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On a certain trace of Selberg type

Eiji YOSHIDA

1 Introduction and statement of the main result

In the spectral theory of automorphic functions, there are two famous trace formulas.
One is the Selberg trace formula and the other is the Bruggeman-Kuznetsov trace formula.
Researching a relation between these formulas is an interesting problem. For example
Joyner [J:Section 1], following the idea presented by Zagier, has succeeded in deriving the
Bruggeman-Kuznetsov trace formula from the spectral decomposition of the kernel function
of invariant integral operator and calculating its (n, —m)th Fourier coefficient.

In this article we consider the converse process. That is, starting with the Bruggeman-
Kuznetsov trace formula we take a sum over n putting m =n in (1.8) and multiplying
n~*(we€C) on both sides, then we can obtain a trace of the form Y=;5; L;(w)h(r;), where
L;(w) is the Rankin-Selberg zeta function. This type of sum has already been considered
by Zagier [Z], more precisely he considers the sum },> L;(w)h(r;)(see (1.19)) and its
more extended one, and has proved some interesting results by using his formula for the
sum(see [Z:Theorem 1]). The aim of this article is to give, for the sum ¥";5; L;(w)h(r;),
an expression which is different from that of Zagier, while we restrict h(r) to a special
function as in (1.21). In fact we show that the sum can be expressed in terms of the inner
product consisting of the product of the theta series and the non-holmorphic Poincaré series
against the Eisenstein series of 1/2-integral weight(see Theorem 1.1). A relation for the
Kloosterman sum proved by Kuznetsov [K:Theorem 4](see (1.6)) and an expression stated
in Proposition 3.1 for the Fourier coefficient of the non-holomorphic Poincaré series play
an important role in the proof of Theorem 1.1. In [M:Lemma 2.8,2.9] Motohashi obtained
a formula for the inner product of the non-holomorphic Poincaré series. By using this we
can obtain the expression in Proposition 3.1.

All terms appearing in Theorem 1.1 have a pole at w=1. Thus computing their residues
we can derive a formula for the sum 3,5, ¥(s,r;) =% ;5; ['(s—%—ir)['(s—1+ir), which is
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a trace of Selberg type when we take the funcion ¥(s,r) as the Selberg transform, and is
expressed by using the theta series and the non-holomorphic Poincaré series(see Theorem
4.2). This article is a survey of the manuscript [Y2].

We first recall the Bruggeman-Kuzunetsov trace formula over the full modular group
I' = PSL(2,Z). In this article we always assume that I' denotes the full modular group
PSL(2,Z). Let H={z=z+iy€ C | y>0} be the complex upper half plane equipped with
the hyperbolic measure du(z) = dzdy/y?. Let L?(T'\H) be the Hilbert space consisting of
all functions which are I-automorphic and square-integrable for the inner product

£(2),9(2) ‘/f 9(z) d(2), (1.1)

where '\ is a fundamental domain of I' and g the complex conjugate of g. Let {u;(z)};>1
be an orthonormal basis of the subspace of all cusp forms in L2(I'\'H). We have the Fourier
expansion

ww=§wwﬁMﬁWMWW (1.2)

where K, (y) is the K-Bessel function defined, for example(see [W:pp.182,(8)]), by
K,(y) = % / " e Herbyv-1 gy (1.3)
0

for y>0and v€C. Each u; is an eigenfunction of the Laplacian with eigenvalue 4+r 2(rj >
0).

Let T be an arbitrary Fuchsian group of the first kind with a cusp oco. For '7=(‘; Z) el
and z€H, we denote the linear fractional transformation by yz(:=(az+b)/(cz+d)) and put
vz =1x(v2)+iy(vz), that is, z(vz) or y(vz) is real or imaginary part of y2€H. Let T'eo:= {

! f) |€ € Z} be the stability subgroup in I'(= PSL(2,Z)) of a cusp at infinity. For z€ X
and s€ C, the Eisenstein series for the group I' is defined by

E(z,s,T)= 3 y(v2)" (1.4)

Y€l \T

This series converges absolutely and uniformly for £(s) >1 and it is well known that the
series can be continued meromorphically to the whole complex s-plane by using its Fourier
expansion.

For arbitrary nonzero integers m, n, the Kloosterman sum for the group I' is defined by

S(m,n,e,T)= > gzmimetnt (1.5)

0<a,d<c
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where the sum is taken over the elements (a *)e I’ for any fixed ¢ > 0. In the paper
[K:Theorem 4] Kuznetsov proved the following relation
S(m,n,c,T) = 3 dS(1 ,’;‘f,%,r). (1.6)

dl(m n,C)

This relation plays an important role in the proof of Theorem 1.1.
Let v be a complex variable. Then the Bessel function J, is defiend by

Biw) =7 (5) [ ey hae (1.7

for R(v)>—1/2 and y > 0(see [W:pp.48,(4),pp.172,(2)]). The modified Bessel function I,
has an expression with e™¥ instead of €® in (1.7). Under these notations the Bruggeman-
Kuznetsov trace formula is stated as follows.

The Bruggeman-Kuznetsov trace formula. Let m,n be nonzero integers. Let h(r)
be a function of a complex variable r satisfying certain conditions. Then

2i(m)e;(n)
j; cosh(nr;) hlr3) (18)
_/ ’ " _o2ir(Im])o—air(In])
mi  ¢(1 = 2ir)¢(1 + 2ir)
= 6’"‘”/. rtanh(nr)h(r) dr

2

h(r)dr

&, S(m,n,cT) 2z/ |mn|z . h(r)
—_—l rMy;
+; c (4 c cosh(nr)
where the sum over j runs over the eigenvalues of the space of cusp forms in L>(T\H), {(x)
is the Riemann zeta function, 0m n is the Kronecker symbol, o,(|n|) is the sum of the vth
powers of divisors of |n|, and M, stands for the Bessel function J, or the modified Bessel
function I, according as mn>0 or mn<0.

This formula was first proved by Kuznetsov [K], and a little later by Bruggeman [B1]
and [B2]. Let € and § be arbitrarily small positive constants. Kuznetsov states the formula
(1.8) for the class of functions h(r) which are even and holomorphic in the strip |S(r)| < 3+&
and |h(r)| < (1+]|r|)~27¢ as |r| — oco. On the other hand Bruggeman, for h(r) which are
even and holomorphic for |3(r)| < ;+¢ and satisfy the same decrease condition as that
of Kuznetsov. Thus Bruggeman’s result permits more wide class of h(r) than that of
Kuznetsov. For other proofs of (1.8) different from those of Bruggeman and Kuznetsov,
the reader is referred to Iwaniec [I], Motohashi [M] and Joyner [J].



For m € Z4y, 2 € H and s € C, the non-holomorphic Poincaré series for the group I is
defined by

Pn(z,s,)= Y ezﬂmz(w}6‘2"""¢y(7"’)y(7z)5. (1.9)
Y€l \I'

This converges absolutely and uniformly for ®(s) > 1 and belongs to the Hilbert space
L*(T'\H). This series appears in Theorem 1.1 as an important constituent.

For a complex number z # 0 we define the power 2z!/2 by z1/2=z|/2 exp(3iarg z) with
—m<argz<m. Let I'o(N)(CSL(2,Z)) be the Hecke congruence group of level N:

To(N) = {(‘CL Z) € SL(2,Z)|c =0 (mod N)}.

Then for z€H the theta series is defined by

oo

O(z) = 3 e’z (1.10)
and the theta multiplier, by
(v, 2) = ©(72)/6(2) (1.11)
for y€T'4(4). It is known that
i) = (5) ez (2 + a2, (1.12)

where 'y=(‘z Z) €I'¢(4), e4=1 or i according as d = 1 or 3 (mod 4), and (c/d) is the extended
Legendre symbol. For precise definition of (c/d), see [Sh2)].

Shimura [Sh1:(1.4)] introduced the Eisenstein series of half-integral weight(see (2.1)).
Following this we define the Eisenstein series E; /2 of 1/2-integral weight as follows

E1/2(z,w) = E1/2(27UJ,F0(4)) = Z (v, 2)y(v2)”, (1.13)
7€T o0 \T'0(4)

where w € C and T := {* (1 f) |¢€Z}. This series converges absolutely and uniformly

for ®(w) > 1+ ;. It has been proved by Shimura [Sh1] that the series can be continued
meromorphically to the whole complex w-plane.
For 5,7 € C we define the function ¥(s,r) by

U(s,r) = (s — % —i)T(s = 3 +ir). (1.14)
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Let w, s be complex variables. Then we denote by J(w, s) the following integral

¢(w — 2ir)¢(w + 2ir)
J(w,s) = / 2 T 3 s ) (1.15)

. w .
XF(E - 21”)[‘(—2— + ir) dr.

Let Cy be a deformation in the complex r-plane of the real axis into the strip 0 < S(r)
which is sufficiently close to the real axis that all zeros of the Riemann zeta function lie to
the left of 1+2iCy and ((1+2ir)=O(|r|*) for r € Cy. Moreover we define

C(w — 2ir)¢(w + 2ir)
(1 — 2ir)¢(1 + 2ir)

W LW
XF(§ - zr)I‘(E +ir) dr.

Joo (w, 8) = / cosh(7r)¥(s,r) (1.16)

Let U be the domain, in the complex w-plane, enclosed by 1+2:Cy and 1-2iCy. Then we
define the function H(w, s) as follows assuming R(s) >1 for simplicity:

J(w, s) for R(w)>1
H(w,s) =4 Jeg,(w,s)+ D(w,s) forwelU, (1.17)
J(w,s) +2D(w,s) for 0<R(w)<1,

where
_ ¢2w-1) 1—w 1—w 1.1
D(w, S) = Wm OSh(7l' % )\I/(S, % )F(’U) - —)F(—) (118)

Let L;j(w) :=Y22, |0j(n)|*n~ be the Rankin-Selberg L-function, and put

~ woo, woo.
LJ(’(U) = P(—é- - ZT‘j)F(E + ZTj)Lj(’LU). (119)
It is known that the function L,;(w) has the expression

L(w) = 221" 15((?) / [P EGz, w.T) du(2), (1.20)

where u;(2) is the Maass cusp form defined by (1.2) and E(z,w,T) is the Eisenstein series
as in (1.4). By the right-hand side the function L;(w) can be continued meromorphically
to the whole complex w-plane.



We shall state the main result in this article. In the Bruggeman-Kuznetsov trace formula
(1.8) we adopt the following function as h(r):

(s, r)I‘(% - ir)I’(% + ir) cosh(nr). (1.21)
This satisfies Kuznetsov’s condition if ®(s), R(w) >1. Putting m=n and multiplying n=%
on both sides of (1.8), we take a sum over n(>1). Then we show that
THEOREM 1.1. We have the equality
T w, ¥ -1 s—ip W 1
5 L) (s, ry) = 2*n¥ " (am) (% + )0(s) (1.22)

721

<[, BEP(s DBy + 5) (2

27 D(s + 5 — 2)T(s ~ Y1) ; (fu(? 5
(w) 1
_C(Qw);r_H(w’ s)

for R(w)>1/2 and R(s) >max(1, R(%EL)), where U(s,r) is the function defined by (1.14),
O(z) is the complex conjugate of the theta series, E1; is the Eisenstein series of 1/2-integral
weight defined by (1.13) and its meromorphic continuation, P, is the non-holomorphic
Poincaré series defined by (1.9), and H(w, s) is the function defined by (1.17) and (1.18).

2 Eisenstein series of half-integral weight

The Eisenstein series of half-integral weight was introduced by Shimura[Sh1], and he has
established basic properties of the series. In this section we especially recall the Fourier
expansion of the series.

Let k be an odd( positive or negative) integer, w an arbitrary character modulo N, and
N a multiple of 4. Moreover let W be a set of representatives for f‘oo\Po(N ). Assume that
w(—1)=1. Then for z=z+iy € H and s€ C, Shimura [Sh1:(1.4)] introduced the Eisenstein
series F(z, s) of half-integral weight as follows:

E(z,s) = E(z,s,k,w) (2.1)
= ¥ 3 wldy)i(y, 2) iy )7,

yeW

where d,, is the lower right entry of -y, and j(v, z) is that of (1.12). This series converges
absolutely and uniformly for R(s)> (k + 4)/2.
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We shall recall the Fourier expansion of E(z,s). Let us introduce a confluent hypergeo-
metric function o(y, a, 8) by

oY) = [ (w1t ey, (22)

where y is real positive, and a, 8 are complex variables. This is convergent for R(5) > 0.
Moreover using o(y, @, 3) we define the function 7,(y, @, 3) by

i*P(2m)~* T ()T (B)Tu(y, o, B) (2.3)
netb-le=2myg (4nny, a, B) forn >0,

= |n|etF-le=2mMyg(47|nly, B,a) for n < 0,

a4+ B —1)(4ny)t—2—5 for n = 0.
We denote by E'(z,s) the following quantity:
E'(z,s) = E'(z,s,k,w) = E(~1/Nz,s)(—izV'N)¥2.
Then, Shimura [Sh1:(3.2),(3.3)] states the Fourier expansion
N@s=R/45k/2 =52 F1 (5 o)

0 . -k
B S
Therefore we have
1 8 _k s e omi s—k s
E(_N_z’ s, k,w) = N72272y2 nzz_:wa(nv s)e“" T, (y, 5 5) (24)

For a character w, we put L(s,w) = Y02, w(n)n~®. To emphasize the possible missing
factors, we also write Ly(s,w) for L(s,w), thus Ly(s,w) = ¥, n)=1 w(n)n™°. As for the
term a(n, s) in (2.4), Shimura [Sh1:Proposition 1] states as follows. Let ¢ be a (positive or
negative) square-free integer. Putting A= (k+1)/2 we define the characters w; and wy by

wi(a) = (_—I)A(g>w(a) for (a,tN) =1,

a (2.5)
we(a) = w(a)? for (a,N) = 1.
Then for n=tm? with a positive integer m, we have
Ln(2s — 2\, wy)a(n, s) = Ly(s — A, w1)B(n, s), 26
2.6

B(n, s) = ¥ u(a)w (a)wz(b)a* —sbF+2-2¢



where the last sum is extended over all positive integers a, b prime to N such that ab divides
m, and u denotes the Mobius function. Furthermore for n=0,

a(0,s) = Ly(2s — k — 2,wz)/ Ly (25 — 2), wy). (2.7)

The series Ey /, defined by (1.13) is a special case of E in (2.1). In fact we have only to put
k=1, N=4 and w being principal. However it should be noted that E, 2(2,8) = E(z,2s).
Substituting these facts into (2.4) we have the expansion

1 w 1 _w4l 1 w4l
El/z(—Z;’§+§)=4 2 2z 2y_g_ (28)
(o]
) 1
X Y a(n,w+ 1)e*™rer (y, %, 9—;———)

Here since A=1 and N =4 the character w; in (2.5) is equal to
—4t
wi(a) = (———) for (a,4t) =1, (2.9)

a
and w, is a principal character modulo 4. Denoting (4(w) =1"%+3"%+5"%... the term
a(n,w+1) in (2.6) is described as
Ly (UJ, wl)

Cw) Bn,w+1),

a(n,w+1) = .10
2.1

B(n,w+1) = ¥ p(a)w (a)a! ~tetDpt+2-20w+)
for n=tm?, where the last sum is extended over all positive integers a,b prime to 4 such
that ab divides m. Moreover
Gauw-1) (2.11)
Ca(2w) - .

Notice that the character w; in (2.9) turns out to be principal for t = —1. Therefore
substituting —1/4z for z in (2.8) we obtain the following expansion:

L(w - 3) v (2w —1)
L(3)T (%) Ca(2w)
—ul )y L)
+4 2(—i)22Y % (20)

w w+ 1

X Z ﬁ(—m2, w+ 1)6_27rim2XT—m2 (}/7 2 T)

m=1

a0, w+1) =

1
El/z(z, E + '—) = ?:%2%_21”#

>+ 3 (2.12)

2(—i)z%Y1_

_wtl N 1l ,wHl 1
+4772 2(—=1)z2Y 2 ———
(=) Ga2w)
X373 Ly(w,wy) B(tm?, w + 1)emtm* X, L (y, % 20,

t m=1
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where Y =y/4(z%4?) and X = —z/4(z%+y?), and the summand ¢ runs over all positive(t > 1)
and negative(t < —2) square-free integers.

Shimura has already established the convergence of the series on the right-hand side of
(2.4), and meromorphic continuation of E(—1/Nz,s,k,w) to the whole complex s-plane.
Thus the series Ey/, in (2.8)(or (2.12)) is also continued to the whole complex w-plane.

3 Outline of the proof of Theorem 1.1

In this section we give an outline of the proof of Theorem 1.1. For precise proof the

reader is referred to [Y2].

Recall the Bruggeman-Kuznetsov trace formula (1.8), and adopt the function in (1.21)
as h(r). Then putting m=n and multiplying n=* on both sides, we take a sum over n ; that
is we consider the following quantity:

. w .
Z Zlgj( )|2F —ry)0(5 +1rj)¥(s,75) (3.1)
n=1" i1
< 1 &S(nyn,el)2i n
= n;l n—w C§=:l 7r . T‘J2,’T(47T-E)

x\Il(s,r) (% - ir)F(% +ir)dr

Z - 2/ rsinh(mr)¥(s, T)P(E _ zr)l"(%)— +ir)dr

n=1 n 2
— 0211'( )a—2ir(n)
Z:I ne T C(l — 2ir)¢(1 + 2ir)
x cosh(nr)¥(s, r)I‘(% - ir)l"(% +ir) dr.

We can state absolute convergence of each term at least for ®(w) >2 and (s)>1
Since we denote L;(w) :=Yo2; |oj(n)|*n™ and L;j(w) := I'(} —ir;)['(§ + ir;) L;(w)(see
(1.19)), the left-hand side can be described as

> Li(w)¥(s,ry). (3.2)

J21

Here by using the expression (1.20) we can continue the sum (3.2) to the whole complex

w, s-plane which has a simple pole at w=1.
The second term on the right-hand side of (3.1) is

c(w);rl— [ rsinh(r) (s, N0y — in)T (5 +ir) dr. (3.3)

2



Moreover since we know the formula

i o (m)? _ Cw)¢(w —ir)¢(w + ir)

nv ¢(2w) ’

n=1
the third term on the right-hand side of (3.1) turns out to be equal to

_(w) 1 o ((w = 2ir){(w + 2ir)
C2w) mJ-o (1 — 2ir)¢(1 + 2ir)

x cosh(mr) ¥ (s, )T (2 — ir)I‘(% + i) dr

2
RSOT
ew)y Y

(3.4)

recalling the definition of J(w, s) as in (1.15). Therefore by defining the function H (w, s)
as in (1.17) and (1.18), we can continue the third term to the domain ®(w) >0. Concerning

this argument, see Zagier [Z:pp.335-337].

From now on, we denote the first term on the right-hand side of (3.1) by I, and transform
it into an interesting form. First using the relation (1.6) for the Kloosterman sum and

putting £:=c/d we have

(2)2,4,T) 2 nl
d
ZZ————E p O’I‘sz(471’de

xU(s, r)l"(— - zr)P( + ir) dr.

It is equal to
2124 foo W W
> 7 / r¥ (s, T)F(E - zr)P(E +1ir)

{3 iwzsu,( A T) 47
n=1"" G4

2. 12¢ foo W W
=2 Z?/—oo r¥(s, T)F(E - zr)F(E + i)
Z 5@,n%, 4, T) JZ,-T(47rE) dr.
n=1 e
Thus we have
201 & 85(1,n%0.1)2i
I=§(w)2—wz(——)—— rJ21T(47r )
=i /¢ wJ-

xU(s, r)F(% - ir)l"(E +ir) dr.
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Here we apply the formula
_F(— - ZT)P( +1ir)
=I(5 +5)2*r %71 / Y K, (2mmPy)yE i gy,
0

Therefore we obtain

I= 2%%—%1“(% + %) (3.6)
w3 . = —2mny
XC(W)/O yz 2 dy ;le

S SR g (47U (s, )y Ko (2mnny) dr ).

=1

00 2
x( S(1,n%,¢,T) 2

To proceed further we prepare the following proposition. Let Pn(z,s,I') be the non-
holomorphic Poincaré series defined by (1.9), and let a,(y,s,n,I') be the nth Fourier
coefficient of the series P,,:

1 .
am(y; s, n, F) = /0 Pm(:): + z'y, s, I‘)e—21rmm dz.

Then we have the following

PROPOSITION 3.1. Let m, n be nonzero integers, and s a complex number. For R(s)>1
we have

s 1
am(y,s,n,T) = 72 (4n|m))? ) (3.7
5m,n ©0 . 1
x{-w—z/_ rsinh(7r)¥(s, r)y2 K; (2m|nly) dr

= S(m,n,c,T) 2 | |2 \
+ Z p / TM217‘(47T )\I’(S, T)yEKir(Qﬂ-ln‘y) dr}’
where T'=PSL(2,Z), My, is as in (1.8), and ¥ is that of (1.14).

In [M: Lemma, 2.8, 2.9], Motohashi obtained a formula for the inner product of the non-
holomorphic Poincaré series. Based on his formula we can derive the expression (3.7). In
view of this we have

1
a1(y, S, n2, r) = 71'% (47-‘—)%—5 F(s)
51,,,'2 oo . 1
x{ -3 /_ rsinh(7r)¥ (s, r)y? K, (2mn’y) dr

3 S DA [ a0 )y (2eny) dr .
=1 ¢ T ¢
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Substituting this into (3.6) we obtain

I= 2"’7r%_1(47r)s_%1"(% + %)F(s)

x¢(w) [ (3 e var(y,5,n%,T) ) y¥E dy
n=1

. 1
_ouat-ip¥ 2
TG )

x((w)/oo Y322y . ;15/00 rsinh(m")\Il(s,r)y%Kir(wa) dr.
0 —00
Since

/oo eyt K, (2my)y¥ 3 dy = (2n)"$nho¥ I'(§ —ir)(3 +1r)
0

T(w+3) ’
we can transform the second term further, deriving
I= 2w7r%-1(47r)5-%1“(% + %)I‘(s) (3.8)

x((w/ (Ze"mea (y, s,n?, F)) y%~ % dy
—C(w)——/_ rsinh(7r) (s, )(——zr)F( + ir) dr.

We continue the transformation. First we have

Z e—Zﬂnzya’l (y: S, TL2, F) (39)

n=1
I 1
1! O(2)Pi(z,s,T)dz — =a;(y, s,0,T).
2Jo 2
For the constant term a,(y, s,0,T") we know the following formula(see [Y1:Theorem B)):

© $(1,0,c,T)
]_“( ) ot cl+s

Xys/ e V32 g, 1(27r% )
0

a,(y,s,0,T) = 232

(3.10)

Then since

00 2#—1[*(#:2)
t* 1, (at) dt = ———2
/0 hlat) dt = ST
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(see [W:pp.391,(1)]), and since S(1,0, ¢, I') = u(c) (Mobius function), we derive that

1 oo w
_5 0 al(y, S, 07 P)y'f—% dy (311)
1 3jw_ w 1,0 —22) & u(c)
1-2s 8 > _ 2
2 T(s) " T 2 2) I(eH) & cttw
_ _21_2%%_31“(3 +2-U(s-2d) 1
I‘(3)1“(“’;”) (1 +w)
Therefore gathering (3.8), (3.9) and (3.11) together, we obtain
I= 2w7r%-1(47r)8-%r(9 + %)F(s) (3.12)
E 3
w)s / / B()Pi(z,5,T) dzy$=% dy
w ——1 s—191- 2s —“"——s _.u.i_l]_" _w+1 ((w)
2w (4m)a2 Mt g =M~ ew

—C(w)% [ rsinh(ar)¥(s, (5 = i) +ir) dr.

Finally applying the Rankin-Selberg method to the first term on the right-hand side above
we have

/ / 0(2)Pi(z,s I‘)da:y%'% dy
= | 0G)h(zsT) Z (7, 2)y(v2) ¥+ 2 dp(z)
ew

I |
— /f 8(2)Pi(2, 5,T)Eyja(z, = 5 + 5) du(2),

where Ej/(z,) is the Eisenstein series of 1/2-integral weight defined by (1.13)(or (2.12)),
and F is a fundamental domain of I'g(4). Hence we conclude the expression

I=2"r% 1(471')"71‘( + )I‘(s) (3.13)

><((w)§/]r O(2)Pi(z, s, ) Ey/2(z, l—;— + %() t;l,u(z)
w+1, ((w
2 )((w +1)

—C(w)%/_o:o 7 sinh(7r)¥(s, 7‘)1“(%)- - ir)l"(%)— +ir) dr.

w 1
_qugw L (s —
27rI‘(s-i—2 2)(s

By careful estimation we can state the convergence of the inner product above in R(w) >1/2
and R(s) >R(2+1). Noticing that the third term in (3.13) and the second term in (3.1)(or
(3.3)) cancel, we complete the proof of Theorem 1.1.
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4 A trace of Selberg type

In Theorem 1.1, both sides determine meromorphic functions of w, and each term has
a pole at w=1. From now on, we compute residues on both sides at w =1 stating the
equality between them. Then the left-hand side turns out to be the sum in (4.1);it is
a trace when we take the function ¥(s,r) as the Selberg transform. Thus the equality
gives a new expression for a trace of Selberg type in terms of the theta series and the
non-holomorphic Poincaré series(see Theorem 4.2).

The residue of the Eisenstein series E(z,w,T")(I'=PSL(2,Z)) at w=1is 3/x. Thus the
residue of the left-hand side at w=1 becomes

—Z\IJ $,T;). (41)

]>l

We next consider the first term on the right-hand side of (1.22). It may be rewritten as

4m)*3T Pi(z,sT 4.2
(r) () [ BTGPz T) (42)
w_ 1(() w1
w 1
x{2%m F( +35)7 5 Eyalz, 5+ 5) } du(2).
Recall the expansion (2.12) of Fy/5(2, 2+1). In view of this we have
v 1
2vr ——11“( += )C(“’) By, .‘23 +35) (4.3)

C( )C4( w — 1)B(z, w)
+{(w)G(w)F(z,w) + ((w)G(z, w),

where

B(z,w) = 2@~ 1g¥171/205-2uy 272y~ %, (4.4)

F(z;w) = 22747 T(2 4 Ly 44(;1“)2%”21/%”%‘“2 (4.5)
e 1
x Y B(-m?w+ 1)e2mm*Xr_ (Y, w’ %—),
m=1
w 1 wil 1 wtl—
G = gu-lgy-ip ¥y Dyg- 2i71 /2y 4 71/2-1/2 4.6
(Z,w) 7T2 (2 + 2) 2 C4(2w) 1z ( )

w w+1

__)’

X Z Z L4(w,w1)ﬁ(tm2, w + 1) —2mitm? XTtm2(Y 2
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and Y = y/4(z® +y?), X = —z/4(2®+y?). Notice that the functions B, F' and G are
holomorphic at w=1.

The Laurent expansion of the Riemann zeta function at w=11is {(w) = 1/(w—1) +7 +
-++(7o is Euler’s constant). Moreover since {4(w) = (1 — 27%){(w), we have

C(w)a(2w - 1)B(z,w) (4.7
-2 (@ B+ B D)+
where B'(z, w)=(d/dw)B(z,w) and
oo = %(70 +1og2). (4.8)
Similarly
C(w)Gu(w)F(z, ) (4.9
_ (é (2, 3 (e + 33)F (1) + 5F(=, D) +
Therefore
C(w)Ga(2w — 1)B(z,w) + ()G (w) (2, w) (4.10)
= (w_%—l)z(%B(z, 1) + F(z,1))
= {(eo+ 370)(3B(z, ) + F(z, 1) = 5Bl 1))
11( B'(z,1) + %F’(z, 1)) +
Futhermore
(W)G(z,w) = ——=G(z,1) + . (4.11)

We compute 3B(z,1)+F(z,1) in (4.10) explicitly. From (4.4)

1
Ca(2)2

‘;'B(Z 1) — 2—3/2 1/2—1/2

~92iz12y3

Moreover since we can derive that

T_m2(Y, % 1) = /29127y 3= 2m?Y
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we obtain

2,LZ1/2Y2 Z ﬂ —m? 2) 2mm2X -2mm?Y

1
F(z,1) = 273/24Y21/2 —__
( ) C4(2) m=1

Therefore noticing (4(2)~! =8/7%, we deduce
SB(z 1)+ F(z,1) (412)

i ﬂ(_m2’ 2)621rim2Xe—27rm2Y ) )

m=1

_ 23/2 —3/2—1/22z 1/2Y5(

wln—ﬂ

Put m? = 2%m2 with an odd positive integer my and an integer [ > 0. Then from the
definition (2.10) of S(n, w+1), we see that

(-m?,2) = Z Zu

d|mo ald
Moreover since Y =y/4(z*+y?) and X =—xz/4(z%+y?), we have

—2mim? /42

io: ﬁ(_mZ’ 2)621rim2Xe—27rm2Y — e

[ NN
NgE

N =

m=--00

Here in view of the Poisson summation formula we see that the last sum is equal to
271/241/221/2Q(z). Therefore

oo

Z —-m 2 2m'm2Xe—21rm2Y _ 2"1/251/2z1/28(z). (4_13)

We substitute this inte (4.12), deriving

%B(z, 1) + F(z,1) = 2732 |2]y(002)26)(2), (4.14)

where oy =( 2'2-1)(Y=y(ogz)). Applying this result to (4.10), and gathering (4.2), (4.3)
and (4.11) together we conclude that the Laurent expansion at w=1 of the first term on
the right-hand side of (1.22) is described as

(T_}—W(zm)s-%r(s)zn*/z (4.15)

x / w1007 IO Pz, 5.T) du(z)



44

(4T () 0 + 20)

2, —3/2 1/2 2
xr3 (@02 1B Pz, 5.T) du(2)

+

1 1
w— 1(47(') F(S) To(4)\H e(Z)Pl(Z7 S, F)

x{~5e0B(z 1)+ 7Bz 1) + 5F (2, 1) + Glz, ) } du(z) + -

+

for R(s)>1.
The Laurent expansion at w=1 of the second term on the right-hand side of (1.22) is

1
2nT(s)I'(s - 1)C—(—23 + (4.16)
_ —ﬁ%l‘(s)l‘(s D)4

1
w—1

Next though we omit the precise argument here we can derive that the Laurent expansion
at w=1 of the third term on the right-hand side of (1.22) is expressed as

1 8 [ ws,rydr (4.17)

T (w-1272)-
1 12y [ 1,
—m 7/;00\I’(S,T)d7'+ ;K (1,8)}

1 3 1
— TT?%s- =
+w_ - (s 2)+ ,

where K'(w, s)=d/dw(K (w, s) and K(w, s)=(1/{(2w))Jc,(w, s).
We are ready to state the results. First the poles of second order appearing in (4.15)
and (4.17) cancel. Therefore we obtain the following

THEOREM 4.1. For R(s)>1, we have

(@2t [ Jalu(0z) 1O Pa(a, 5, T) du2)
0

_ 8= U(s,r)dr,

71'2 —00

where cro=( 2‘2_1) and ¥(s,r) is that of (1.14).

Finally gathering the residues in (4.1), (4.15) through (4.17) we deduce the following
trace formula.
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THEOREM 4.2. For R(s)>1, we have
12
— Z ‘IJ(S, Tj)
Tz
= (47r)3‘%1"(s)(c0 + -;—’70)22#_3/2
210(2)|*Pi(z,5,T) d
X [ o PIV002) IO Pz, .T) du(z)

+(4m)*~3T(s) / 8(2)P,(z,5,T)

To(4)\H
1 1 1,
x{ —Q-COB(Z, 1) + ZB (2,1) + §F (2,1) + G(z,1) } du(z)
12
—?I‘(s)I‘(s -1)

12’)’0/'°° 1_, 3 9 1
_Zn - ZK'(1 s — =
= | U(s,r)dr K'(1,s)+ (s 2),

where o s Euler’s constant, ¢y is that of (4.8), and the functions B, F, G and K are those
of (4.4) through (4.6) and in (4.17).
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