<table>
<thead>
<tr>
<th>Title</th>
<th>THE APPROXIMATION PROPERTY AND THE CHAIN CONDITION (Reflection principles and set theory of large cardinals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Usuba, Toshimichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1895: 103-107</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/195848</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THE APPROXIMATION PROPERTY AND THE CHAIN CONDITION

Toshimichi Usuba (薄葉 季路)
Organization of Advanced Science and Technology
Kobe University

1. THE APPROXIMATION PROPERTY

Definition 1.1. Let \(P \) be a poset and \(\kappa \) a cardinal. We say that the poset \(P \) has the \(\kappa \)-approximation property if for every ordinal \(\tau \) and every \(f \in (\tau^2)^P \), if \(f \restriction x \in V \) for every \(x \in ([\tau]^{<\kappa})^V \), then \(f \in V \).

It is known that for an uncountable \(\kappa \), if \(P \) is an atomless poset of size \(< \kappa \) and \(\dot{Q} \) is a \(P \)-name for a \(\kappa \)-closed poset, then \(P * \dot{Q} \) has the \(\kappa \)-approximation property (e.g., see Mitchell [1]). In this note, we show that the size assumption for a poset \(P \) can be relaxed to the chain condition assumption.

Definition 1.2. Let \(\kappa \) be a regular uncountable cardinal. A poset \(P \) satisfies the strong \(\kappa \)-chain condition (strong \(\kappa \)-c.c., for short) if \(P \) satisfies the \(\kappa \)-c.c. and for every \(\kappa \)-Suslin tree \(T \), \(P \) does not add a cofinal branch of \(T \).

Note 1.3. (1) If there is no \(\kappa \)-Suslin tree, then the \(\kappa \)-c.c. is equivalent to the strong \(\kappa \)-c.c.

(2) For a poset \(P \), if \(P \times P \) satisfies the \(\kappa \)-c.c., then \(P \) satisfies the strong \(\kappa \)-c.c.

Lemma 1.4. If a poset \(P \) satisfies the \(\mu \)-c.c. for some \(\mu < \kappa \), then \(P \) satisfies the strong \(\kappa \)-c.c. In particular, every poset of size \(< \kappa \) satisfies the strong \(\kappa \)-c.c.

Proof. Suppose to the contrary that there is a \(\kappa \)-Suslin tree \(T \) such that \(\models_P \) \[T \] has a cofinal branch \(\dot{B} \). Let \(T' = \{ t \in T : p \models_P t \in \dot{B} \text{ for some } p \in P \} \). It is easy to check that \(T' \) is a downward closed subtree of \(T \) of height \(\kappa \). Since \(P \) satisfies the \(\mu \)-c.c. and \(\mu < \kappa \), each level of \(T' \) has size \(< \mu \). Now, by Kurepa's theorem, \(T' \) has a cofinal branch. Then this branch is a cofinal branch of \(T \), this is a contradiction. \(\square \)

The following is a main result of this note:

Lemma 1.5. Let \(\kappa \) be a regular uncountable cardinal. Let \(P \) be an atomless poset which satisfies the strong \(\kappa \)-c.c. Let \(\dot{Q} \) be a \(P \)-name for a \(\kappa \)-closed poset (trivial poset is possible). Then \(P * \dot{Q} \) has the \(\kappa \)-approximation property.
Proof. Let \(\mathcal{Q} \) be a term poset of \(\mathcal{Q} \), that is, \(\mathcal{Q} \) is the set of all \(P \)-names \(\dot{q} \) with \(\vdash_{P} \dot{q} \in \mathcal{Q} \). For \(\dot{q}_{0}, \dot{q}_{1} \in \mathcal{Q} \), define \(\dot{q}_{0} \leq \dot{q}_{1} \) if \(\vdash_{P} \dot{q}_{0} \leq \dot{q}_{1} \) in \(\mathcal{Q} \). Since \(\mathcal{Q} \) is a name for a \(\kappa \)-closed poset, \(\mathcal{Q} \) is \(\kappa \)-closed.

Let \(\dot{x} \) be a \(P \times \mathcal{Q} \)-name such that \(\vdash \dot{x} \in V \). We say that a condition \(\langle p, \dot{q} \rangle \in P \times \mathcal{Q} \) decides \(\dot{x} \) if there is \(y \) with \(\langle p, \dot{q} \rangle \vdash \dot{x} = y \).

Claim 1.6. Let \(\tau \) be an ordinal and \(\dot{f} \) be a \(P \times \mathcal{Q} \)-name such that \(\vdash \dot{f} : \tau \to 2 \) and \(\dot{f}|x \in V \) for every \(x \in (\\lfloor \tau \rfloor ^{< \kappa})^{V} \). Let \(\langle p, \dot{q} \rangle \in P \times \mathcal{Q} \) and \(x \in \lfloor \tau \rfloor ^{< \kappa} \). Then there are \(\dot{q}^{*} \leq \dot{q} \) and \(F \subseteq \kappa 2 \) such that:

1. \(|F| < \kappa \).
2. For every \(g \in F \), there is \(p' \leq p \) such that \(\langle p', \dot{q}^{*} \rangle \vdash \dot{f}|x = g \).
3. For every \(p' \leq p \), there are \(p'' \leq p' \) and \(g \in F \) such that \(\langle p'', \dot{q}^{*} \rangle \vdash \dot{f}|x = g \).

Proof. It is easy to check that the set \(\{ p' \leq p : \exists \dot{q}' (\langle p', \dot{q}' \rangle \leq \langle p, \dot{q} \rangle \text{ and } \langle p', \dot{q}' \rangle \text{ decides } \dot{f}|x \} \) is predense below \(p \). Take a maximal antichain \(A \) which is contained in this set. Since \(P \) satisfies the \(\kappa \)-c.c., we know that \(|A| < \kappa \). Then for each \(r \in A \), there are \(\dot{q}_{r} \) and \(g_{r} \) such that \(\langle r, \dot{q}_{r} \rangle \leq \langle p, \dot{q} \rangle \) and \(\langle r, \dot{q}_{r} \rangle \vdash \dot{f}|x = g_{r} \). Let \(F = \{ g_{r} : r \in A \} \) and one can take \(\dot{q}^{*} \) such that \(\dot{q}^{*} \leq \dot{q} \) and \(r \vdash \dot{q}^{*} = g_{r} \) for every \(r \in A \). Then \(\dot{q}^{*} \) and \(F \) work. \(\square \) [Claim]

In order to show that \(P \times \mathcal{Q} \) has the \(\kappa \)-approximation property, take \(\langle p, \dot{q} \rangle \in P \times \mathcal{Q} \), an ordinal \(\tau \), and a name \(\dot{f} \) such that \(\langle p, \dot{q} \rangle \vdash \dot{f} : \tau \to 2 \) and \(\dot{f}|x \in V \) for every \(x \in (\lfloor \tau \rfloor ^{< \kappa})^{V} \). Suppose to the contrary that \(\langle p, \dot{q} \rangle \vdash \dot{f} \notin V \).

By induction on \(\alpha < \kappa \), we would find \(x_{\alpha}, \dot{q}_{\alpha}, F_{\alpha} (\alpha < \kappa) \) such that:

1. \(x_{\alpha} \in \lfloor \tau \rfloor ^{< \kappa} \) and \(\langle x_{\alpha} : \alpha < \kappa \rangle \) is \(\subseteq \)-increasing.
2. \(\langle \dot{q}_{\alpha} : \alpha < \kappa \rangle \) is decreasing in \(\mathcal{Q} \) and \(\dot{q}_{0} \leq \dot{q} \).
3. \(F_{\alpha} \subseteq \kappa 2 \) and \(|F_{\alpha}| < \kappa \).
4. For every \(g \in F_{\alpha} \), there is \(p' \leq p \) such that \(\langle p', \dot{q}_{\alpha} \rangle \vdash \dot{f}|x_{\alpha} = g \).
5. For every \(p' \leq p \) there are \(p'' \leq p' \) and \(g \in F_{\alpha} \) such that \(\langle p'', \dot{q}_{\alpha} \rangle \vdash \dot{f}|x_{\alpha} = g \), i.e., the set \(\{ p' \leq p : \langle p', \dot{q}_{\alpha} \rangle \vdash \dot{f}|x_{\alpha} = g \} \) is predense below \(p \).
6. For every \(g \in F_{\alpha} \), there are \(g_{0}, g_{1} \in F_{\alpha+1} \) such that \(g \subseteq g_{0}, g_{1} \) and \(g_{0} \neq g_{1} \).

When \(\alpha = 0 \), pick an arbitrary \(x_{0} \in \lfloor \tau \rfloor ^{< \kappa} \). Then we can find required \(\dot{q}_{0} \leq \dot{q} \) and \(F_{0} \) by Claim 1.6.

Let \(\alpha > 0 \) and suppose \(x_{\beta}, \dot{q}_{\beta}, F_{\beta} \) are defined for all \(\beta < \alpha \).

Case 1: \(\alpha \) is limit. We can find \(x_{\alpha} \in \lfloor \tau \rfloor ^{< \kappa} \) such that \(x_{\beta} \subseteq x_{\alpha} \) for \(\beta < \alpha \). Since \(\mathcal{Q} \) is \(\kappa \)-closed, we can find \(\dot{q}^{*} \leq \dot{q}_{\beta} \) for every \(\beta < \alpha \). Then take \(\dot{q}_{\alpha} \leq \dot{q}^{*} \) and \(F_{\alpha} \) by Claim 1.6.

Case 2: \(\alpha \) is successor, say \(\alpha = \beta + 1 \). Pick a maximal antichain \(A \subseteq P \) below \(p \) such that for every \(p' \in A \) there is \(g \in F_{\beta} \) such that \(\langle p', \dot{q}_{\beta} \rangle \vdash \dot{f}|x_{\beta} = g \). Note
that $|A| < \kappa$, and, for every $g \in F_{\beta}$, there is $p' \in A$ with $\langle p', \dot{q}_{\beta} \rangle \Vdash \langle \dot{f} | x_{\beta} = g \rangle$.

Since $|A| < \kappa$ and $\langle p, \dot{q}_{\beta} \rangle \Vdash \langle \dot{f} \notin V \rangle$, we can find $x_{\alpha} \in [\tau]^{< \kappa}$ such that $x_{\beta} \subseteq x_{\alpha}$ for $\beta < \alpha$, but $\langle p', \dot{q}_{\beta} \rangle$ does not decide $\dot{f} | x_{\alpha}$ for every $p' \in A$.

Claim 1.7. For each $p' \in A$, there are $p_{0}', p_{1}', g_{0}', g_{1}': x_{\alpha} \rightarrow 2$, and $\dot{r} \leq \dot{q}_{\beta}$ such that $g_{0}' \neq g_{1}'$ and $\langle p_{i}', \dot{r} \rangle \Vdash \langle \dot{f} | x_{\alpha} = g_{i}' \rangle$.

Proof. Since $\langle p', \dot{q}_{\beta} \rangle$ does not decide $\dot{f} | x_{\alpha}$, we can take (p_{0}', \dot{q}_{0}), $(p_{1}', \dot{q}_{1}) \leq (p', \dot{q}_{\beta})$, and $g_{0}', g_{1}': x_{\alpha} \rightarrow 2$ such that $g_{0}' \neq g_{1}'$ and $\langle p_{i}', \dot{q}_{i} \rangle \Vdash \langle \dot{f} | x_{\alpha} = g_{i}' \rangle$. We may assume that p_{0}' is incompatible with p_{1}'; if p_{0}' and p_{1}' have a common extension p_{2}, take $p_{0}'' \leq p_{2}$ such that $p_{0}'' \bot p_{1}'$ and replace p_{1}' by p_{0}''.

Now take $\dot{r} \leq \dot{q}_{\beta}$ such that $p_{i}' \Vdash \langle \dot{r} = \dot{q}_{i} \rangle$. Clearly p_{i}', g_{i}' and \dot{r} work. □[Claim]

For each $p' \in A$, pick $\dot{r}_{p'} \leq \dot{q}_{\beta}$ such that there are $p_{0}', p_{1}' \leq p'$, $g_{0}', g_{1}': x_{\alpha} \rightarrow 2$ with $g_{0}' \neq g_{1}'$ and $\langle p_{i}', \dot{r}_{p'} \rangle \Vdash \langle \dot{f} | x_{\alpha} = g_{i}' \rangle$.

Then pick $\dot{q}^* \leq \dot{q}_{\beta}$ such that $p' \Vdash \langle \dot{q}^* = \dot{r}_{p'} \rangle$ for every $p' \in A$. Finally, take $\dot{q}_{\alpha} \leq \dot{q}^*$ and $F_{\alpha} \subseteq x^{*2}$ as in Claim 1.6. The following claim shows that x_{α}, \dot{q}_{α}, and F_{α} work well:

Claim 1.8. For each $g \in F_{\beta}$, there are $g_{0}, g_{1} \in F_{\alpha}$ such that $g_{0} \neq g_{1}$ and $g \subseteq g_{0}, g_{1}$.

Proof. Take $p' \in A$ so that $\langle p', \dot{q}_{\beta} \rangle \Vdash \langle \dot{f} | x_{\beta} = g \rangle$. Then we can take $p_{0}', p_{1}' \leq p'$ and $g_{0}', g_{1}': x_{\alpha} \rightarrow 2$ such that $g_{0}' \neq g_{1}'$ and $\langle p_{i}', \dot{r}_{p'} \rangle \Vdash \langle \dot{f} | x_{\alpha} = g_{i}' \rangle$. Clearly $g \subseteq g_{0}', g_{1}'$. By the choice of F_{α} and \dot{q}_{α}, for each $i < 2$, one can take $p_{i} \leq p_{i}'$ and $g_{i} \in F_{\alpha}$ such that $\langle p_{i}, \dot{q}_{\alpha} \rangle \Vdash \langle \dot{f} | x_{\alpha} = g_{i} \rangle$. Since $\dot{q}_{\alpha} \leq \dot{q}^*$, each $\langle p_{i}, \dot{q}_{\alpha} \rangle$ is compatible with $\langle p_{i}', \dot{r}_{p'} \rangle$. This means that $g_{i}' = g_{i}$, so $g_{0}' \neq g_{1}'$ and $g \subseteq g_{0}, g_{1}$. □[Claim]

Suppose $\dot{q}_{\alpha}, x_{\alpha}, F_{\alpha}$ are defined for $\alpha < \kappa$. Note that, for every $\alpha < \beta < \kappa$ and $g \in F_{\beta}$, we have $g | x_{\alpha} \in F_{\alpha}$; take $p' \leq p$ such that $\langle p', \dot{q}_{\beta} \rangle \Vdash \langle \dot{f} | x_{\beta} = g \rangle$. Then one can pick $p'' \leq p'$ and $h \in F_{\alpha}$ such that $\langle p'', \dot{q}_{\alpha} \rangle \Vdash \langle \dot{f} | x_{\alpha} = h \rangle$. $\langle p', \dot{q}_{\beta} \rangle$ is compatible with $\langle p'', \dot{q}_{\alpha} \rangle$. So $h = g | x_{\alpha}$.

Let $T = \bigcup_{\alpha < \kappa} F_{\alpha}$. T with the inclusion forms a κ-tree, and each node of T has at least two immediate successors.

Claim 1.9. T has no antichain of size κ.

Proof. For each $g \in T$, there are p_{g} and $\alpha_{g} < \kappa$ such that $\langle p_{g}, \dot{q}_{\alpha_{g}} \rangle \Vdash \langle \dot{f} | x_{\alpha_{g}} = g \rangle$.

For g, g' in T, if g and g' are incompatible in T, then p_{g} is incompatible with $p_{g'}$ in \mathbb{P}. This means that if T has an antichain of size κ, then \mathbb{P} also has an antichain of size κ. This is impossible, hence T does not have an antichain of size κ. □[Claim]

Hence T is a κ-Suslin tree. We finish the proof by showing the following claim, which contradicts the strong κ-c.c. of \mathbb{P}:
Claim 1.10. $p \Vdash \text{"T has a cofinal branch".}$

Proof. Take a (V, \mathbb{P})-generic G with $p \in G$ and work in $V[G]$. Let $\alpha < \kappa$. Since $\{p' \leq p : \langle p', \dot{q}_\alpha \rangle \Vdash \text{"}f|\alpha = g\text{"}\}$ for some $g \in \mathcal{F}_\alpha$ is predense below p, we can find $p_\alpha \in G$ and $g_\alpha \in \mathcal{F}_\alpha \subseteq T$ such that $\langle p_\alpha, \dot{q}_\alpha \rangle \Vdash \text{"}f|\alpha = g_\alpha\text{"}$. Now, for $\alpha < \beta < \kappa$, p_α is compatible with p_β and $\dot{q}_\beta \leq \dot{q}_\alpha$. So $\langle p_\alpha, \dot{q}_\alpha \rangle$ is compatible with $\langle p_\beta, \dot{q}_\beta \rangle$. This means that $g_\alpha \subseteq g_\beta$, so $\{g_\alpha : \alpha < \kappa\}$ is a cofinal branch of T. \hfill \Box[Claim]

Note 1.11. If \mathbb{P} satisfies the κ-c.c. but does not have the strong κ-c.c., then \mathbb{P} cannot have the κ-approximation property.

2. Applications

We consider some applications of Lemma 1.5.

Definition 2.1. Let κ be a regular uncountable cardinal and $\lambda \geq \kappa$ a cardinal. A set $X \subseteq \mathcal{P}_{\kappa}\lambda$ has the strong tree property if for every $\langle d_x : x \in X \rangle$ with $d_x \subseteq x$, if $|\{d_x \cap a : x \in X\}| < \kappa$ for every $a \in \mathcal{P}_\kappa\lambda$, then there is $D \subseteq \lambda$ such that for every $a \in \mathcal{P}_\kappa\lambda$ the set $\{x \in X : d_x \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_\kappa\lambda$.

Fact 2.2 (Viale-Weiss [3]). (1) The following are equivalent:

(a) $\mathcal{P}_\kappa\lambda$ has the strong tree property.

(b) There is some unbounded set $X \subseteq \mathcal{P}_\kappa\lambda$ such that X has the strong tree property.

(c) Every unbounded subset of $\mathcal{P}_\kappa\lambda$ has the strong tree property.

(2) κ has the tree property if and only if $\mathcal{P}_\kappa\kappa$ has the strong tree property.

(3) κ is strongly compact if and only if κ is inaccessible and $\mathcal{P}_\kappa\lambda$ has the strong tree property for every $\lambda \geq \kappa$.

(4) Suppose Proper Forcing Axiom. Then $\mathcal{P}_{\omega_2}\lambda$ has the strong tree property for every $\lambda \geq \omega_2$.

Viale-Weiss [3] showed that for an inaccessible κ, if a standard κ-stage iteration satisfying the κ-c.c. forces that "$\kappa = \omega_2$ and Proper forcing axiom"", then κ must be strongly compact in the ground model. The following is a slight improvement of their result.

Proposition 2.3. Let κ be a regular uncountable cardinal. Suppose that there is a poset \mathbb{P} which has the strong κ-c.c. and forces that "$\mathcal{P}_\kappa\lambda$ has the strong tree property for every $\lambda \geq \kappa$". Then $\mathcal{P}_\kappa\lambda$ has the strong tree property for every $\lambda \geq \kappa$ in the ground model.
Proof. We check that $\mathcal{P}_\kappa \lambda$ has the strong tree property for every $\lambda \geq \kappa$. Fix $\lambda \geq \kappa$ and take $\langle d_x : x \in \mathcal{P}_\kappa \lambda \rangle$ such that $d_x \subseteq x$ and $|\{d_x \cap a : x \in \mathcal{P}_\kappa \lambda\}| < \kappa$ for every $a \in \mathcal{P}_\kappa \lambda$. Take a (V, \mathbb{P})-generic G and work in $V[G]$. In $V[G]$, $\mathcal{P}_\kappa^V \lambda$ is unbounded in $\mathcal{P}_\kappa \lambda$ since \mathbb{P} satisfies the κ-c.c. By the strong tree property of $\mathcal{P}_\kappa^V \lambda$ in $V[G]$, we can find $D \subseteq \lambda$ such that $\{x \in \mathcal{P}_\kappa^V \lambda : d_x \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_\kappa \lambda$ for every $a \in \mathcal{P}_\kappa \lambda$. We see $D \in V$, this completes the proof. For each $a \in \mathcal{P}_\kappa^V \lambda$, there is $x \in \mathcal{P}_\kappa^V \lambda$ with $D \cap a = d_x \cap a \in V$. Thus, by the κ-approximation property of \mathbb{P}, we have $D \in V$. \hfill \qed \\

Next we look at the indestructibility of weak compactness.

Definition 2.4. Let κ be weakly compact. If every κ-directed closed forcing preserves the weak compactness of κ, then κ is said to be *indestructibly weakly compact*.

The existence of an indestructibly weakly compact cardinal is consistent (Laver [2]). The following theorem suggests that the consistency of the existence of an indestructibly weakly compact cardinal might be at least strongly compact cardinal.

Proposition 2.5. Let κ be a regular uncountable cardinal. If there is a poset which satisfies the strong κ-c.c. and forces that “κ is indestructibly weakly compact”, then κ is strongly compact.

Proof. Take $\lambda \geq \kappa$. We see that $\mathcal{P}_\kappa \lambda$ has the strong tree property. Take $\langle d_x : x \in \mathcal{P}_\kappa \lambda \rangle$ with $d_x \subseteq x$ and $|\{d_x \cap a : x \in \mathcal{P}_\kappa \lambda\}| < \kappa$ for every $a \in \mathcal{P}_\kappa \lambda$.

Take a (V, \mathbb{P})-generic G, and a $(V[G], \text{Col}(\kappa, \lambda))$-generic H. We work in $V[G][H]$. Fix a bijection $\pi : \lambda \rightarrow \kappa$. We know that $\{\pi^{-1}x : x \in \mathcal{P}_\kappa^V \lambda\}$ is unbounded in $\mathcal{P}_\kappa \kappa$. Since κ is weakly compact in $V[G][H]$, by the tree property of κ, there is $C \subseteq \kappa$ such that $\{\pi^{-1}x \in \mathcal{P}_\kappa \kappa : \pi^{-1}(d_x) \cap a = C \cap a\}$ is unbounded for all $a \in \mathcal{P}_\kappa \kappa$. Put $D = \pi^{-1}C$. Then for every $a \in \mathcal{P}_\kappa \lambda$, the set $\{x \in \mathcal{P}_\kappa^V \lambda : d_x \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_\kappa \lambda$. We know $D \in V$ since $\mathbb{P} \ast \text{Col}(\kappa, \lambda)$ has the κ-approximation property by Lemma 1.5. \hfill \qed

REFERENCES

(T. Usuba) ORGANIZATION OF ADVANCED SCIENCE AND TECHNOLOGY, KOBE UNIVERSITY, ROKKO-DAI 1-1, NADA, KOBE, 657-8501 JAPAN

E-mail address: usuba@people.kobe-u.ac.jp