\] (3)

for \(w \in \mathbb{H}_0^1(\Omega) \).

For \(v \in L^2(\Omega) \), we also define \(\nabla \times v \in \mathbb{H}^{-1}(\Omega) \) by

\[
(\nabla \times v, w) := \int_\Omega v \cdot \nabla \times w dx
\] (4)

with \(w \in \mathbb{H}_0^1(\Omega) \).

We identify the space \(L^2(\Omega) \) with its dual. Then \(\|\nabla \times v\|_* \leq |v| \) holds for \(v \in L^2(\Omega) \), where \(\| \cdot \|_* \) stands for the norm of the space \(\mathbb{H}^{-1}(\Omega) \).

3 Main result

In the above settings, our system can be regarded as a system of abstract evolution equations of the following form.

\[
\frac{du}{dt} + (\mu + \chi)Au = Pf + b_1(u, v) \quad \text{in} \quad L^2_\sigma(\Omega),
\]

\[
\frac{dv}{dt} + Lv = g - \frac{\theta}{2}\nabla \times f + b_2(u, v) \quad \text{in} \quad \mathbb{H}^{-1}(\Omega),
\]

\[
u(0) = u_0, \quad v(0) = v_0,
\]

where \(b_1(u, v) \) and \(b_2(u, v) \) are defined by

\[
b_1(u, v) := 2\chi \nabla \times v + \theta \chi Au - P(u \cdot \nabla)u,
\]

\[
b_2(u, v) := -\frac{\theta}{2}\left((\mu + (1-\theta)\chi - \alpha)\nabla \Delta u + ((\nabla \times u) \cdot \nabla)u\right) - (u \cdot \nabla)v + 2(1-\theta)\chi \nabla \times u.
\]

Notice that \(\nabla \times w \in L^2_\sigma(\Omega) \) whenever \(w \in \mathbb{H}_0^1(\Omega) \) since \(C_c^\infty(\Omega) \) is dense in \(\mathbb{H}_0^1(\Omega) \) and if \(w_0 \in C_c^\infty(\Omega) \) and \(q \in H^1(\Omega) \), the integration by parts gives

\[
(\nabla \times w_0, \nabla q) = (-\nabla \cdot (\nabla \times w_0), q) = 0.
\]

Now our main result reads as follows.

Theorem There exists a constant \(\theta_0 \in (0, 1] \) satisfying the following property: Given \(\theta \in [0, \theta_0] \), \(T > 0 \), \((u_0, v_0) \in \mathbb{H}_\sigma^1(\Omega) \times L^2(\Omega) \), \(f \in L^2(0, T; L^2(\Omega)) \) and \(g \in L^2(0, T; H^{-1}(\Omega)) \), there exist a \(T_* \in (0, T] \) and a unique solution \((u, v)\) to our system on the time interval \((0, T_*]\) with

\[
u \in C([0, T_*]; \mathbb{H}_\sigma^1(\Omega)) \cap W^{1,2}(0, T_*; L^2(\Omega)),
\]

\[
u \in C([0, T_*]; L^2(\Omega)) \cap W^{1,2}(0, T_*; H^{-1}(\Omega)).
\]
4 Sketch of a proof of Theorem

Our idea for proof is the following: First, solve a linear problem

\[
\begin{align*}
\frac{du}{dt} + (\mu + \chi)Au &= Pf + h & \text{in } L^2_2(\Omega), \\
\frac{dv}{dt} + Lv &= g - \frac{\theta}{2} \nabla \times f + k & \text{in } H^{-1}(\Omega), \\
u(0) &= u_0, & v(0) &= v_0,
\end{align*}
\]

for given \(h \in L^2(0,T;L^2_2(\Omega)) \) and \(k \in L^2(0,T;H^{-1}(\Omega)) \). It is well-known that there is a unique solution \((u, v)\) such that

\[
\begin{align*}
u &\in C([0, T); H^1_\sigma(\Omega)) \cap W^{1,2}(0, T; L^2_2(\Omega)), \\
v &\in C([0, T); L^2(\Omega)) \cap W^{1,2}(0, T; H^{-1}(\Omega)).
\end{align*}
\]

Then one can define a mapping \(S \) from \(L^2(0,T;L^2_2(\Omega)) \times L^2(0,T;H^{-1}(\Omega)) \) into itself as \(S(h, k) := (b_1(u, v), b_2(u, v)) \). If \(S \) has a fixed point, then \((u, v)\) is a solution of our problem. Since \(b_1 \) and \(b_2 \) are sums of terms which are linear or quadratic in \(u \) and \(v \), it is natural to expect that \(S \) would be a contraction mapping. This conjecture turns out to be true with the following trick. Let \(\eta \in (0, 1] \) be a constant to be fixed later and \(U := \eta u \). Then our system becomes as follows.

\[
\begin{align*}
\frac{dU}{dt} + (\mu + \chi)AU &= \eta Pf + B_1(U, v) & \text{in } L^2_2(\Omega), \\
\frac{dv}{dt} + Lv &= g - \frac{\theta}{2} \nabla \times f + B_2(U, v) & \text{in } H^{-1}(\Omega), \\
U(0) &= \eta u_0, & v(0) &= v_0,
\end{align*}
\]

where \(B_1(U, v) \) and \(B_2(U, v) \) are defined by

\[
\begin{align*}
B_1(U, v) &= 2\eta \chi \nabla \times v + \theta \chi AU - \frac{1}{\eta} P(U \cdot \nabla)U, \\
B_2(U, v) &= \frac{\theta}{2\eta} (\mu + (1 - \theta) \chi - \alpha) \nabla \times \Delta U - \frac{\theta}{2\eta^2} ((\nabla \times U) \cdot \nabla)U \\
&\quad - \frac{1}{\eta} (U \cdot \nabla)\nabla \times U.
\end{align*}
\]

We are going to show this modified system of equations has a solution \((U, v)\).

Let \(T > 0, u_0, v_0, f \) and \(g \) be given and take a positive number \(R \) satisfying

\[
R \geq \max\{\|u_0\|_\sigma, |v_0|, \|f\|_{L^2(0,T;L^2_2(\Omega))}, \|g\|_{L^2(0,T;H^{-1}(\Omega))}\}.
\]

Let \(\tau \) be a positive number in \((0, T]\) and is also to be fixed later. Denote by \(B_R \) the set of functions \((h, k)\) such that \(h \in L^2(0, \tau; L^2_2(\Omega)) \) and \(k \in L^2(0, \tau; H^{-1}(\Omega)) \) with \(\|h\|_{L^2(0, \tau; L^2_2(\Omega))} \leq R \) and \(\|k\|_{L^2(0, \tau; H^{-1}(\Omega))} \leq R \).

It is well-known that there is a unique solution \((U, v)\) to the problem

\[
\begin{align*}
\frac{dU}{dt} + (\mu + \chi)AU &= \eta Pf + h & \text{in } L^2_2(\Omega), \\
\frac{dv}{dt} + Lv &= g - \frac{\theta}{2} \nabla \times f + k & \text{in } H^{-1}(\Omega), \\
U(0) &= \eta u_0, & v(0) &= v_0.
\end{align*}
\]

\(\square\)
which satisfies
\[
U \in C([0, \tau]; \mathbb{H}_{\sigma}^{1}(\Omega)) \cap L^{2}(0, \tau; \mathbb{H}^{2}(\Omega) \cap \mathbb{H}_{\sigma}^{1}(\Omega)) \cap W^{1,2}(0, \tau; \mathbb{L}_{\sigma}^{2}(\Omega)),
\]
\[
v \in C([0, \tau]; \mathbb{L}^{2}(\Omega)) \cap L^{2}(0, \tau; \mathbb{H}_{0}^{1}(\Omega)) \cap W^{1,2}(0, \tau; \mathbb{H}^{-1}(\Omega)).
\]

Multiplying (5) by \(U \), we get
\[
\frac{1}{2} \frac{d}{dt}|U|_{\sigma}^{2} + (\mu + \chi)\|U\|_{\sigma}^{2} \leq C(|f| + |h|_{\sigma})\|U\|_{\sigma}.
\]

Here and henceforth \(C \) or \(C_i \) (\(i \) is a positive number) denotes a constant which may depend only on \(\mu, \chi, \alpha, \beta, \Omega \) and may take different values line by line. Then we have
\[
\|U\|_{L^\infty(0,\tau;\mathbb{L}_{\sigma}^{2}(\Omega))} \leq C_{1}R,
\]
\[
\|U\|_{L^{2}(0,\tau;\mathbb{H}_{\sigma}^{1}(\Omega))} \leq C_{2}R.
\]

Multiplying (5) by \(AU \), we have
\[
\frac{1}{2} \frac{d}{dt}\|U\|_{\sigma}^{2} + (\mu + \chi)|AU|_{\sigma}^{2} \leq C(|f| + |h|_{\sigma})|AU|_{\sigma},
\]
whence follows
\[
\|U\|_{L^\infty(0,\tau;\mathbb{H}_{\sigma}^{1}(\Omega))} \leq C_{3}R,
\]
\[
\|U\|_{L^{2}(0,\tau;\mathbb{H}_{\sigma}^{1}(\Omega) \cap \mathbb{H}^{2}(\Omega))} \leq C_{4}R.
\]

We here use the estimate from the elliptic regularity theory:
\[
\|w\|_{\mathbb{H}^{2}(\Omega)} \leq C_{0}\|Aw\|_{\sigma},
\]
which holds for \(w \in D(A) \).

Taking the duality pairing between (6) and \(v \), we obtain
\[
\frac{1}{2} \frac{d}{dt}|v|^{2} + \alpha_{\star}\|v\|^{2} + 4\chi|v|^{2} \leq C(\|g\|_{\ast} + |f| + |k|)\|v\|.
\]
From this it follows that
\[
\|v\|_{L^\infty(0,\tau;\mathbb{L}^{2}(\Omega))} \leq C_{5}R,
\]
\[
\|v\|_{L^{2}(0,\tau;\mathbb{H}_{0}^{1}(\Omega))} \leq C_{6}R.
\]

Now we shall show \(\eta, \theta \) and \(\tau \) can be chosen so that \((B_{1}(U, v), B_{2}(U, v))\) also belongs to the set \(B_{R} \).

Let \(\phi \) and \(\psi \) be scalar functions. \(D\phi \) denotes any one of the partial derivative of \(\phi \). We need the following well-known inequalities in order to estimate the nonlinear terms.

If \(\phi \in H_{0}^{1}(\Omega) \), we have
\[
\|\phi\|_{L^{2}(\Omega)} \leq C\|\phi\|_{L^{2}(\Omega)}^{1/2}\|\phi\|_{H^{1}(\Omega)}^{1/2},
\]
\[
\|\phi\|_{L^{6}(\Omega)} \leq C\|\phi\|_{H^{1}(\Omega)}.
\]
If we assume further that $\phi \in H^2(\Omega)$, then $\phi \in L^\infty(\Omega)$ and
$$
\|\phi\|_{L^\infty(\Omega)} \leq C \|\phi\|_{H^1(\Omega)}^{1/2} \|\phi\|_{H^2(\Omega)}^{1/2}.
$$
If $\phi \in H^1_0(\Omega)$ and $\psi \in H^2(\Omega)$ or $\phi \in H^2(\Omega)$ and $\psi \in H^1_0(\Omega)$, the product $\phi D\psi$ belongs to $L^2(\Omega)$ and
$$
\|\phi D\psi\|_{L^2} \leq \begin{cases}
C \|\phi\|_{H^1}^{1/2} \|\phi\|_{H^2}^{1/2} \|\psi\|_{H^1} & \text{for } \phi \in H^1(\Omega), \psi \in H^2(\Omega), \\
C \|\phi\|_{H^2} \|\psi\|_{H^1}^{1/2} \|\phi\|_{H^1}^{1/2} & \text{for } \phi \in H^2(\Omega), \psi \in H^1(\Omega).
\end{cases}
\tag{8}
$$
From this estimate, we obtain
\[
\int_0^\tau |P(U \cdot \nabla)U(s)|_\sigma^2 ds \leq \int_0^\tau |(U \cdot \nabla)U(s)|^2 ds \leq C_7 \int_0^\tau \|U(s)\|^3 \|U(s)\|_{E^2} ds \leq C_3^3 C_7 R^3 \tau^{1/2} \|U\|_{L^2(0,\tau; H^2(\Omega) \cap H^1_\sigma(\Omega))}.
\]
Therefore
\[
\|B_1(U, v)\|_{L^2(0,\tau; L^2_{\sigma}(\Omega))} \leq 2\eta \chi \|\nabla \times v\|_{L^2(0,\tau; L^2_{\sigma}(\Omega))} + \theta \chi \|AU\|_{L^2(0,\tau; L^2_{\sigma}(\Omega))} + \frac{1}{\eta} \|(U \cdot \nabla)U\|_{L^2(0,\tau; L^2(\Omega))} \leq 2C_6 \eta \chi + C_4 \theta \chi + \frac{C_3^{3/2} C_4^{1/2} C_7^{1/2} R \tau^{1/4}}{\eta} R.
\]
Suppose that $w_1, w_2, w_3 \in H^1(\Omega)$, $\nabla \cdot w_1 = 0$ and at least one of these functions vanishes on the boundary $\partial \Omega$. Then $((w_1 \cdot \nabla)w_2, w_3)$ is well-defined and it holds that $((w_1 \cdot \nabla)w_2, w_3) = -((w_1 \cdot \nabla)w_3, w_2)$.
For $w \in H^1_0(\Omega)$ we have
\[
|\langle \nabla \times \Delta U, w \rangle| = |(\Delta U, \nabla \times w)| \leq C_8 \|U\|_{H^1(\Omega)} \|w\|,
\]
\[
|\langle (\nabla \times U) \cdot \nabla \rangle U, w \rangle| = |((\nabla \times U) \cdot \nabla) U, w) = |(U \cdot \nabla)U, w)| \leq C \|\nabla U\|_{L^2(\Omega)} \|\nabla w\|_{L^2(\Omega)} \|U\|_{L^6(\Omega)} \leq C_9 \|U\|_{L^2(\Omega)} \|\nabla w\|_{L^2(\Omega)} \|U\|_{L^6(\Omega)} \leq C_9 \|U\|_{H^1(\Omega)}^{1/2} \|U\|_{H^2(\Omega)}^{1/2} \|w\|,
\]
\[
|\langle U \cdot \nabla v, w \rangle| = |((U \cdot \nabla) v, w)| = |-(U \cdot \nabla)w, v)| \leq C \|U\|_{L^6(\Omega)} \|\nabla w\|_{L^2(\Omega)} \|v\|_{L^3(\Omega)} \leq C_{10} \|U\|_{L^2(\Omega)} \|\nabla w\|_{L^2(\Omega)} \|v\|_{L^3(\Omega)} \leq C_{10} \|U\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)}^{1/2} \|v\|_{L^3(\Omega)}^{1/2} \|w\| \leq |U|_\sigma \|w\|.
\]
and further
\[
\|B_2(U, v)\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))} \\
\leq \left[\frac{\theta}{2\eta} C_4 C_8 (\mu + \chi + \alpha) + \frac{\theta}{2\eta^2} C_3^{1/2} C_9 R \tau^{1/4} \\
+ \frac{C_3 C_5^{1/2} C_6^{1/2} C_9 R \tau^{1/4}}{\eta} + \frac{2\chi C_1 \tau^{1/2}}{\eta} \right] R.
\]

Next, let \((h_i, k_i) (i = 1, 2)\) be taken from \(B_R\) and \((U_i, v_i) (i = 1, 2)\) be the solution of
\[
\frac{dU_i}{dt} + (\mu + \chi) A U_i = \eta P f + h_i, \\
\frac{dv_i}{dt} + L v_i = g - \frac{\theta}{2} \nabla \times f + k_i, \\
U_i(0) = \eta u_0, \quad v_i(0) = v_0.
\]
Then it is easy to see that the differences \(\tilde{U} := U_1 - U_2\) and \(\tilde{v} := v_1 - v_2\) can be estimated as
\[
\|\tilde{U}\|_{L^\infty(0, \tau; \mathbb{L}_\sigma^2(\Omega))} \leq C_{11} \|\tilde{h}\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))}, \\
\|\tilde{U}\|_{L^2(0, \tau; \mathbb{H}_\sigma^1(\Omega))} \leq C_{12} \|\tilde{h}\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))}, \\
\|\tilde{U}\|_{L^\infty(0, \tau; \mathbb{H}_\sigma^1(\Omega))} \leq C_{13} \|\tilde{h}\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))}, \\
\|\tilde{v}\|_{L^\infty(0, \tau; \mathbb{L}^2(\Omega))} \leq C_{15} \|\tilde{k}\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))}, \\
\|\tilde{v}\|_{L^2(0, \tau; \mathbb{H}_0^1(\Omega))} \leq C_{16} \|\tilde{k}\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))}.
\]
Since
\[
B_1(U_1, v_1) - B_1(U_2, v_2) = 2\eta \chi \nabla \times \tilde{v} + \theta \chi A \tilde{U} - \frac{1}{\eta} [P(U_1 \cdot \nabla) \tilde{U} + P(\tilde{U} \cdot \nabla) U_2],
\]
then
\[
\|B_1(U_1, v_1) - B_1(U_2, v_2)\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))} \\
\leq 2\eta \chi C_{16} \|\tilde{k}\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))} + \left[\theta \chi C_{14} + \frac{2C_3 C_{13}^{1/2} C_{14}^{1/2} R \tau^{1/4}}{\eta} \right] \|\tilde{h}\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))}.
\]
Similarly we obtain
\[
\|B_2(U_1, v_1) - B_2(U_2, v_2)\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))} \\
\leq \left[\frac{\theta \chi}{2\eta} C_{14} (\mu + \chi + \alpha) + \frac{C_2^{1/2} C_6^{1/2} C_{13} R \tau^{1/4}}{\eta} + \frac{\theta C_3^{1/2} C_4^{1/2} C_{13} R \tau^{1/4}}{\eta^2} \\
+ \frac{2\chi \gamma \tau^{1/2}}{\eta} \right] \|\tilde{h}\|_{L^2(0, \tau; \mathbb{L}_\sigma^2(\Omega))} + \frac{C_3 C_{15}^{1/2} C_{16}^{1/2} R \tau^{1/4}}{\eta} \|\tilde{k}\|_{L^2(0, \tau; \mathbb{H}^{-1}(\Omega))}.
\]
Now, set the number \(\eta \in (0, 1]\) so that the following inequalities hold:
\[
2C_6 \chi \eta \leq \frac{1}{2}, \quad 2C_{16} \chi \eta \leq \frac{1}{4}.
\]
After that, chose $\theta \in (0, 1]$ and $\tau \in (0, T]$ so small that

$\|B_1(U, v)\|_{L^2(0, \tau; L^2(\Omega))} \leq R,$
$\|B_2(U, v)\|_{L^2(0, \tau; H^{-1}(\Omega))} \leq R,$
$\|B_1(U, v) - B_1(U, v)\|_{L^2(0, \tau; L^2(\Omega))} \leq \frac{1}{2}\|\tilde{h}\|_{L^2(0, \tau; L^2(\Omega))},$
$\|B_2(U, v) - B_2(U, v)\|_{L^2(0, \tau; H^{-1}(\Omega))} \leq \frac{1}{2}\|\tilde{k}\|_{L^2(0, \tau; H^{-1}(\Omega))}.$

Thus the mapping $(h, k) \mapsto (B_1(U, v), B_2(U, v))$ turns out to be a contraction, and the existence of a solution to our problem follows. The uniqueness of solution (U, v) logically follows from the above argument.

References

