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ASYMPTOTIC EXPANSIONS FOR CERTAIN ¢-SERIES,
¢-INTEGRALS, ¢-DIFFERENTIALS AND A FORMULA OF
RAMANUJAN FOR SPECIFIC VALUES OF ((s)

MASANORI KATSURADA
DEPARTMENT OF MATHEMATICS, HIYOSHI CAMPUS, KEIO UNIVERSITY
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ABSTRACT. This is a summarized version of the author’s papers [22](24] on asymptotic
aspects of the g-series of Lambert type, g-hypergeometric function, g-integrals and g-
differentials. Major portions of the results in these papers are rearranged to state in
Parts I and II respectively; the first part is devoted to showing intrinsic linkage between
asymptotics of certain g-series and a formula of Ramanujan for specific values of the
Riemann zeta-function ¢(s), while several complete asymptotic expansions for multiple
g-integrals and g-differentials of Thomae-Jackson type are presented in the second part.

Part I: Asymptotics for ¢g-series and Ranmanujan’s formula for ((s)

1.1. Introduction (I). Throughout the present article, let ¢ be a complex parameter
with |g| < 1, and the substitution ¢ = e~ will be made as it is needed, where the half-
plane Ret > 0 is transformed to the unit disk |g| < 1. It is the main aim of Part I to
present intrinsic linkage between asymptotic expansions of certain g-series (see (1.1.6)-
(1.1.8) below) and a formula of Ramanujan for specific values of the Riemann zeta-function
at odd integers (see (1.1.9) below). This linkage is in fact hidden in Ramanujan’s original
work; however, the introduction of the g-series (1.1.2) or (1.1.3) and its treatment based on
a Mellin transform technique give us an insight for connecting these two aspects together.

Let z and s be complex variables, and let a and px be real parameters with o > 0.
For our later purposes it is convenient to introduce the generalized Lerch zeta-function
&(s, a, z) defined by
(1.1.1) B(s,,2) = Y (a+n)""2"

n=0

for all sif |2| < 1, for Res > 0if |z| = 1 and z # 1, and for Res > 1 if z = 1, respectively;
this continues to a meromorphic function over the whole s-plane and is one-valued in the
complex z-plane cut along the real axis from 1 to +oo (cf. [13]). We use the notation e(u) =
e?™# hereafter. Then &(s, o, z) reduces to the ordinary Lerch zeta-function ¢(s, a, 1) when
z = e(u), so that &(s,a,1) = ((s,a) is the Hurwitz zeta-function, e(u)®(s,1,e(u)) =
Cu(s) the exponential zeta-function, and so &(s,1,1) = {(s) the Riemann zeta-function.
We remark that the order of the variables in @ and ¢ above differs from the usual notation,
in order to retain notational consistency with other terminology.
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Let § and v be real parameters with 3 > 0. The main object of the present paper is
the g-series of the form

(1.1.2) Se(2l50) = e(B) Y el(a+ m)p)g*t™Pd(s, 5, e(v)g*+™),
m=0
which is rewritten, by changing the order of summations, as a Lambert series form
e a(f+n)
B.o) = —se((B+n)v)q
(1.1.3) Se(3f5a) = elam) Y (8 +n) == P

n=0
We shall prove complete asymptotic expansions of Ss(;'jf ;q) as t — 0 in the sectorial
region |argt| < 7/2 (see Theorem 0 below). Let as usual

(#0e = [[A-2¢™), (210D = (:0)o0/ (26" Do
m=0

for any integer n denote g-shifted factorials. Our main formula (1.2.3) in particular implies
a complete asymptotic expansion of log(¢%; q)s as ¢ — 17, and it further allows us to
treat the ¢-series

(114 Fl =Y

—~ (¢:9)2
[e o) n2 o] n(n+1)
q q
(1.1.5) G(q) = E —— and  H(q)=) +—.
—~ (¢ — (G

These are typical examples of the theta series (in the transformed Eulerian form) whose
asymptotic behaviours near the singularities at the points ¢* =1 (k =1,2,.. .) were first
considered by Ramanujan in his last letter to Hardy (see [38]). Ramanujan showed

(1.1.6) F(q) = (-2%)1/2 exp (-g—: - Ez‘tZ) +0(1),
(1.1.7) Glo) = (- _2\/5)1/2 exp (1”—; — =) +ol1),
(1.1.8) H(q) = (5 +2\/.5_)1/2 exp (11; + %) +o(1),

ast — +0, and similar asymptotic formulae for certain other g-series. In conjunction with
this result, (complete) Stirling’s formula for the g-gamma function was first established
by Moak [31], while Ueno and Nishizawa [37] developed their theory on a g-analogue
of the Hurwitz zeta-function and applied it to rederive the same formula, together with
asymptotic expansions of G(q) and H(g), similar to (1.1.7) and (1.1.8). The study on
asymptotic aspects for more general g-series of the type 0 a”qb"2+0"/ (¢; q)rn was ini-
tiated by Ramanujan [35, p. 366] [36, p.359], and was further proceeded by Berndt [7]
[8, Chap. 27]. This direction has recently been systematically explored by McIntosh
(25][26]27] and Gordon-MclIntosh [17][18], in conjunction with transformation properties
of the g-series. It is to be remarked that the basic tool applied by these authors is the
Euler-Maclaurin summation device. The Mellin transform technique, on the other hand,
was applied by Meinardus [29][30] to derive certain asymptotic formulae for fairly general
class of partition-type functions. We refer the reader to [2, Chap. 6] for various related
works.
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Let By (k=0,1,2,...) denote the Bernoulli numbers (cf. [13]). Our main theorem also
yields Ramanujan’s famous formula for specific values of the Riemann zeta-function at
odd integers (cf. [5][6]), which asserts, for any integer n # 0,

[-2n—1 n+l

(1.1.9) { ¢(2n+1) +Z T } 22nz(2ni2n2+2 ;ksz(k )!§n+1—k(_n)k

[-2n—1

= (—n)” { (2n+1) +Z 217,_1}

where £ and 7 are positive real numbers satisfying £n = 72 and the finite sum on the
left-hand side is to be regarded as null if n < —1 (see Theorem 2 in Section 1.4). It
will later turn out that the excluded case n = 0 of this formula emerges (in a sense) as
asymptotic expansions of F(q), G(¢q) and H(q) (see Corollary 1.4 in Section 1.3).

1.2. The main theorem (I). Let z and y be complex variables. Apostol 3] introduced
the sequence of rational functions Bi(z,y) (k > 0) defined by the Taylor series expansion

e =Bz, y) 4
(1.2.1) yez—l_§ R

with |argy| < « near z = 0. The function Bi(z,y), which coincides with the usual
Bernoulli polynomial Bi(z) if y = 1, is a polynomial in z of degree at most k with
coefficients in Q(y). Next let I'(s) be the gamma function, and U(a;c; z) denote the
confluent hypergeometric function defined by

1 ocoe*? B . -
—_— e w1+ w) T dw
) )
for Rea > 0 and |argz + ¢| < 7/2 with any fixed angle ¢ € (—m, ), where the path of
integration is taken as a half-line from the origin to ooe® (cf. [13]); the domain of z is
extended to the whole sector |arg z| < 37/2 by rotating suitably the path of integration
n (1.2.2).

We now state our main result in Part I.

(1.2.2) Ua;c; z) =

Theorem 0. Let o, 3, u and v be real parameters with « > 0 and 8 > 0, ¢ = e, and
let Ss(a, B; 1, v; q) be defined by (1.1.2) or (1.1.3). Then for any integer K > 0 and any
complez t in the sector |argt| < w/2 the formula

(1.2.3) Ss(ﬁ;ff;q) = e(ap+ Bv)Bo(B,e(W)) (1 - s)p(1 — s, a, p)t*t

+elop-+ ) Y, SRy g

k=—1
+ Rk (255 9)
holds in the region Res < K + 1 except the points s =k (k=0,1,...,K), where B(z,y)

is defined by (1.2.1), and the empty sum is to be regarded as null. Here R, x(%5;q) is the
remainder term satisfying the estimate

(1.2.4) R,k (28;q) = O(|t|")

ast — 0 through |argt| < w/2 — § with any small § > 0, in the region Res < K + 1,
where the implied O-constant depends at most on s, K, a, 3, p, v and 6. In particular
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when K >1,0<a<1,0<B8<1,0< pu<1and0<v<1 the explicit expression
(1.2.5)

Rox(25:q) = (~1)¥(@2m)~*t"'I'(K +1 - s)

[e¢]

X {e’”'s/2 Z, e(—am — Bn)(u+ m) ™" fo k(47" ™ (1 + m)(v + n) /1)
m,n=0

+ e is/2 Z/ e(a(l+m)+B(14+n))(1—p+m)™*
m,n=0

X fox(dn®e™(1 - p+m)(1—v+n)/t)

4 gmis/2 Z' e(—am + B(1+n))(n+ m)~°* fs k(47 (u + m)(1 — v + n)/¢t)

m,n=0

4 gmis/2 Z’ e(a(l4+m)—Bn)(1 — p+m)~*fox(4n*(1 — p+m)(v + n)/t)}

m,n=0
holds for |argt| < 7/2, in the region Res < K, where
(1.2.6) fok(2) =UK+1-5K+1-s5;2)

with the confluent hypergeometric function defined by (1.2.2), and the primed summation
symbols indicate that the terms including u+m=0o0r1—pu+m=0, andv+n =0 or
1 —v+n=0 are to be omitted in they occur.

Remark. Asymptotic expansions similar to (1.2.3) follow also for the exceptional points
s=k (k=0,1,2,...) as limiting cases of Theorem 0, whose important applications are
included in these exceptlonal cases (see Theorems 1-5 below).

1.3. Applications to g-factorials and allied functions. It is seen from the relation
29(1,1,2) = —log(1 — 2) for |2| < 1 and (1.1.2) that

(1.3.1) S1(e,1;0,v;q) = —log(e()g%; g)oo,
and hence Theorem 0 yields

Theorem 1. Let o and v be real with o > 0 and 0 < v < 1. Then the following asymptotic
expansions hold for any integer K > 1 and any complex t in | argt| < w/2:

(132)  loglg" g)ee = —g—: - Br(@ogt ~log L)
K- 1
* 32 Z k(fkf’lm Dk Ryse(3:9):
(133) log(e(l/)q“; Q)oo = _Cu( ) 1(0{){log(2 sin 7'(1/) + 7B, (y)}
+ iBz(a)(l —icot )t Z ( 1) Bkk((oki 1)))Bk+1(a) £k

—le(gﬁ;(J)

where the remainder terms Ry k(gq;q) and R k(§0;q) satisfy the same estimate as
(1.2.4) when t — 0 through the sector |argt| < 7r/2 — 0 with any small 6 > 0. In
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particular if K > 2 and 0 < a < 1, the explicit expressions as in (1.2.5) follow for the
remainder terms.

Remark A complete asymptotic expansion of (¢%;q)w as ¢ — 1~ was first established by
Moak [31] and later rederived by Ueno-Nishizawa [37] in a slightly different form from that
of (1.3.2). McIntosh [25](27] proved (1.3.2) for real t > 0 with the error term R, g = O(tX)

in a more general situation.

Corollary 1.1. For any real a > 0 and any integer K > 1 the formula

2

o T 1
(1.3.4) log(—¢*; @)oo = 2t By(a)log2 + ZBz(a)t

= DR~ DBiBia(a) 4
B P k(k + 1;! : - K(ouz,q)

holds in | argt| < 7/2, where the remainder term Ry ( 0?‘1’/12 ;q) satisfies the same estimate
as (1.2.4). In particular if 0 < a < 1 and K > 2 the explicit expression as in (1.2.5)
follows for the remainder term.

To describe the subsequent results, the change of the base

(1.3.5) g=etroe ™/t =7

is frequently applied. Noting the facts

(1.3.6) By =0, h=1,2...,

(1.3.7) Bi(1-a) = (-1)*By(a), k=0,1,2...

(cf. [13]), we find that every term (with k > 2) of the series in (1.3.2) and (1.3.4) vanishes
when a = 1, and hence Theorem 0 further reduces to

Corollary 1.2. The following formulae hold:
2
1 -
(13.8) 10B(g; @)oo = ~ - — 5 l0g 5= + 5 Zz

or in exponential form

(@) = 27rex (_7r2+t)(,\. '
q,(Ioo— t p 6t 24 CI,(I (o o} ]

1 tS L, 3
1.3. —¢; Qoo = —— — =log2+ — - 1!

or in exponential form

1 w2
(—4:9)e = 75 P (m 24)( % Do
Remark Formulae (1.3.8) and (1.3.9) are classic; these can be found for e.g., in [4, Chap. 3].

Remark. Formulae (1.3.8) and (1.3.9) both give complete (convergent) asymptotic ex-
pansions, since for instance the I-th term of the last infinite series in (1.3.8) is of order
¢/l+0@%) as | — oo.



KATSURADA

It can be observed that the explicit expression (1.2.5) for the remainder term, in certain
specific cases (as in the preceding corollary), further reduces to complete (convergent)
asymptotic expansions as ¢ — 0 in |argt| < /2 (see Corollaries 1.3-1.5 below). If one
considers, for instance, the logarithm of the pairing (¢%; ¢)oo(¢'™%; ¢)oo With 0 < a < 1,
each term (with k > 2) in its asymptotic series vanishes again by (1.3.6) and (1.3.7).
From (1.2.5) and Theorem 1 we can in fact prove:

Corollary 1.3. The following formula hold for any real o and pwith0 < a <1 and
O<p<l:

2

1
73rt + log(2sin wa) + Bg(a)

-y Gl 5 el

(1.3.10) 10g{(9% @)oo (0% @)oo} =

or in exponential form

(6% 0)oo (0% @)oo = 2(sin7ax) eXP{ - 5 + B2(a)t}

X (e(1 = a)T; @)oo (e() T 7)o
(1.3.11)

log{(e(1)4%; @)oo(e(l — 1)a' ™% @)oo} = —{Cu(2) + C1_u(2)}t 71
— 271'231(0!)31(#) + lBQ(CY)t

Zl_ l—ozl)fj"l f:l_

e(al gii—mi

or in exponential form
(e(1)a; @)oo (e(1 — 1)g" ™% @)oo = exp [{Cy(Q) + Gou(2) M7 — 27iB1 () By (1)

+ %BQ(a)t] (e(1 ~ )7 Do (e(2)7; §)oo.

We can now restate Ramanujan’s asymptotic formula (1.1.6)—(1.1.8) with explicit error
terms. It is known that F(q) = 1/(¢;q)o (cf. [38, pp.57-58], and the famous Rogers-
Ramanujan identities assert that

G(q) = . and  H(g) = (@ q5)ool(q3;q5)oo

(4 ¢%)o0 (4% ¢%) oo
(cf. [2, (7.1.6) and (7.1.7)]). Formulae (1.3.8) and (1.3.10) therefore imply

Corollary 1.4. The following formulae hold for F(q), G(q) and H (q) defined by (1.1.4)
and (1.1.5):

(1.3.12) F(q) = (%)1/2 exp (%; - 52)@:%:
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or in logarithmic form

7r21 t ot =, ¢

2

2 1/2 T t 1
1319 60 =(5=7%) = (i ~ &) cmFr e - cammm 7

or in logarithmic form

oo oo

1 2 t e(1/5)g” | 41/5 )¢/’
IOgG(q)_l—St+§10g(5T\/—§)_@+lZ=;l (,11/5 lz: /1/5 }
2

2 N2 1l 1
131 80 = (7)o (5 * ) commram—camam s

or in logarithmic form

2 1 2 1e(2L/5)F | I~ ,-1e(31/5)3 8
log H(q) = 7z + 5 log (5 f) Zz T Zz T

We next mention slightly different type of implications from Theorem 1. To this aim
several necessary terminologies are prepared. The g-gamma and g¢-beta functions are
defined respectively by

(Q7 q)OO l-a Fq(a)F‘I(ﬁ)
I(a) = ) ——==(1—9q) and By(o, B) Tath)
whose limits as ¢ — 1~ are known to be the ordinary gamma function and the beta
function B(a, 8) = I'(a)I'(B)/I'(a + B), respectively (cf. [16]). Whilst the basic hyper-
geometric function 2¢;(a, b; ¢; ¢, z) is defined by

= (3;9)n(b; )n
$1(a, by q,2) = Ly 2| < 1,
e ; (€ 9)n(@:9)n

for any complex a, b and ¢ with ¢ # ¢ (n = 0,1,2,...), whose particular case a = ¢°,
b= ¢° and ¢ = ¢" gives a g-analogue of Gauss’ hypergeometric function 5 F;(a, 8;7; 2)
(cf. [16, 1.2]). Tt is known that the classical Gauss’ and Kummer’s summation formulae

s = POG=a=)

where Re(y —a—8)>0,y# —n (n=0,1,2,...), and
I'l+a-p8)1+a/2)
1 —B:=1) =
where 1 +a— f# —n (n=0,1,2,...), have g-analogues of the form

o (% Qoo (77 @)oo
$1(¢*,¢%q"; 9,97 *7F) = :
dal )= D@ Pi0)

l_ﬁ)_( ) C R ) P C G )
(@7 @)oo ("5 @)oo

1+a-03.

201(¢%, 4" q 1 g, —q
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respectively (cf. [16, 1.5; 1.8]). Combining formulae (1.3.2) and (1.3.4) with appropriate
exponents (in place of o) we can prove

Corollary 1.5. Let a, 3, v be positive real numbers. Then the following formulae hold
for any integer K > 1 when t — 0 through | arg t| < /2 — 6 with any small § > 0:

log I'(a) = log I'(a) — %(a - 1)(a—2)t

K-1 Y o
+§2% e =G l)ki’“f( )+1—a}tk+0(1tpK)

for a > 0;
log B(a, B) = log B(«, B) + %(aﬁ -1t

K-1 ok o
+g%{( 1) kci-i—;( 7ﬁ) —I—l}tk-f-O(lth)

for a>0 and 8 > 0, where

Cx(a, ) = Br(a) + Bi(B) — Br(a + B);

1
log261(¢%,¢% ¢7; 0, *77) = log y Fi (a, B; ;1) — =afit

2
= (=1)*BD
_ ; (-1) klzk I-c'_+:ll§?>ﬂ77)tk + O(ItIK)

for'y—a>0,7~[5’>O,’y>0and'y—a—,8>0, where
Di(@,8,7) = Bx(v — @) + Bi(y = 8) — Bi(7) — Bi(y — & - B);

log241(¢%,¢” ¢, ¢, —¢"7) = log s Fi(a, B;1 + o — B; 1)

K-1
_ Z (_l)kBlcEk-H(a,ﬁ)tk + O(ltIK)
k=2

k(k+1)!
forl+a>0,24+a-28>0, l+a—-F>0and1~ 3 >0, where
Ei(a, B) = 257! Bi(a/2 + 1/2) + 25 By(1 + /2 — B)
—Bi(l1+a—-06)— (2~ 1)B,(1-3).
Here the implied O-constants depend at most on K, o, B, v andd.

1.4. Connections with Ramanujan’s formula for ((2n + 1). We next describe that
our main theorem implies Ramanujan’s formula for ¢(2n + 1) and its several variants.
In order to clarify symmetricity of the following results we introduce the new parameter
7 =1/2r. Thenthecasea = =1, A=p=0and s = 2n+ 1 (n = +1,£2,...) of
Theorem 0 reduces to the following equivalent form of (1.1.9).
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Theorem 2 (Ramanujan). Let ¢ = e 2" and ¢ = e~2/" with ReT > 0. Then for any
integer n # 0 the formula

n+1
(—1)*Bonya—2kBak _oni1-2k

(141)  Somna(lhia) +50@n+1) + (2”)2"“2(%” 201 2ZR)

= (—1)”72n{52n+1 ( é’é ; a\) + EC(Zn + 1)}
holds.
Theorem 0 further yields the following several variants of (1.1.9).

Theorem 3. Let ¢ and q be as in Theorem 2. Then the following formulae hold for any
integer n and any real a and p with0 < a<land0< p < 1:

2n+2 Nk
a,l, 1-a,1, n (_7‘) B2’n+2—k(a)Bk(p’) 2n+1—k
(142) S2n+1 ( O, Q) + S2n+1 ( 0,1—p> Q) + (27T)2 *+ Z (2n +2— k)‘k‘ Tt

k=0
= (—1)"72"{52n+1(o,’1"—1a3‘/1\) + S2n+1(13$1;6)}?

2n+1 .
a, a n (_l)szn-}-l—k(a)Bk(p‘) n—
(143) S(Ghi0) = Sw(6i%i0) = 0™ L =G Tpm T

k=0
= i1 S (o4as8) - Sin(5473) ),
where By(z) denotes the k-th Bernoulli polynomial.

Remark. Eie and Chen [12] recently obtained the same formula as (1.4.2) in a quite
different manner, basing on their theorems for multiple zeta functions associated with
polynomials.

Theorem 4. Let ¢ and 7 be as in Theorem 2. Then the following formulae hold for any
integer n and any real § and A with0 < <1 and 0 < A < I:

(1.4.4) Son1(X5:9) + Sans1(125059) +C(2n +1,8)
X #*Bansa-k(0, e(\)Bi(0, e(8))
2n 2n+2—k k 2n+1—k
+ (@m ar 2n + 2 — k)Ik! m

= (—1)"7'2"{Szn+1(1i’;§\,0 ;) + S2n+1( ﬂf, ,(7) +¢(2n+1,1- /\)}

except when n = 0;

(1.4.5) Sen(3X0:9) — S (12355 9) +¢(2n, B)
2 o #Bns1-1(0, 6(N)Bi(0,€(8)) 5y
~(@2m) ; 1(2n+1—k)!k! 7

_Z( l)n 2= 1{5271(1 507Q) S2n(1510)‘,a) C(2n,1—)\)},

where Bi(z,y) is defined by (1.2.1).
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Part IT: Asymptotics for multiple g-integrals and g-differentials

2.1. Introduction (II). Suppose temporarily that q is a real parameter with 0 < ¢ < 1.
Let ¢(u) be a function integrable on the interval [0,z]. A g-analogue of the ordinary
integral [} ¢(u)du, in the form

(2.L1) | et =923 stara

was introduced by Thomae [34] in 1869 and studied by Jackson [19] during 1910-1951
(see also [16, p.23, Chap.1, 1.11]). The formulation in (2.1.1) is motivated from the fact
that

z

(2.1.2) lim o(u)dyu = /Ow o(u)du

q—1" Jo

holds for all (u) continuous on [0,z]. On the other hand, a g-analogue of the ordinary
differentiation is formulated as

_ Y(2) = %(g2)

(2.1.3) 0y (2) = 1=0-
(cf. [16, p.27, 1.12]), which asserts that
(21.4) Tim 0,.6(2) = ¥/(2) = 0.6(2),

say, for all 1(z) complex differentiable at 2.

Throughout the following, q is a complex parameter with 0 < lg] < 1, and the substi-
tution ¢ = e™* will be made if necessary, upon transforming the half-plane Ret > 0 to
the unit disk |¢| < 1. A complex domain D C C is called star-shaped if 0 € D and for
any z € D the line segment 0, z is included in D. We suppose throughout that f(z) is a
function holomorphic in a star-shaped domain D, and pys denotes the distance between 0
and the singularity of f(z) being closest to 0.

We introduce the g-integral and g-differential operators 1;, and DY, defined for any
real z > 0 and y > 0 by

1 z
(2.1.5) ;. f(2) = /0 U fuz)dgu = z_’f/o w* ! f(w)dyw,
(2.16) D1.1() = LTI v 50

for any z in |2| < py, where the latter equalities follow from (2.1.1) and (2.1.3) respectively.

Remark. If the base g is restricted to the range 0 < ¢ < 1, then the domain of z in
which the definitions in (2.1.5) and (2.1.6) are valid is extended to the whole D by its
star-shapedness.

Proposition 1. The operator relations
7.D° =1 and D17, =1

9,27 q,2 9,277¢,2
hold for any x > 0, where 1 denotes the identity operation.

It is the main aim of Part II to pursue the directions in (2.1.2) and (2.1.4) further;
this leads us to show that complete asymptotic expansions as ¢ — 0 through the sector
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|argt| < m/2 exist for the multiple g-integrals (Z7,)" f(¢¥2) (Theorem 5) and the multi-
ple g-differentials (Df,)" f(¢¥2) (Theorem 6) with any integer 7 > 1, under fairly generic
situations. A full extension of the domain of z in which Theorems 5 and 6 are valid is
possible if 0 < ¢ < 1 (Theorem 7). Several applications of our main formulae (2.2.4)
and (2.2.9) will further be given for the Hurzitz-Lerch zeta-function (Theorems 8 and 9),
g-factorials (Corollary 8.1), and g-analogues of the exponential functions (Corollary 8.2),
of the binomial functions (Corollary 8.3), and of the poly-logarithmic functions (Corol-
laries 8.4 and 9.1). As for methodology, it is fundamental to apply a Mellin transform
technique in the proofs of Theorems 5 and 6.

2.2. The main theorems (II). Let r be any integer, and w a complex variable. To de-
scribe our results we introduce the functions Ay x(z, z) and Norlund’s generalized Bernoulli

polynomials B,(f) (y) of rank 7 (cf. [32]) defined respectively for k = 0,1, ... by the Taylor
series expansions

Tw w _ = Af,k(x’z) k
(2.2.1) e f(e¥z) = kE=0 W
Wl W\ =B ,
(2.2.2) ¥ (ew - 1) =3 2P

near w = 0. Note that B,(cl)(y) = By(y) is the usual Bernoulli polynomial, and so By(0) =

B is the usual Bernoulli number. We write B,(cr)(O) = B,(:), and use Euler’s differential
operator 4, = 20,.
We state our first main result in Part II.

Theorem 5. Let x and y be real parameters withx >0 andy >0, gq=¢7%, andr > 1
an arbitrary fired integer. Further let (I7,)" f(z) denote the r-times iterated operation
of (2.1.5) to any function f(z) holomorphic in a star-shaped domain D, and define the
coefficients As_j(x,2z) (j =1,2,...) by

1 1 1
(2.2.3) Af_i(z, z) =/ u?"I/ uf:%/ i f(ug - - wjz)duy - - duyg
0 0 0

Then for any integer K > 0 the formula

ey = (C) A (2, 2) By (y)
(l_q)T(Iq,z) f(q Z)—Z (’I“— )

J:
T+kAfk (z, 2) gk(y)
(r+k)!

(2.2.4)

t* + RV} (2,93 4, 2)

Mf’!

holds in the sector |argt| < 7/2 and on the disk |z| < ps. Here R(;}( is the remainder
term expressed by a certain inverse Mellin transform, and satisfies the estimate

(2.2.5) RY)(z,y:9,2) = O(It|¥)

as t — 0 through |argt| < /2 — & with any small 6 > 0, where the implied O-constant
depends at most onr, x, y, z, K and §. In particular if 0 < y < r and K > 1 the
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representation

, 1) r—1— zB(r)1 ' eln
(2.2.6) R{)(z,y;4,2) = t)KZ( ) nz ( (ny)

Nr—-1-=10)! —  (2min)K+!

% (aa_u)luKJrl/c; 5ztu+27rin~1(l.+29Z)Kf(ftuz)d€

u=1

follows, where the primed summation symbol indicates that the term with n = 0 is to be
omitted. with n = 0.

Remark 3. The explicit expression (2.2.6) will be used to extend the domain of z where
(2.2.4) with (2.2.5) is valid (see Theorem 7).

From a point of view of applications it is necessary to establish the asymptotic expan-
sions for (Z7,)" f(z) both with and without the associated g-multiples (see (2.3.5), (2.3.11)
and (2.3.12) below). The case y = 0 of Theorem 5 in fact yields, in view of the latter
equality in (2.1.5), the following corollary.

Corollary 5.1. Let r and = be as in Theorem 5. Then for any integer K > 0 the
asymptotic formula

z Wy w2
(2.2.7) / w; ! wt - wy! / wi™ f(w)dyws - - - dyw,
0

_1\k
_ D) C];f"’“(x’z)t’“+0(|t|’<)

holds as t — O through |argt| < m/2 — & for any small 6 > 0, on the disk |z| < p; with
|arg z| < m, where the implied O-constant depends at most on z, z, K and 6. Here the

coefficients C](f,z (k=0,1,...) are given by

T - k r T
@28 o= > (F a8

Jj=max(1,r—k)

/ /wg /(;wz wf-lf(wl)dwl - dw;
+Z( )Jﬁﬁ%%wm,

which is reduced if r =1 to
1) 1 z ol k+1
1 xr— j T
Ciil(z,2) = I [/0 w” f(w)dw + JZ:; (j " 1)Bj+1z932{z f(z)}} ,
where the empty sums are to be regarded as null.

The case K = 1 of Corollary 5.1 implies the following.
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Corollary 5.2. Under the same assumptions as in Corollary 5.1 we have the limiting

relation
W w2
hn% / / / wi™ f(wy)dqws - - - dgw,
q—)

lal<1
Wy w2
(r) (z,2) = / _1/ / wi™t f(w;)dw, - - - dw,.
0

We proceed to state our second main result in Part II. For this, let I'(s) denote the
gamma function, and (s), = I'(s + n)/I'(s) for any integer n the rising factorial.

Theorem 6. Let x > 0 and y > 0 be real parameters, ¢ = e™*, and r > 1 an arbitrarily

fized integer. Further let (DZ,)" f(z) denote the r-times iterated operation of (2.1.6) to
any function f(z) holomorphic in a star-shaped domain D. Then for any integer K > 0
the formula

K-1
(-1) Af,,,+k(x 2BV (W) kL plen)
( )f yz t +R (-’E y 4 )
) EO Y;4,2

(2.2.9) qmy(l

t

holds in the sector |argt| < w/2 and on the disk |z| < ps. Here R K is the remainder
term expressed by a certain inverse Mellin transform, and satisfies the estimate

(2.2.10) RS2 (z,y;9,2) = O(|t)%)

as t — 0 through |argt| < m/2 — § with any small § > 0, where the implied O-constant
depends at most onr, z, y, z, K and §. Furthermore, for any real x > 0 and y > 0, and
any integer K > 0,

e211) RGP a = G S Cla ek [ gyrerorgrony
P\ YD) = FRTR) 2l |

x (z +9,) K f(g¥T™E2)de.

In view of the latter equality in (2.1.6), the case y = 0 of Theorem 6 in fact yields the
following corollary.

Corollary 6.1. Let r and = be as in Theorem 6. Then for any integer K > 0 the
asymptotic formula
K- T
1 ~1) C( )( )

(2.2.12) (28,,)"{z°f(2)} = Z 22tk 4 O(t)¥)

holds as t — 0 through |argt| < 7/2 — 6 for any small § > 0, on the disk |z| < py with
| arg z| < w, where the implied O-constant depends at most onr, x, z, K and §. Here the

coefficients C’( -7 (k=0,1,...) are given by

)

k

(2.2.13) (@)= (f) B B\t {27 f(2)},
which reduces if r =1 to

k
5 2) = =3 (’; N 1)Bk I f(2)).
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The case K = 1 of Corollary 6.1 implies the following corollary.

Corollary 6.2. Under the same assumptions as in Corollary 6.1 we have the limiting
relation

lim (20,..) (2) = O (,2) = (28)" {2 (2)}.

lgl<1

We lastly proceed to state the full extension of the domain of z in Theorems 5 and 6
under the restriction that 0 < ¢ < 1 (see Remark just below of (2.1.6)).

Theorem 7. Set ¢ = e™* with any real t > 0, and let f(z) be any function holomorphic
in a star-shaped domain D.

i) Let x and y be real with z > 0 and 0 < y < r. Then the asymptotic erpansion
(2.2.4) with the estimate (2.2.5) when t — 0%, as well as the explicit ezpression
(2.2.6), remain valid throughout the domain D:;

ii) Let > 0 and y > 0 be real. Then the asymptotic expansion (2.2.9) with the
estimate (2.2.10) when t — 0%, as well as the explicit expression (2.11), remain
valid throughout the domain D;

iii) The asymptotic expansion (2.2.7) with (2.2.8) when t — 0% for z > 0, and also
(2.2.12) with (2.2.13) when t — 0% for z > 0, remain valid both throughout the

domain D.
2.3. Applications of Theorems 5 and 6. We suppose throughout this section that
0<g<1 Let[s], = (1-¢°)/(1—-q) be a g-analogue of s, and [s]y;» = [} [s +m], and
[Lgn = [n]y! for n = 0,1,... denote g-analogues of the rising factorial and the factorial

of n respectively (cf. [16, p.7, Chap.1]), where the empty products are regarded to be 1.
Note that the limiting relation lim, ;- [s], = s implies that

(2.3.1) lim [s]g, = (s),  and lim [n],! = n!.
g—1~ g—1~
Recall that the generalized Lerch zeta-function &(s, z, z) is defined by
(2.3.2) B(s,z,2) = > _(z+m) 2"
m=0

for any complex s if |2| < 1, and for Res > 1 if |z| = 1 (cf. [13]); this is continued to a
holomorphic function of (s, z) € C x D, where

(2.3.3) D={zeC||arg(l —2)| <7} =C\ 1, +o0)

is a complex cut-plane; note here that D is a star-shaped domain. We can therefore apply
the part 1) of Theorem 7 (upon (2.2.4) with (2.2.5)) to f(z) = &(s, z, z), and obtain the
following theorem.

Theorem 8. Let z and y be real withz > 0 and 0 < y < r, and s any complex. Then
for any integer K > 0 the asymptotic expansion

™ gy = (D) I(s + 5,2, 2)BO ()
(2.3.4) T—ar (Z7.)P(s,z,q¥2) = jEZl = t
K-1 (r)
("1)T+kds( —k,I,Z)BH_ ( ) k
+k§ S(r+k)! S+ O()

holds as t — 07, in |arg(1 — 2)| < m, where the implied O-constant depends at most on
r, S8,z 2, and K.
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Let Li;(2) for any ! € Z be the poly-logarithmic function defined by Li;(z) = 2&(l, 1, 2)
for any z € D. It is seen from (2.1.1), (2.1.5), (2.1.8) and the relation log(1 — z) =
—29(1,1, 2), by (2.3.2), that

¢’z
(2.3.5) log(¢¥z; @)oo = —1—:—qul,zq5(1, 1,¢Y2)

for any real y > 0 and in |arg(1 — z)| < 7. Then the case (r,s,z) = (1,1, 1) of Theorem 7
yields the following corollary.

Corollary 8.1. Let y be real with 0 <y < 1. Then for any integer K > 0 the asymptotic
expansion

& 1 k+1 Li;— k( )Bk+1(y)
(k+ 1)

(2.3.6) log(¢¥2; @)oo = — Lia(2)t™ tk + O(t%)

k=0
holds as t — 07, in |arg(l — z)| < w, where the implied O-constant depends at most on
y, z and K.

Remark The assertion (2.3.6) was first established by Mclntosh [25]{27] in a more general
setting.

We next present the applications to g-analogues of the exponential and binomial func-
tions defined respectively by

T (o)

n=0

a(y; 2) = 2 (7 <1),
; ["]q
from which with (3.1) the limiting relations lim,_,1- e4(2) = €* and lim,_;- f,(y;2) =
(1 — 2)7¥ follow. It is known that the g-binomial theorem (cf. [16, p.8, Chap.1, 1.3])
asserts that
1 (¢¥% @)oo

(237) eq(Z) = m and fq(yaz) = (Z, Q)oo

for any y > 0; these further provide the meromorphic continuations of e,(z) and f,(y; z)
respectively over the whole z-plane.

Corollary 8.1 can therefore be applied to the right sides above on yielding the following
corollaries.

Corollary 8.2. For any integer K > 0 the asymptotic expansion

(2.3.8) loge (z) =z + Z— ar(2)tF + O(tK)
k=1

holds as t — 0%, in |arg(l — 2)| < m, and this further implies that

eq(2) = e"{l + I;V__:lﬂk(z)tk - O(tK)}

k=1
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as t — 0%, where the coefficients ay(2) and Bi(2) are given by

k k:— Bk N 2B( Z 1) 1+h
2.3.9 1+ h)I- -J_,
(239) Z e ;( it
k )l]
Br(z) =
Z-1Jla—k I=

;>0 (j=1,...,k)
fork=0,1,..., and the implied O-constants depend on z and K.

Corollary 8.3. Let y be real with 0 < y < 1. Then for any integer K > 0 the asymptotic
expansion

K-1
1 k+1 Li
log fo(y; 2 _S_ = o 11 L ){Bk—H — Bia(y) }* + O(tF)
—0

holds as t — 0%, in |arg(1 — 2)| <, and this further implies that

i) = (0= {1+ T wlo )+ o)}

k=1
ast — 0%, where the coefficients v (y, z) are given by

Wy, z) = (=% > Hl ] [LILJ {Bj+1(y) - j+1}] j

Zk—lJlJ—k 3=1 (J +1
l>0 (7=1,....,k)

for k=0,1,.... Here the implied O-constants depend at most on Yy, z and K.

We thirdly present applications to a g-analogue of the poly-logarithmic function Li,,(2)
for any | € Z defined by

2.3. i
(2:3.10) Ligi(2) = ,;, g (<D,

which with (2.3.1) asserts that lim,,;- Lig;(z) = Li;(z). We can in fact show
(2.3.11) Lig,(2) = 2(Z, )" 9(0,1, 2)

for any integer 7 > 0; this further provides the meromorphic continuation of Liy . (2) for
all z € D. Corollary 5.1 can therefore be applied upon taking f (z) = 9(0,1, 2) to yield
the following corollary.

Corollary 8.4. Let r € Z be arbitrarily fizred with r > 1. Then for any integer K > 0
the asymptotic expansion

(r)
qur(z) KZ kak( )

k=0

t* + O(t5)
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holds ast — 0%, in |arg(1 — z)| < 7, where the coefficients C}T,Z are given by

r . k _ N
cpua= Y (5 )E.E e
j=max(1l,r—k)

k—r
k \pen po) 1
+ jg(] (r 4 j) B,_._;B.\; Li_;(2)
for k=0,1,.... Here the implied O-constant depends at most onr, z and K.

We fourthly discuss the applications of Theorem 6; this at first yields on taking f(z) =
&(s,z, z) the following theorem.

Theorem 9. Let x > 0 and y > 0 be real, and s any complex. Then for any integer
K > 0 the asymptotic expansion

K1 (-r)
el =9\ e \r -)*kP(s —r —k,z,2)B, " (y
q y( - ) (Dq,z) @(s,x’qyz)z Z( ) ( I ) k ( )tk—i-O(tK)

x

holds as t — 0%, in |arg(1l — 2)| < w, where the implied O-constant depends at most on
r,s, z,y, zand K.

We can in fact show
(2.3.12) Liy—(z) = 2(D,,)"®(0,1, 2)
for any integer r > 0. Corollary 6.1 can therefore be applied by taking f(z) = ¢(0,1, 2)
to yield the following corollary.

Corollary 9.1. Let r € Z be arbitrarily fired with r > 1. Then for any integer K > 0
the asymptotic expansion

K-1(_1)0m (1 4
Liq,_,(z)=2( l)kok'!’“ @ )tk+0(tK)

k=0

holds as t — 0%, in |arg(1 — 2)| < w, where the coefficients C};cr) are given by

k
=T k T —r) 7.
Ci2) =3 (j)ch—)jBJ( Lieyy(2)

7=0
for k=0,1,.... Here the implied O-constant depends at most on r, z and K.
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