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Algebraic independence of values of Carlitz multiple
polylogarithms

FUMREE - BER2E =5 E&
Yoshinori Mishiba
Graduate School of Mathematics,
Kyushu University

Abstract

This is a summary of my talk in the conference “Analytic Number Theory — Arith-
metic Properties of Transcendental Functions and their Applications” at RIMS and
my papers [M1] and [M2] from the viewpoint of multiple polylogarithms. We explain
our results on the algebraic independence of values of Carlitz multiple polylogarithms
which are function field analogues (in characteristic p) of the classical multiple poly-
logarithms.

1 Classical case

First, we recall the classical multiple polylogarithms. In characteristic zero, we have the
following exact sequence:

exp

0 — 2my/—1-Z — Lie G (C) — G, (C) —1.

The logarithmic function is a local section to the map exp around the unit element 1 € C*.
It is defined by

X _m
x _ — _ 2. -
C*>{1-z2z€C, |2|<1}31—2+ Z — = log(1 — 2).

m=1
Then for a positive integer n > 1, the n-th polylogarithm is the function defined by

o0
LiC(z) := Ll
n : n’
m=1

which converges on |z| < 1 (resp. |z| < 1) for n = 1 (resp. n > 2). More generally, let
n=(ny,...,ng) € (Zzl)d be a d-tuple of positive integers, and z = (z1,...,24) a d-tuple
of variables. The multiple polylogarithm is the function defined by

zml .« .. Zmd
:C e 1 d
Lig (2) = Z mh . mr’
my1>-->mg>1 1 d
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which converges if |2;| < 1 for each ¢ (and |21| < 1 when n; = 1). Such n is called an index
and ), n; (resp. d) is called the weight (resp. depth) of Lig.

The values Lif(1,...,1) (n; > 2) are called the multiple zeta values. There are numer-
ous studies on the relations among these values. More generally, we are interested in the
algebraic independence of the values of multiple polylogarithms at given algebraic points.
Namely, we want to determine when L1 (al) L1 ( ) are algebraically independent
over Q for given indices n,...,n, and algebralc pomts ay, ..., q, satisfying the respective
convergence conditions. Thls problem seems very difficult. Showing the linear indepen-
dence of them over Q also seems difficult. In the depth one case, there exist some results
(see [Ha], [HOJ,. [N], [R]). Algebraic independence results are not known except that of
Lindemann’s ([L]), where he proved that Li$(1) = 72/6 ¢ Q.

2 Characteristic p

Next, we explain the positive characteristic case. Let p be a prime number and q a power
of p. We denote two independent variables by 6 and t. Let K := Fy(6) be the rational
function field over Fy, Ko, = Fy(#~1) the oco-adic completion of K, Co the oo-adic
completion of a fixed algebraic closure of K., and K the algebraic closure of K in Coo
These are function field analogues of Q, R, C and Q. We fix an oo-adic multiplicative
valuation | ~ | on Co. Let C be the Carlitz module (over K). Thus C is the additive
group scheme G, equipped with the Fg[t]-action defined by

t.z:=0z+2% and a.z := az (z € C, a € Fy).

The Carlitz module C is a function field analogue of the multiplicative group Gy, in
characteristic zero. Note that the Lie algebra of C is also the additive group Gg, but the
induced action of ¢ is computed as t.z = 6z (for z € Lie C(Cy)). As before, we have the
following exact sequence of F,[t]-modules:

0 —= 7 - Fg[8] — Lie C(Coo) —2% C(Cop) — 0,
where ,
(=3
€Xpci? 7 7 7 i—1
= 0 CH —0)(62 —09)-.. (69" — 69 )
and

(]
7= (-0) 7 [[(1-67) " e (-0)77 K%
i=1
‘The function expy: Coo — Co is called the Carlitz ezponential and 7 is called the Carlitz
period. These are analogous objects of the classical exponential function and its fundamen-
tal period 27/=1. As before, the map expc has a local section around the unit element
0 € C. It is defined by

i
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which converges on |z|e < |8|&!. For a positive integer n > 1, the n-th Carlitz polyloga-
rithm was introduced by Anderson and Thakur in [AT1]. It is defined by

. = Zqz
Lin(2) := Z (8 —69)--- (6 — 69°))»’

i=0
which converges on |z|o < |0|&*. They also showed that the n-th Carlitz polylogarithm
appears as the last coordinate of the logarithmic function of the n-th tensor power of the
Carlitz module C. For an index n = (ny, ...,nq), Chang ([C]) defined the Carlitz multiple
polylogarithm as

i

qil q'd

' B 2] 2]
Llﬂ(_z_) = Z ((9_ 0¢1)--~(9-—0"il))m ((9 - gq)...(g_ gqid))nd'

i1>>ig>0
M
The function Liy(2) converges if |2;]0o < |8]|&" for each 5. We call @ = (aq,. .., aq4) € C&

an algebraic point if a; € K for each i, and non-trivial if a; # 0 for each i. We have the
harmonic product formulas among values of Carlitz multiple polylogarithms (see [C]). For
example,

Lip, (o1) Lin, (a2) = Lip, n, (a1, @2) + Lin, ny (a2, a1) + Lin, 40, (@102).

By using Anderson and Thakur’s theory ([AT1], [AT2]), Chang also showed that the
multizeta values at n in characteristic p is a K-linear combination of Li, at some points
in F,[6]¢.

We are interested in the algebraic independence of Lin(a)’s over K for given indices
n and non-trivial algebraic points o which satisfy the respective convergence conditions.
Papanikolas ([P], n = 1), Chang and Yu ([C_\Q_, n > 1) proved that for a positive integer

n>1and ai,...,ar € K™ with lajloo < |0]& " for each j, if 7%, Lin(a1),. .., Lin(0y) are
linearly independent over K, then they are algebraically independent over K. Moreover, in
[CY], Chang and Yu proved the following theorem: Let ni,...,nq > 1 be positive integers
such that n;/n; is not an integral power of p for each i # j. For each i, take non-trivial al-

n;q
gebraic points a1, . .., a4y, € K such that laijloo < |0]& . I 7™, Lin, (a41), . . . , Lin, (tir; )
are linearly independent over K for each ¢, then

d
tr‘degff(%’Lini(aij)“ S i S d> 1 S .7 S 7‘,‘) =1+ Zri.

=1

Note that these results treat only depth one elements. We want to consider higher depth
elements. Chang ([C]) showed that Li,(a) # 0 for each non-trivial point ¢ (with the con-
vergence condition), and the values of Carlitz multiple polylogarithms of different weights
at non-trivial algebraic points are linearly independent over K. However, note that his
results do not treat the algebraic independence of given elements. Our results in [M1] and
[M2] are about the algebraic independence of values of Carlitz multiple polylogarithms
which may have higher depths. In particular, we treat the elements of the set

S(n, @) := {7} U{Lin,; m;11,..n (@ ¥jt1,. .., )|l < j < i< d}



where n = (ny,...,ny) is an index and @ = (ay,...,aq) € (R'—x)d is a non-trivial algebraic

;9

point such that |o;|e < |8|&" for each i. In [M1], we treated the case where d = 2,
ni; = ng and a; = as:

Theorem 2.1 ([M1]). Let n > 1 be a positive integer and o € K * a non-trivial algebraic

g

point such that |o|e < |0]&5". Suppose that 7" and Li,(a) are linearly independent over
K. If 7" and Lin(a)? — 2 Lip n(@, @) = Liz,(a?) are linearly independent over K, then 7,
Lis(a) and Li, n(a, ) are algebraically independent over K.

Remark 2.2. Note that T € K if and only if n is divisible by ¢ — 1, and Lin(a) € K if
a € K. Thus when n is not divisible by ¢ — 1 and o € KX, we can easily check the linear
independence of 7™ and Li,(a) over K.

When the depth one elements have no relations, we have the following theorem:

Theorem 2.3 ([M2]). Let n = (nq,...,nq) be an inder and o = (au,...,aq) € (K )% a
niq
non-trivial algebraic point such that |o;|oo < |01&" for each i. If 7, Lin, (e1), ..., Lin,(aqg

are algebraically independent over K, then we have

tr.degz K(S(n, @) =1+ d(d; 1).

By using the result of Chang and Yu and Remark 2.2, the assumption in Theorem 2.3
can be checked in some cases. In particular, we have the following corollary:

Corollary 2.4. Let n = (ny,...,nq) be an inder and a = (ay, ..., aq) € (K*)? a non-
n;q

triwial rational point such that n; is not divisible by ¢ — 1 and |ai|oo < |0|&" for each i,
and n;/n; is not an integral power of p for each i # j. Then we have

— d
tr.degz K(S(n, @) =1+ at ;1)

3 Papanikolas’ theory of pre-t-motives

In this section, we briefly review Papanikolas’ theory ([P]) of pre-t-motives. The proofs of
our theorems essentially depend on this theory.

Let T be the Tate algebra over C, (= the subring of Cy[t] consisting of the formal
power series which converge on [t|o, < 1), and L the fraction field of T. For each formal

Laurent series f = Y. a;t' € Coo((t)), we set o(f) := iag_lti. The fields K (¢) and L are
stable under this action and their o-fixed parts are F,(t).

A pre-t-motive is a finite dimensional K (t)-vector space M equipped with a o-semilinear
bijective map ¢: M — M. A morphism among two pre-t-motives is a K (t)-linear map
which is compatible with the ¢’s. Let C be the category of pre-t-motives M such that the
natural map L ®p, ) w(M) — L D% 1) M is an isomorphism, where

w(M) := {z € L ®%;) M|(0 ® p)(z) = z}

is the Betti realization of M. Then the category C forms a neutral Tannakian category
over Fy(t) with fiber functor w. For an object M in C, we set G to be the fundamental
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group of the Tannakian subcategory of C generated by M with respect to w. Then Gy
can be naturally viewed as a subgroup scheme of GL(w(M)). We define another group
scheme over F,(t) as follows. Let r be the dimension of M and we fix a K(t)-basis m of
M. By definition, there exists a matrix ¥ = (¥;;) € GL,(L) such that ¥"'m forms an
FF,(t)-basis of w(M). This is equivalent to the equality o(¥) = ®¥, where ® € GL,(K(t))
is the matrix representing ¢ with respect to m and we set o(¥) := (0(¥;;)). Note that
such a matrix ® gives an object of C conversely. We set ¥ := Ui, € GLA(L K1) L),
where (¥1);; := ¥;; ®1 and (¥2);; := 1® ¥;;. The group scheme Gy over Fy(t) is defined
by

Gy := {(zi;) € GL, |f(zi;) = 0 for f € F,(t)[X,1/ det X] with £(¥y;) = 0},
where X = (Xj;) is a matrix of r x r variables. Then we have the inclusion

G‘I’ — GM, g ((fla"'af'l‘) = (fl,"')fr)g_l))

where we identify w(M) with F,(¢)" with respect to the basis ¥"'m. Papanikolas proved
that this inclusion is an isomorphism of smooth group schemes over F4(t), and

dim Gy = tr.degg ) K(t)(Vij]i, j) = tr.degz K (¥4(8)]1, 5)

if & € Mat,(K[t]), det ®/(t — 6)" € K~ for some n > 0, and ¥ € GL,(T). Note that in
this situation, each ¥;; converges at t = 6 ([ABP]). The second equality also uses deep
results in [ABP]. The values ¥;;(6) are called periods of M.

Example 3.1. Let M, m, ®, ¥ be as above. Assume that the matrices ® and V¥ are
lower triangular matrices. For 7/ < r, let ®' (resp. ¥) be the lower right 7’ x r’-submatrix
of ® (resp. ¥). We consider the pre-t-motive M’ defined by . Then M’ is a quotient of
M. Let m’ be the standard basis of M’, which is the image of m. Then @’ is the matrix
representing the p-action on M’ with respect to the basis m’. By Tannakian duality,
we have a surjective map Gy — Gpp. By the identifications Gy & Gy C GL, and
Gy =2 Gy C GL,/, this maps a matrix A to the lower right ' x r’-submatrix of A. We

also have similar calculations for subobjects.

Example 3.2. Let C be the pre-t-motive defined by t—8 € GL; (K (t)). The formal power
series

o) = (-0 # ] (1 - 9';.) € Keolt]

i=1
is an element of T* and converges at t = 6. Moreover, it satisfies o(2) = (¢t — 6)2

and Q(f) = 1/%. Thus C is an object of C. Since @ ¢ K(t), we have dimGq =
tr.degg s K(t)(Q) = tr.degg K(7) = 1 and G¢ = Gq = G-

Example 3.3. Let n = (ny,...,n4) be an index and a = (ay,...,a4) € (fx)d a non-

e

trivial algebraic point such that || < [6|&5" for each i. We define a “lift of Lin(a)”

qil qid
al . --ad

alt) = Z ((t—69)---(t—09"))n1...((t—69)--.(t — 9¢))na

11>-->14>0

€T,
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which converges on [t/ < |6|%& and clearly Ly pn(0) = Lig(a). Moreover, if we set (d +
1) x (d + 1)-matrices

(t —- 0)n1+~~‘+nd 0 0 o 0
ag‘l (t _ 9)n1+-~+nd (t _ 0)n2+--'+nd 0 . 0
@[g, ﬂ-] — 0 ag—l(t _ 0)n2+...+nd
: t—-0m 0
i 0 s 0 of (t—6)m 1]
and
r Qnit-+ng 0 0 Ce O-
Q"1+'"+ndLa1,n1 Qnzttng 0 e 0
\Il[g_, ﬂ] = Qn1+m+ndLa1,az,n1,n2 Qn2+m+ndL°‘2’"2 v ’

s s oA o
-Qn1+m+ndLa1,...,ad,m,...,nd Qn2+m+ndLaz,-n,ad,nz,-u,nd v Loy 1]

then they satisfy the equation o(¥[a,n]) = ®[a,n]¥[a, n]. Thus the pre-t-motive M[a, n
defined by ®[a,n] is an object of C. By Papanikolas’ theory, we have the isomorphism
Gylan = GMla,n and the equalities

dimGylan = trdeggq K(t)(Q, Lajasir,..oimsmjn.mnll < J < i < d)
tr.degz K (T, Lin, m,41,...n: (05, @1, - -, 05)]1 < § < 4 < d).

4 Outline of the proofs of Theorems 2.1 and 2.3

In this setion, we sketch the proofs of Theorems 2.1 and 2.3. We use the letters a, z, Y, Tij
as coordinate variables of algebraic groups and they run over the elements of F q(t)-algebras
R except a € R*. For example, we use the following description of an algebraic group

over Fy(t): {[; 1]} _ (RH{B 1] aeRx,xeR}),

Proof of Theorem 2.1. By Papanikolas’ theory, we have

a2
G:= GM[a,a,n,n] = G\Il[a,a,n,n] C _é = ar a
y z 1

(resp. G = GMla,n] = Gyjam C G = {[Z 1} })

dim G = tr.degf(t) K(t)(Q, Lo, Laann) = tr.degz K (7, Lin(a), Lip n(a, a))

and

(resp. dim G’ = tr.degg ;) K(t)(, Loy) = tr.degz K (7, Lin(a))) .
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In terms of matrices, the surjection G - G’ induced by Tannakian duality maps a ma-
trix to its lower right 2 x 2-submatrix (see Example 3.1). By the assumption, we have
tr.degz K (7, Lin(a)) = 2 and hence G’ = G'. Thus the algebraic group G has dimension
two or three and it has the property

GOoG—»G.

In characteristic 2, we can show that such G must have dimension three. Thus the tran-
scendental degree is also three. Assume that p > 3. If dim G = 2, we can show that

2

a
G = ar a
2
T -91-d% z 1

for some cg € Fy(t). By the definition of Gy[q,a,n,n), this implies the equality
QL2 — 20% Lo ann — c0) @ Q2" = Q" @ (Q*" L2, — 20%" Lo ann — o)
in L ®g, L. Thus there exists f € K(t) such that
QL2 — 20" Loann — co = FO*".
By substituting ¢t = 8" for large N (see [C, Section 6.4]), we obtain
Lin(a)? — 2 Lip n(a, @) = 7"co(6).
This is a contradiction. Thus we have dim G = 3. d
Proof of Theorem 2.8. Let My, My, M3 and My be the pre-t-motives defined by

@ = (t—0)""®ar,m] & (t — )" ®[az, no] ® B[as, na),
&y = (t=0)™®[an, 2,1, 2] © B[as, ns),
&3 = (t—0)"P[a1,a,n1,n2] ® Blaz, a3, ng,na),
&, = &|o,a,as,n1,n2,n3,
respectively. We set
U; = QMU ey, n;] & QW V[, no) & ¥las, ns),
Uy = Q¥[ay, ag,n1,n) & Y]as,ng,
U3 = Q™¥[a;, ag,n1,ng) @ Y[ag, as,ng,ngl,
v, := \Il[al,ag,az,nl,n%nS]-

Then we have o(¥y) = &5 ¥, for each k. Hence each My is an object of C. We set
Gk := Goem, = Giaiey, C Gk,
where the Gi’s are as follows:
( [a
qnitnetns

21 an2tns

9
i

a™2 +n3 -
Ir32 ams
a™

(L Za3 1] )
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‘T

a
an1+n2+n3
—_ Zo1 qn2tns
Ga ==« ns > s
31 T3 a
a™
(L Z43 1] )
4 (a T
an1+n2+n3
L Zo1 an2tns
G3 = ¢ x31 32 a™ r ,
qn2tns
T3 am™
L Ta2  Taz 1] )
a
an1+n2+n3
Gy := T91 a"2tns
z31 3z a™
T41 Tgg 743 1

Since My is a direct sum of subquotients of My, for each k > 2, we have the surjective
maps

G, (2 Gs Y3 Gs Y2 e
by Tannakian duality. In terms of coordinates, they are computed by
(a, Z21, T32, T43, 31, Ta2, Ta1) > (@, T21, T32, T43, T31, T42)

— (a, T91, 32, T43,Z31) —> (@, To1, T32, T43)-

By Papanikolas’ theory, it is enough to show that the equality G4 = G4 holds. In fact,
we show Gy = G, (1 < k < 4) by induction on k. By the assumption, we have

dim G; = tr.degg K (7, Lin, (1), Lin, (02), Lin, (a3)) = 4 = tr.deg Gy.

Thus the equality holds for k = 1. Let k£ > 2 and assume that the equality holds for k — 1.
Then the equality Gg = Gy, is equivalent to the equality dim G = dim Gx_1 + 1. We can
check that the algebraic group Gy which satisfies

Gk D Gk - G-1 = Gp_1

must have dimension dim Gx_1 + 1. For example, let ¥ = 3. We identify group schemes
over F,(t) with the set of their Fy(¢)-valued points. If dim G3 = dim Gy, it is clear that
the natural surjection V3 — V, among the unipotent radicals of G5 and Gy becomes a



14

bijective map. We take any elements

1 T 1 1
1 1
g1 1 az; 1
X = T31 x32 1 , A= az1 azy 1 e Vs.
1 1
z3z 1 azz 1
A T4y xg3 1] i ag2 aq3 1]
Then we have
"l -
1
1
X TA7IXA = a21T32 — A39T21 1
1
1
| 32743 — G43T32 1]

Thus if the equality ag;z32 — aszez9; = 0 holds, then the equality azoz43 — aq3x32 = 0 also
holds because X *A71XA € V3 N Kerps = {1}. However, by the induction hypothesis
and the surjectivity of V3 — V5, we can take ag; = agp = 0 and ay3z32 # 0. This is a
contradiction. |
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