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Abstract

Two representations of a complex number via a Cantor series and a Cantor
product are introduced. The problem of finding criteria for algebraic and linear
independence based on these representations is discussed. Some criteria based
on generalized Liouville’s theorem about approximation by numbers from a fixed

algebraic number field are mentioned.
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1 Introduction

Algebraic and/or linear independence criteria for real numbers represented by various
representations have been of interest for quite some time, see e.g. [1], [2], [3], [7]. Here, a
brief discussion about independence criteria for complex numbers represented via Cantor
series and Cantor product expansions is given. Based on Cantor series expansions for real
numbers, we extend them to complex numbers in the usual manner. The representation
of real numbers as Cantor products is well-known ([8, Section 33]), while that of complex
numbers has only recently been established in [6] and we make use of these results in our
work here.
We now recall some well-known facts about real Cantor series and products.

Proposition 1. I) (/8, Section 33], [4]) Let M = {mi};>,, mi > 2, be a sequence of
natural numbers. A real number a € [0,1) is uniquely representable as a (real) Cantor (or
M-Cantor) series of the form

e ¢]
Ck
- , 1.1
a ; mima -+ - My ( )
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where
ek € {0,1,...,mg — 1}, cx < myg — 1 for infinitely many k. (1.2)

Moreover, assuming that each prime divides infinitely many of the my, then « is irrational
if and only if both cx, > 0 and cx < myi — 1 hold infinitely often.
II) ([8, Section 35]) A real number a > 1 is uniquely representable as a (real) Cantor

b 1
a=H(1+——),
k=1 Ok

product of the form

where ay, € N are subject to
ar+1 > ai, and there are infinitely many k such that ay, > 2. (1.3)

Moreover, a is rational if and only if apy1 = a% for all sufficiently large k.

III) ([5, Theorem 2.1]) A necessary and sufficient condition for a given by the conver-
gent Cantor series (1.1) to be irrational is that, for every B € N, we can find an integer
A and a subsequence ki, ko, ks, ... such that

A A+1 .
:§<akj<T (]EN))

where a = oy and for j > 1,

C; Cj+1 Cit2
=L+ T4 2 o
my; o MMjer MM 1M542

IV) ([5, Theorem 2.2]) Let 1 < k1 < ko < --- be a sequence of positive integers and let

(] Ca Ck Cl
— ...+_____1_—__.:_’ M1=m1m2"'mk1
ma mimg mimsg--- mkl M1
Chy+1 Cky+2 Ck Cs

1 + 1+ 44 2 ===
Mk,+1 Mg +1ME; 42 My +1Mk 42+ My M2

where My = My, 41Myg, 42 - - - Mk,, and so on. Then (1.1) thus reduces to

Ch Cy Ck
= +-.-+—_+...
M, MM, MiM; - - My

with My, > 2 and 0 < Cy < My — 1 for each k. That is, from (1.1) another Cantor series
ezpansion with respect to the new sequence My, My, ... is introduced; such a procedure is
referred to as a condensation. A necessary and sufficient condition for the series (1.1),

under (1.2), to be rational is that there exist coprime integers 0 < a < b, a condensation
and an integer N such that, for allk > N,

C =%(Mk—1).



2 Complex Cantor series and products

Since each 3 € C can be uniquely written as
B=az+iay, (i:=+v-1),

where a, and a, are real numbers.
Throughout the rest of the paper, we restrict our attention to the case where both oy

and oy lie in the open interval (0,1).
From (1.1), both o, and o, can uniquely be represented as

o0 o0
Ck dy,
Qy = 5 —, Oy = E S
mimsa - - My mimsg - - Mg

k=1 k=1

where
cr and di, € {0,...,mi — 1} and both are < my — 1 for infinitely many k. (2.1)

We define the complex Cantor or complex M-Cantor series expansion for 3 as

ﬂ Z Ck+2dk

m1m2 * Mg

where cg, dy are subject to the conditions in (2.1).
We next define complex Cantor products. For D € N, let

$1(1+v-D) if ~D=1 mod 4
v—=D if —D#1 mod4
so that the ring of integers of Q(v/—D) is Z[fp] = {u + v0p ; u,v € Z}. In 1989, A.
Knopfmacher ([6]) introduced a new expansion for a complex number as a product of

algebraic integers in a quadratic field Q(v/—D) which is analogous to the Cantor product
expansion of a real number. His result reads: each 8 € C has a representation

8= kH1<1+ak)

where
ar € Z[Op] \ {0}  (k>1),

and for k sufficiently large

— D=1 mod4
Hif ~D#£1 mod 4.

p ekl = (W7 + Dlar] = (L+ p), p

lag+1| > I .
Y Hakl* = (v + Vel = 1 +7), v

Furthermore, for D = 1 or 2, the product terminates if and only if 3 € Q(v/—D).
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3 Independence criteria

Our algebraic and/or linear independence criteria were originated and closely related to
the works in [1], [2], [3] and [7]. As seen in [2], a possible proof of algebraic independence
is done via Liouville type arguments. Since the usual proof of Liouville’s theorem is based
on approximating algebraic numbers by rationals, extending this approach, one obtains
two versions of generalized Liouville’s theorem dealing with approximation by elements

from a fixed algebraic number field.

Proposition 2. I) Let 3 be an algebraic number of degree m > 1, all of whose conju-
gates (over Q) are § = 1), 2,303 .. (M) Let ag,a,... yan(# 0) be given algebraic
integers, let K be a Galois extension of Q containing all the a; (0 < i < n) and B, with
[K : Q] =d, and let G := Gal (K/Q) be the Galois group of K over Q. If the polynomial
a(z) = ag + a1z + - - - + a,x" satisfies a (,B(i)) # 0 for all 1 < i < m, then there exists a

positive constant ¢ = c¢(m,n,d,3), independent of ag,as, ..., a,, such that

a(8)] 2 7

where H = maxo<i<n {H(a:)}, and H(y) = max,ec{|loc(7)|} (v € K) (called the house of

v)-
II) Let

f@y,.m) = Y @iy, 22l €2, .., 7]\ {0} (3.1)
T1yeensly
be of degree deg,, f = d; with respect to the variable z; (j = 1,...,7). Let
Py,...,P,Q1,...,Qr be nonzero algebraic integers, let K (2 Q) be an algebraic num-
ber field of degree d containing all the P;,Q; (1 < j <r), and let G := Gal(K/Q) be its
Galois group. If f (P,/Q1,...,P/Qr) # 0, then

N —
Qla..-,QT _M{idl gdr(A’n,f)d—l
where A := max;,, ;i |, .|, nf the number of terms in the sum (3.1), and M; =

max {H(P;), H(Q;)} (1 <j<r), H denoting houses.
Sketch of proof. Let f(z) be the minimal polynomial (over Z) of 3. Using the fact that
the resultant of f(z) and a(z) is R # 0, we have |[ ¢ O'(R)l > 1. On the other hand,
from |o(R)| < (m + n)! F* H™, where F' := maxo<j<m {|fj|}, we get

HUGG IU(R)| 1

2 1

HO’GG, o#identity IU(R” {(m + n)' Fn Hm}
Since |a(8™)| < L(a)max (1,|8@|") (1 < i < m), where L(a) is the length of a(z), we
get |R| < | fn[™ a ()] {L(a) max (1, H(B)")}™ " .

|R| =
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Taking a(x) to be a linear polynomial in Proposition 2 I), the following generalized

version of the classical Liouvill’s theorem is recovered.

Corollary 1. Let B be an algebraic number (over Q) of degree m > 1 and let p,q (# 0)
be given algebraic integers. Let K be a Galois extension of Q containing p,q,3 of degree
[K : Q] = d and let G := Gal(K/Q) be its Galois group. If p— qo(8) # 0 for all 6 € G,
then there exists a positive constant ¢ = c(m,d, 3), independent of p and q, such that

max {H(p), H(q)}™d-1

lp —qf| >

where H(y) denotes the house of v € K.
Using Proposition 2, one can deduce the following independence criteria.

Theorem 1. Let a1, 09, ...,05 € C\{0}. Assume that there are infinitely many algebraic
integers Py j, Qn,j (#0) (1 < j <n, N €N) all belonging to a finite Galois extension
K (over Q) with [K : Q] = d, and G = Gal(K/Q) its Galois group, such that

(i) Pnj—Qnjo(a)#0 (1<j<n, 0€G);

(it) My ; := max{H(Py;),H(Qn;)} =00 (N — o0, 1<j<n),
where H(7y) denotes the house of v € K;
(i)
. |aj1— Pnj-1/Qn,j-1]| .
lim : : =0 2< 7<),
N2 Tag — Py /Qu] (z=i<n)

provided n > 2, and

(i) for each positive number E, there exists Ny = No(E) € N such that

P .
aj — 2N | < ! — (N>No, 1<j<n).
Qnj| ™ (My1Mpga-- My )
Then ay, g, ..., an are Q-algebraically independent.

Moreover, if the condition (iv) is replaced by
(v’) there is a positive-valued function g of natural argument with g(N) — co (N — 00)
and there is an Ny = Ny(g) € N such that

1

PNj
2 <
T MyiMpyg My g(N

Qn,j

then 1,01, 0, ..., a, are Q-linearly independent.

@
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4 Criteria for Cantor series

Let a1, as,. .., 0, be nonzero real numbers in the interval (0, 1) whose infinite M-Cantor
series are
J .
Q= _— 1<3<n
I ;mlmg---mk (lsjsn)

subject to the digit conditions (1.2). For N € N, let

N
Py Ck.q
Nj _ 2 — Tk (1<j<n), Qn:=mymy---my.
QN =~ mamy My

Note that
Mp,; = max {H(Pn,;), H(Qn)} = max {|Pn;|,|Qn[} = |@n| — 00 (N — 00).
As each Cantor series is infinite, we see that Py ; —Qn a; #0 (1 < j < n).

Theorem 2. Using the above notation and restrictions, suppose there exists an increasing
function f : N — Z such that

ckj=fk)ckj-1 (2<j<n, kEN).

(i) If there is a function g : N — Z with min {f(k),g(k)} — oo (k — 00) and there ezists
a subsequence {cx, ;},~, of nonzero digits satisfying

M > (Mke,leg,2 el ng,j)g(k‘) (1<j<n),
1+ ckpt,5

then ay, o, ...,a, are Q-algebraically independent.
(1) If there is a function g : N — Z with min {f(k), g(k)} — oo (k — 00) and there erists

a subsequence {ck, ;},~, of nonzero digits satisfying

L > g(ke) M, 1My, 2 My, ; (1<j<n),
1 + ckl+17j

then 1,a1,Qa,...,a, are Q-linearly independent.

Remarks. In order to compare Theorem 2 with classical results, consider the case n = 1.
I. Theorem 2 (ii) gives a criteria for the irrationality of o € (0,1) that there exists a
subsequence {c, },-, of nonzero digits and a function g : N — Z with g(k) — oo (k — o0)

such that
Mkp+1

> g(ke).
T+ crrt (ke)

This criteria is not equivalent with the one given in Proposition 1 I) as witnessed via the

following examples.



(a) The series 15 + 10,1102 + 10.1012,1@5 + - -+ satisfies the criteria in Theorem 2 (ii), and so
represents an irrational number. However, it does not satisfy the conditions in Proposition
11).

(b) The series € — 2 = J + 55 + 54 + - - - satisfies the conditions in both Theorem 2 (ii)
and Proposition 1 I), and so represents an irrational number.

II. A criteria for the transcendence of & € (0, 1) given by Theorem 2 (i) is that there exists a
subsequence {c, },., of nonzero digits and a function g : N — Z with g(k) — oo (k — o)

such that

1+ Clo+1 o
For a fixed w > 0, there is Ny € N such that for all N, > Ny, we have g(N;) > w. For
Ny > Ny, if o € (0,1) satisfies (4.1), then

y9tke) (4.1)

£

PNg
Qn,

showing that « is a Liouville number.

o < CNp+1 +1 1 1

Nt~ (@)™ = (@)™

We turn next to complex numbers. Let
Bi=aol +iald (j=1,2,...,n)

be n nonzero complex numbers whose Cantor series representations are

5.=§:M G=1,...,n)
J part mimo -+ Mg ’ ?

where c,j, di,; are subject to the digit conditions (2.1). Assume that both {ck ;}x>1,
{dk,; }x>1 are infinite sequences for each j € {1,2,...,n} and call its coresponding Cantor
series doubly infinite. For convenience, we relabel the digits (in any fixed order) as

{ek1rck2 s Chny i1, k2 - - din} = {€k1,€k2,- - €k 2n} (kK EN).

For N € N, let
@zi———ek’j (G=12,...,2n), Qn:=mimg- - -my.
QN = mamg---my T '

Clearly,

My,; = max {H(Pn,;), H({@QN)} — 00 (N — o0).

As each Cantor series is doubly infinite, we see that Py ; — Qn 3; #0 (1< j < n).
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Theorem 3. Using the preceding notation, let f : N — Z and g : N — Z with f(k) being
increasing and min { f(k), g(k)} — oo (k — 00). Since the Cantor series is doubly infinite,
then for each 1 < j < 2n we assume that there exists a subsequence {ex, ;},., of nonzero
digits satisfying -

exj = f(k) exj-1  (2<7<2n, keN),

and

Ok (Miy 1 Mp, 2 My, ;)9%0 (1< j < 2n),
1 + ek€+1vj

then By, B2, ..., B are Q-algebraically independent.
As for linear independence, we have:

Theorem 4. Using the preceding notation, let f : N — Z and g : N — Z with f(k) being
increasing and min { f(k), g(k)} — oo (k — 00). Since the Cantor series is doubly infinite,
then for each 1 < j < n we assume that there ezists subsequences {cky,j}tp>1 > {dkejte>1 Of

nonzero digits satisfying

. ke+1 .
ckj = f(k) ckj-1 (2 <7 <n), Toor fc;:.u - > g(ke) Mk, 1 M,2- - My,; (1<j<n)
£ 37

or

drj = f(k)dxj-1 2<j<n), ﬁ%%%— > g(ke) My, 1 Mg, 2+ My,; (1<j<n),
74 WJ

then 1,31, 8o, ..., Bn are Q-linearly independent.

5 Criteria for Cantor products

Let a; >1 (j=1,...,n) be real numbers whose infinite Cantor product representations
are
i 1
aj:=H(1+—) (1<j<n),
k=1 kg

where for each j, the positive integers ay; are subject to the restrictions (1.3). For
NeN, 1<j<n,let

N

Py 1

i 1 <1 + ak ) , QN = a1ja2;---an;j, Pnj=(a1;+1)(ag;+1)---(an;+1).
,J

Qni o3

Observe that
My ; = max {H(Pn,;), H(@Qn,;)} = max {| Py ;|,|@n,j|} = |Pnj| = 00 (N — o0).

Since each product is infinite, we infer that Py ; — Qn jo; #0 (1 < j < n).
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Theorem 5. Using the preceding notation and restrictions, assume that there is a subse-
quence {ke},>; of N such that
Oy,

Ay j—1— 1

(i) If there exists g : N — Z with g(k) — oo (k — 00) such that

-0 (2<j<n, £- ).

Qk,,j .
(@kpt1,5 — 1)7)-’:—? > (Myy1 My, 2+ My, ;)% (1 <j<n),
£7‘7

then ai1,ay, ..., an are Q-algebraically independent.
(i) If there exists g : N — Z with g(k) — oo (k — oo) such that

Qk,,j :
(ak£+1,j - 1) P’I:l] Z g(kf) Mk‘g,l Mk:g,2 e ng,j (1 S J S n))
5]

then 1,01, a9, ...,a, are Q-linearly independent

Remarks. Let us compare Theorem 5 with classical results by looking at the case n = 1.
A. A criteria for irrationality of @ > 1 given by Theorem 5 (ii) is that there exists a
subsequence {k¢},»; of N and a function g : N — Z with g(k) — oo (k — oo) such that

(ko) ((a1 4 1)(az + 1) - (ak, +1))° +1. (5.1)

Okpt1 =
et g aas--- a’ke

This is not equivalent to the corresponding criteria in Proposition 1 II) (i.e., ag+1 > a,2c for
sufficiently large k) as seen by taking the subsequence satisfying (5.1) to be that of even
subscripts k, = 2/, while the elements of the remaining subscripts are taken suitably yet
arbitrarily.

B. Theorem 5 (i) yields the conditions for the transcendence of o > 1 that there exists a
subsequence {k¢},>; of N and a function g : N — Z with g(k) — oo (k — 00) such that

(oo~ 1) 2t > (B, o0, (5.2)

ke
For a fixed w > 0, there is Ny € N such that for all N; > Ny, we have g(Vy) > w. For
Ny > Ny, if « satisfies (5.2), then
Py, Py, 1 1 1
< < < < )
Qn, (an41—1) 7 (Py,)9 N0 7 (Qp,)? N T (@Qn,)”

o —

Qn,

showing that « is a Liouville number.

Regarding complex numbers, consider the case D = 1 of Knopfmacher’s result men-
tioned in Section 2. Let (i, ..., 8, be n nonzero complex numbers having infinite Cantor

product representations of the form

ﬁj=ﬁ(1+i> (G=1,...,n),

P
k=1 kg
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where a; ; are nonzero Gaussian integers subject to the condition that, for k sufficiently

large,

o] > V2larl? = (V2+1) lael = (1+1/v2).

For NeN, 1<j<n,let

N

Py ; 1

2 =TI (1 + a) , QN =a15a2; -ang, Pnj=(1+a1;)(1+az;) - (1+an;).
k=1 J

QN
Since each product representation is infinite, we clearly have Py j—Qn ;3; # 0 (1 < j < n)
From the product convergence, as N — oo, we have |an ;| — oo and so |@n ;| — oo,
yielding

Mpy,; = max {H(Pn,;), H(Qn,;)} 200 (i=1,...,n).

Theorem 6. Adopting the preceding notation and restrictions, assume further that there

ezists a subsequence {I»ce}l21 of N and a large integer Ko such that

|ak,,i| = 3 (ke > Ko,1<j<n)

1 aky,jl(Jak,,;| — 1)
|ak,,j-1] — 1 |akg,i| — 2

-0 (2<j<mn, £— ).

(i) If there exists g : N — Z with g(k) — oo (k — 00) such that

ke,jl(la =1 .
IQ l:]|(||P’:'|"]|-’.7| ) 2 (Mke,leg,2 . Mke,j)g(kg) (1 S j S ‘TL),
2%

then (1, B2,...,Bn are Q-algebraically independent.
(i) If there exists g : N — Z with g(k) — oo (k — o0) such that

|Qky,il(lak,+1,5| — 1)
|Pkla.7|

then 1,61, B2, ..., 0n are Q-linearly independent.

Z g(kf) Mke,leg,2 e Mke,j (1 S J S n)’
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