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1 Introduction
In this article, we review recent works with Yanagida [16] and Kan [8] on re-
movable and non-removable time-dependent singularities in parabolic equa-
tions. Throughout this article, we only consider the case $N\geq 3$ . The case
$N=2$ is considered in [16] and [8].

This article is organized as follows. In Section 1.1, we give a necessary
and sufficient condition for the removability of a time-dependent singularity
in the linear heat equation. Non-removable singularities are considered in
Section 1.2. We devote Section 1.3 to state results on effects of a motion of
the singular point. In Section 2, we prove Theorem 1.2.

1.1 Removable singularities
For a solution of the Laplace equation, the removability of a singularity is
defined as follows. Let $u$ be a solution of

$\triangle u=0$ in $\Omega\backslash \{\xi_{0}\},$

where $\Omega$ is a domain in $\mathbb{R}^{N}$ and $\xi_{0}\in\Omega$ . We say that the singularity of $u$

at the point $x=\xi_{0}$ is removable if there exists a classical solution $\tilde{u}$ of the
Laplace equation in $\Omega$ such that $\tilde{u}\equiv u$ in $\Omega\backslash \{\xi_{0}\}$ . It is well known that
the singularity of $u$ at $\xi_{0}$ is removable if and only if the singularity is weaker
than that of the fundamental solution of the Laplace equation, that is, the
condition for the removability is

$|u(x)|=o(|x-\xi_{0}|^{2-N})$ as $xarrow\xi_{0}.$
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For nonlinear elliptic equations, the removability of a singularity has been
studied in many papers and various results have been obtained (see, e.g.,
Brezis and V\’eron [1], V\’eron [17], $P$.-L. Lions [10], Gidas and Spruck [3], the
monograph V\’eron [18] and references cited therein).

Similarly, for the heat equation

$u_{t}=\triangle u$ in $\Omega\backslash \{\xi_{0}\}\cross(0, T)$

with $T>0$ , Hsu [6] proved that the singularity of $u$ at $x=\xi_{0}$ is removable
if and only if

$|u(x, t)|=o(|x-\xi_{0}|^{2-N})$ as $xarrow\xi_{0}$

for every $t\in(0, T)$ . The proof is based on precise estimates of the heat
kernel. Later, Hui [7] gave a simpler proof for this result by utilizing Schauder
estimates and the maximum principle. For the semilinear parabolic equation

$u_{t}=\triangle u+u^{p}, x\in \mathbb{R}^{N}, t>0$ , (1.1)

Hirata [5] extended Hsu and Hui’s result by an iteration technique.
For the case where a singular point may move in time, the problem on the

removability is formulated as follows. Let $\xi$ : $[0, T]arrow \mathbb{R}^{N}$ be a continuous
curve. We take a domain $\Omega\subset \mathbb{R}^{N}$ such that $\xi(t)\in\Omega$ for any $t\in[0, T]$ and
define

$D_{\Omega}:=\{(x, t)\in \mathbb{R}^{N+1}:x\in\Omega\backslash \{\xi(t)\}, t\in(O, T)\}$. (1.2)

For a solution of
$u_{t}-\Delta u=0$ in $D_{\Omega}$ , (1.3)

the time-dependent singularity at $x=\xi(t)$ is said to be removable if there
exists $\tilde{u}$ which satisfies the heat equation in $\Omega\cross(0, T)$ in the classical sense
and $\tilde{u}\equiv u$ on $D$ . Our first theorem gives a necessary and sufficient condition
for the removability of the time-dependent singularity. Roughly speaking, if
$\xi$ has some H\"older continuity, then the removability is analogous to Hsu and
Hui’s result. More precisely, the results is the following:

Theorem 1.1 ([16]). Suppose that $\xi$ is 1/2-H\"older continuous on $[0, T]$

and that $u$ satisfies (1.3) in the classical sense. Then the singularity of $u$ at
$x=\xi(t)$ is removable if and only if for any $t_{1},$ $t_{2}\in(0, T)$ with $t_{1}<t_{2}$ and
$\epsilon\in(0,1)$ there exists $r\in(0,1)$ depending on $t_{1},$ $t_{2}$ and $\epsilon$ such that

$|u(x, t)|\leq\epsilon|x-\xi(t)|^{2-N}$

for any $x\in \mathbb{R}^{N}$ with $0<|x-\xi(t)|<r$ and for any $t\in[t_{1}, t_{2}].$
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The proof is based on a construction of a suitable cut-off function. In or-
der to construct the desired function, we suppose that $\xi$ has 1/2-H\"older con-
tinuity. However, 1/2 is the critical H\"older exponent in some sense. Indeed,
in Section 1.3, we see that the shape of time-dependent singular solutions
are distorted when the motion of $\xi$ is quicker than or equal to 1/2-H\"older
continuous.

1.2 Non-removable singularities
In what follows, we consider singular solutions whose singularity moves in
time and is not removable. For the semilinear heat equation (1.1), Sat $0$ and
Yanagida [11] constructed the solution with a time-dependent singularity to
the Cauchy problem for $N/(N-2)<p<(N+2\sqrt{N-1})/(N-4+2\sqrt{N-1})$ .
The solution is singular on given any smooth curve $\xi(t)$ . Moreover, they also
proved that the leading term of the expansion at $x=\xi(t)$ has the same form
as that of the singular steady state of this equation, that is, the solution
satisfies

$u(x, t)=L|x-\xi(t)|^{-m}+o(|x-\xi(t)|^{-m})$ ,

as $x=\xi(t)$ , where $m:=2/(p-1)$ and $L:=\{m(N-m-2)^{1/(p-1)}\}$ . After-
ward, they studied various properties of time-dependent singular solutions,
for instance, the time-global existence [12], convergence to singular steady
states $[15]$ and appearance of anomalous singularities [13, 14].

In this article, we turn to the linear heat equation. To begin with, we
recall that the linear heat equation has the singular steady state

$\Psi(x):=A_{N}|x|^{2-N} (A_{N}:=4^{-1}\pi^{-\frac{N}{2}}\Gamma(\frac{N}{2}-1))$ (1.4)

We remark that $\Psi$ is the fundamental solution of the Laplace equation. In-
deed, $A_{N}=1/N(N-2)\omega_{N}$ , where $\omega_{N}$ is the volume of the unit ball in $\mathbb{R}^{N}.$

Analogous to the semilinear heat equation, it is expected that there exists a
singular solution whose singular point moves in time, and the leading term of
the expansion is $\Psi(x-\xi(t))$ . Indeed, in [16], such solutions were constructed
by utilizing the following equation:

$u_{t}-\triangle u=\delta_{\xi(t)}$ in $\mathbb{R}^{N}\cross(0, T)$ , (1.5)

where $\delta_{\xi(t)}$ is the Dirac distribution concentrated at the point $\xi(t)\in \mathbb{R}^{N}$

for each $t\in(0, T)$ . We may represent a solution of (1.5) by using the
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representation formula for the inhomogeneous heat equation. More precisely,
we denote the heat kernel by $\Phi(x, t)=(4\pi t)^{-N/2}\exp(-|x|^{2}/4t)$ and define $F$

in $\mathbb{R}^{N}\cross(0, T)$ by

$F(x, t) := \int_{0}^{t}\Phi(x-\xi(s), t-\mathcal{S})ds.$

Then, $F$ satisfies the following:

Theorem 1.2 ([16]). Suppose that $\xi$ : $[0, T]arrow \mathbb{R}^{N}i\mathcal{S}$ continuous. Then $F$

satisfies (1.5) in $\mathbb{R}^{N}\cross(0, T)$ in the distributional sense and (1.3) in $D_{\mathbb{R}^{N}}$ in
the classical sense, where $D_{\mathbb{R}^{N}}$ is given by (1.2).

Remark 1.1. Theorem 1.2 also holds if $N=1$ and $N=2.$

It was also shown that the leading term of the expansion of $F(x, t)$ at
$x=\xi(t)$ is $\Psi(x-\xi(t))$ if $\xi$ has some H\"older continuity.

Theorem 1.3 ([16]). Suppose that $\xi$ is $\alpha$ -H\"older continuous on $[0, T]$ with
some $\alpha>1/2$ . Then for each $t\in(0, T)$ ,

$F(x, t)=\Psi(x-\xi(t))+o(|x-\xi(t)|^{2-N})$

as $xarrow\xi(t)$ , where $A_{N}$ is given by (1.4).

Remark 1.2. Another proof of Theorems 1.2 and 1.3 were given by Karch
and Zheng [9, Section 4]. Their method is based on the Fourier transform.

1.3 Effects of a motion of the singular point

Let us consider the effect of the motion of the singular point. To measure
instantaneous quickness of the motion of the singular point $\xi(t)$ , we make
the following definition. In this article, we say that $\xi$ has an $\alpha$-velocity at $t$

if
$\lim_{s\uparrow t}\frac{\xi(t)-\xi(s)}{(t-s)^{\alpha}}$

exists. When $\xi$ has an $\alpha$-velocity at $t$ , we call the above limit $\alpha$-velocity
vector and denote it by $v_{\alpha}(t)$ . Throughout this subsection, let us consider
the case where $\xi$ is continuous on $[0, T]$ , and

non-zero vector $v_{\alpha}(t_{0})$ exists for some $\alpha\in(0,1] and t_{0}\in(0, T)$ .
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We introduce notation before stating our results. Put $\rho_{0}$ $:=|v_{\alpha}(t_{0})|$ and
$v_{0};=v_{\alpha}(t_{0})/|v_{\alpha}(t_{0})|$ . For $z\in \mathbb{R}^{N}\backslash \{0\}$ , we write $r=|z|,$ $\omega=z/|z|$ and
denote $\theta\in[0, \pi]$ by the angle between $\omega$ and $-v_{0}$ , that is, $\cos\theta=-\omega\cdot v_{0}.$

With this notation, we have the decomposition $\omega=-(\cos\theta)v_{0}+(\sin\theta)n$ for
some $n\in \mathbb{R}^{N}$ with $|n|=1,$ $n\cdot\nu_{0}=0.$

In what follows, the case $\alpha=1,$ $\alpha\in(1/2,1),$ $\alpha=1/2$ and $\alpha\in(0,1/2)$

are considered, respectively. If $\alpha=1$ , then the expansion of $F$ at $x=\xi(t_{0})$

is as follows.

Theorem 1.4 ([8]). Suppose $\alpha=1$ . Then the following (i) and (ii) hold as
$z:=x-\xi(t_{0})arrow 0.$

(i) If $N=3$, then

$F(x, t_{0})= \Psi(z)+(4\pi)^{-\frac{3}{2}}[\Gamma(\frac{1}{2})\rho_{0}\cos\theta$

$+ \int_{0}^{t_{0}}\tau^{-\frac{3}{2}}(e^{-\frac{1}{4}\tau^{-1}|\xi(t_{0})-\xi(t_{0}-\mathcal{T})|^{2}}-1)d\tau+\frac{2}{\sqrt{t_{0}}}].$

(ii) If $N\geq 4$ , then

$F(x, t_{0})= \Psi(z)+\frac{\rho_{0}\cos\theta}{8\pi^{\frac{N}{2}}}\Gamma(\frac{N}{2}-1)r^{3-N}+o(r^{3-N})$ .

Remark 1.3. The integral in Theorem 1.4 (i) is finite.
If $\alpha\in(1/2,1)$ , then the effect of the motion also appears in the second

term of the expansion of $F.$

Theorem 1.5 ([8]). Suppose $\alpha\in(1/2,1)$ . Then

$F(x, t_{0})= \Psi(z)+\frac{\rho_{0}\cos\theta}{2^{2\alpha+1}\pi^{\frac{N}{2}}}\Gamma(\frac{N}{2}-\alpha)r^{2\alpha+1-N}+o(r^{2\alpha+1-N})$

as $z:=x-\xi(t_{0})arrow 0.$

When $\alpha=1/2$ , the effect appears in the leading term of the expansion.
The expansion in the next result implies that the shape of the solution is
distorted towards the back of the singular point.
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Theorem 1.6 ([8]). If $\alpha=1/2$ , then

$F(x, t_{0})=(4 \pi)^{-\frac{N}{2}}e^{-n_{4}^{2}}\rho(\int_{0}^{\infty}\sigma^{\frac{N}{2}-2}e^{-\frac{1}{4}(\sigma-2\sqrt{\sigma}\rho_{0}\cos\theta)}d\sigma)r^{2-N}+o(r^{2-N})$

$a\mathcal{S}Z:=x-\xi(t_{0})arrow 0.$

In what follows, let us consider the case $\alpha<1/2$ . We remark that under
this assumption, the integral

$\int_{0}^{t_{0}}(t_{0}-s)^{-\frac{N}{2}}\exp\{-\frac{|\xi(t_{0})-\xi(s)|^{2}}{4(t_{0}-s)}\}ds$

is finite, because the integrand is bounded in $(0, t_{0})$ . Therefore the value of
$F(x, t_{0})$ at $x=\xi(t_{0})$ can be defined as a finite value. This fact suggests
that there is some region $\mathcal{N}$ containing the point $\xi(t_{0})$ such that $F(\cdot, t_{0})$ is
bounded in $\mathcal{N}$ . The problems in this case are to find such a region $\mathcal{N}$ and
also to specify the behavior of $F(x, t_{0})$ when $x\not\in \mathcal{N},$ $xarrow\xi(t_{0})$ .

In order to state our result, we define for $\epsilon>0$ and $M>0,$

$S_{\epsilon}:= \{z\in \mathbb{R}^{N}\backslash \{0\};1-\cos\theta\geq 2\rho_{0}^{\frac{1}{\alpha}}(\frac{N-3}{2\alpha}+1)(1+\epsilon)r^{\frac{1}{\alpha}-2}\log\frac{1}{r}\},$

$T_{M}:=\{z\in \mathbb{R}^{N}\backslash \{0\};1-\cos\theta\leq Mr^{\frac{1}{\alpha}-2}\}.$

Our main result is the following.

Theorem 1.7 ([8]). Suppose that $\alpha\in(0,1/2)$ and that

$\xi(t_{0})-\xi(s)=(t_{0}-s)^{\alpha}v_{\alpha}(t_{0})+(t_{0}-s)^{\frac{1}{2}}w_{0}+o((t_{0}-s)^{\frac{1}{2}})$ (1.6)

for some $w_{0}\in \mathbb{R}^{N}$ as $s\uparrow t_{0}$ . Then, for any $\epsilon>0$ and $M>0,$

$x- \xi(t_{0})\in S_{\epsilon}\lim_{xarrow\xi(t_{0})}F(x, t_{0})=F(\xi(t_{0}), t_{0})$
,

$x- \xi(t_{0})\in T_{M}\lim_{xarrow\xi(t_{0})}(r^{\frac{N-3}{2\alpha}+1}e^{\frac{1}{4}J(x-\xi(t_{0}))}F(x, t_{0}))=(4\pi)^{-\frac{N-1}{2}}\alpha^{-1}\rho^{\frac{N-3}{0^{2\alpha}}}e^{-\frac{1}{4}c0},$

where $J(z)$ $:=2\rho^{\frac{1}{0^{\alpha}}}r^{-(\frac{1}{\alpha}-2)}(1-\cos\theta)+2\rho^{\frac{1}{0^{2\alpha}}}(n\cdot w_{0})r^{-(\frac{1}{2\alpha}-1)}\sin\theta$ and $c_{0}$ $:=$

$|w_{0}|^{2}-(\nu_{0}\cdot w_{0})^{2}$ Furthermore,

$\lim_{xarrow\xi}\inf_{(t_{0})}F(x, t_{0})=F(\xi(t_{0}), t_{0})$ ,

$\lim_{xarrow\xi}\sup_{(t_{0})}(r^{\frac{N-3}{2\alpha}+1}F(x, t_{0}))=(4\pi)^{-\frac{N-1}{2}}\alpha^{-1}\rho^{\frac{N-3}{0^{2\alpha}}}$
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Remark 1.4 ([8]). If $N=2$ and $\alpha\in(0,1/2)$ , then we obtain

$\lim F(x, t_{0})=F(\xi(t_{0}), t_{0})$
$xarrow\xi(t_{0})$

without using (1.6).

Theorem 1.7 implies that the shape of the solution is more distorted than
that of the case $\alpha\in[1/2,1]$ . In particular, the solution is continuous along
some directions and is not continuous towards the back of the singular point.
To observe this phenomenon, we give a simpler version of Theorem 1.7. In
this version, we only consider the limit of $F$ when $x$ approaches $\xi(t)$ along
the direction $\omega.$

Corollary 1.1. Let $\omega\in S^{N-1}$ Suppose that $\alpha\in(0,1/2)$ and that

$\xi(t_{0})-\xi(s)=(t_{0}-s)^{\alpha}v_{\alpha}(t_{0})+o((t_{0}-s)^{\frac{1}{2}})$

as $s\uparrow t_{0}$ . Then the following (i) and (ii) hold.

(i) If $\omega=-v_{\alpha}(t_{0})/|v_{\alpha}(t_{0})|$ , then

$F(x, t_{0})=(4\pi)^{-\frac{N-1}{2}}\alpha^{-1}\rho^{\frac{N-3}{0^{2\alpha}}}|x-\xi(t_{0})|^{-\frac{N-3}{2\alpha}-1}+o(|x-\xi(t_{0})|^{-\frac{N-3}{2\alpha}-1})$

as $xarrow\xi(t_{0})$ along the direction - $v_{\alpha}(t_{0})/|v_{\alpha}(t_{0})|.$

(ii) If $\omega\neq-v_{\alpha}(t_{0})/|v_{\alpha}(t_{0})|$ , then

$F(x, t_{0})=F(\xi(t_{0}), t_{0})+o(1)$

$a\mathcal{S}Xarrow\xi(t_{0})$ along the direction $\omega.$

2 Proof of Theorem 1.2
We give a proof of Theorem 1.2 for $N\geq 1$ . The proof is similar to [16,
Section4]. In this article, we say that $u$ satisfies (1.5) in the distributional
sense if $u$ belongs to $L_{1oc}^{1}(\mathbb{R}^{N}\cross(0, T))$ and satisfies

$\int_{0}^{T}\int_{\mathbb{R}^{N}}(-\phi_{t}-\triangle\phi)$ udxdt $= \int_{0}^{T}\phi(\xi(t), t)dt$ (2.1)

for any $\phi\in C_{0}^{\infty}(\mathbb{R}^{N}\cross(0, T))$ .
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proof of Theorem 1.2. Since

$\int_{0}^{T}\int_{\mathbb{R}^{N}}F(x, t)dxdt=\frac{1}{2}T^{2}<\infty,$

the function $F$ is integrable on $\mathbb{R}^{N}\cross(0, T)$ . In particular, $F$ belongs to
$L_{1oc}^{1}(\mathbb{R}^{N}\cross(0, T))$ . In the following, we show that $F$ satisfies (2.1) for all
$\phi\in C_{0}^{\infty}(\mathbb{R}^{N}\cross(0, T))$ . For each $n\in \mathbb{N}$ , we define

$F_{n}(x, t);= \int_{0}^{\frac{n}{n+1}t}\Phi(x-\xi(s), t-s)ds.$

Then, the integrating by parts yields

$\int_{0}^{T}\int_{\mathbb{R}^{N}}(-\phi_{t}-\triangle\phi)F_{n}dxdt=\frac{n}{n+1}I_{n},$

where
$I_{n} := \int_{0}^{T}\int_{\mathbb{R}^{N}}\phi(x, t)\Phi(x-\xi(\frac{n}{n+1}t),\frac{1}{n+1}t)dxdt.$

First, we prove that

$\lim_{narrow\infty}\frac{n}{n+1}I_{n}=\int_{0}^{T}\phi(\xi(t), t)dt$ . (2.2)

To prove this, we rewrite

$I_{n}= \int_{0}^{T}\phi(\xi(t), t)dt+I_{n}’,$

where
$I_{n}’:= \int_{0}^{T}J_{n}(t)dt$

and

$J_{n}(t) := \int_{\mathbb{R}^{N}}\{\phi(x, t)-\phi(\xi(t), t)\}\Phi(x-\xi(\frac{n}{n+1}t), \frac{1}{n+1}t)dx.$

By a similar calculation to [2, Section 2.3.1], $\lim_{narrow\infty}J_{n}(t)=0$ for each
$t\in(0, T)$ . Indeed, let $t\in(0, T)$ and $\epsilon>0$ , since $\xi$ is continuous on $(0,T)$ ,
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there exists $\delta>0$ such that $|\phi(x, t)-\phi(\xi(t), t)|<\epsilon$ for any $x\in \mathbb{R}^{N}$ with
$|x-\xi(t)|<\delta$ . Then,

$|J_{n}(t)| \leq\epsilon+C_{1}\int_{\{|x-\xi(t)|\geq\delta\}}\Phi(x-\xi(\frac{n}{n+1}t), \frac{1}{n+1}t)dx$

for some constant $C_{1}>0$ . Taking $n\in \mathbb{N}$ such that $| \xi(t)-\xi(\frac{n}{n+1}t)|\leq\frac{1}{2}\delta$, we
have $\frac{1}{2}|x-\xi(t)|\leq|x-\xi(\frac{n}{n+1}t)|$ when $|x-\xi(t)|\geq\delta$ . Thus, by the change of
variables $r=|x-\xi(t)|$ and $s=\sqrt{n+1}r/4\sqrt{t}$ , we calculate that

$\int_{\{|x-\xi(t)|\geq\delta\}}\Phi(x-\xi(\frac{n}{n+1}t), \frac{1}{n+1}t)dx$

$\leq C_{2}(\frac{t}{n+1})^{-\frac{N}{2}}\int_{\{|x-\xi(t)|\geq\delta\}}\exp\{-\frac{|x-\xi(t)|^{2}}{16(n+1)^{-1}t}\}dx$

$\leq C_{3}\int_{4}^{\infty}\sqrt{\frac{n+1}{t}}^{s^{N-1}e^{-s^{2}}ds}$ ’

where $C_{2},$ $C_{3}>0$ are constants independent of $n$ . By $N\geq 1$ , we obtain
$\lim_{narrow\infty}J_{n}(t)=0$ . Moreover, for any $n\in \mathbb{N}$ and $t\in(0, T)$ , the integrand
of $I_{n}’$ is dominated by some constant $C_{4}>0$ . Hence, $\lim_{narrow\infty}I_{n}’=0$ by
Lebesgue’s dominated convergence thorem. Thus, (2.2) holds.

Next, direct calculation shows that

$| \int_{0}^{T}\int_{\mathbb{R}^{N}}(-\phi_{t}-\triangle\phi)(F_{n}-F)dxdt|\leq C_{5}\int_{0}^{T}\int_{\frac{n}{n+1}t}^{t}dsdt=\frac{C_{5}}{2(n+1)}T^{2}$

for some constant $C_{5}>0$ . Taking $narrow\infty$ , we obtain

$\lim_{narrow\infty}\int_{0}^{T}\int_{\mathbb{R}^{N}}(-\phi_{t}-\triangle\phi)F_{n}dxdt=\int_{0}^{T}\int_{\mathbb{R}^{N}}(-\phi_{t}-\triangle\phi)$ Fdxdt. (2.3)

Since (2.2) and (2.3) hold, $F$ satisfies (2.1). Therefore, $F$ satisfies (1.5) in
$\mathbb{R}^{N}\cross(0, T)$ in the distributional sense. Furthermore, (2.1) particularly shows
that for any $\psi\in C_{0}^{\infty}(D_{\mathbb{R}^{N}})$ ,

$\int_{0}^{T}\int_{\mathbb{R}^{N}}(-\psi_{t}-\triangle\psi)$Fdxdt $=0.$

By the Weyl lemma for the heat equation (see, e.g., [4, Section 6]), we con-
clude that $F$ satisfies (1.3) in $D_{\mathbb{R}^{N}}$ in the classical sense. 1
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