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a b s t r a c t

Excessive acetaminophen (APAP) use is one of the most common causes of acute liver failure. Var-
ious types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of
these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis.
Until recently, necrosis was commonly considered to be a random and unregulated form of cell
death; however, recent studies have identified a previously unknown form of programmed necrosis
called receptor-interacting protein kinase (RIPK)-dependent necrosis (or necroptosis), which is con-
trolled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a
variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–
reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in
APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation,
which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern
of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central
vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury.
Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which
was underscored by significant suppression of the release of hepatic enzymes and cytokine expres-
sion levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured
hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaf-
fected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These
data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured
liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.
! 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Acetaminophen, or N-acetyl-para-amino-phenol (APAP), is the
most widely used analgesic and antipyretic [1]. The use of APAP
is safe at therapeutic doses, but high doses can lead to acute liver
failure (ALF). In 1998, 28% of all ALF cases in the United States were
attributed to APAP overdose, which increased to 51% in 2003 [2].
Furthermore, the percentage was much higher in the United King-
dom, where 57% of ALF cases were attributed to APAP use from
1999 to 2008 [3]. The toxicity of APAP is ascribed to N-acetyl-p-
benzoquinone imine (NAPQI), a highly reactive metabolite of APAP,
which reacts with glutathione (GSH) and leads to a profound
depletion of hepatocellular GSH [4], resulting in mitochondrial
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permeability transition and necrotic cell death [5]. Of note,
although necrosis is the major contributing mechanism of APAP-
induced hepatic injury [6], various types of cell death resulting
from several complicated mechanisms are assumed to play a role
in this process [7].

Necrosis has been considered as an accidental and non-regu-
lated cell death process; however, recent studies have shed light
on a new concept of regulated necrosis called receptor-interacting
protein kinase (RIPK)-dependent necrosis (or necroptosis). The
most prominent characteristics of this type of cell death are as fol-
lows: (i) RIPK1 kinase activation, which can be assessed by moni-
toring RIPK1 phosphorylation, and (ii) cell-death, which can be
suppressed by several RIPK1 inhibitors, including necrostatin-1
(Nec-1) [8]. Necroptosis results from RIPK1 and RIPK3 kinase activ-
ity in the form of a necrosome, which is regulated by ubiquitina-
tion and phosphorylation of RIPK1 and RIPK3 [9]. RIPK1–RIPK3
necrosome formation, which is induced by several factors, includ-
ing tumor necrosis factor alpha (TNF), leads to the overproduction
of reactive oxygen species (ROS) and the induction of mitochon-
drial dysfunction mediated by mitochondrial complex I [10]. Fur-
thermore, the mitochondrial phosphatase PGAM5 and the
mitochondrial fission factor Drp1, which cause mitochondrial frag-
mentation and may up-regulate ROS generation, are intimately
involved in RIPK-dependent necrosis [11]. Nec-1 allosterically
blocks RIPK1 kinase activity and inhibits RIPK-dependent necrosis,
though the activation of RIPK1-mediated NF-jB, mitogen-activated
protein kinase p38 and JNK1 remain [12,13]. Nec-1 blocks the for-
mation of the RIPK1–RIPK3 complex, indicating that kinase activity
of RIPK1 is required for necrosome formation [13]. The cytoprotec-
tive effects of Nec-1 has been shown in several experimental set-
tings, in ischemic brain injury [14], myocardial ischemia–
reperfusion [15], as well as radiation-induced cell death in anaplas-
tic thyroid and adrenocortical cancers [16].

Here, we studied the molecular mechanisms involved in APAP-
induced ALF and found that RIPK-dependent necrosis is involved in
APAP-induced hepatocyte death, suggesting that hepatotoxicity is,
at least partly, due to druggable cellular events. Indeed, we also
provide evidence that Nec-1 successfully protects against APAP-
induced acute hepatotoxicity through the acquisition of resistance
to oxidative stress as well as by suppressing ROS production in
hepatocytes.

2. Materials and methods

2.1. Animals

Male C57BL/6 mice, 8–10 weeks old, were purchased from CLEA
Japan (Tokyo, Japan). To confirm the time-dependent development
of hepatotoxicity and the involvement of RIPK1 activation in APAP-
induced hepatotoxicity, overnight-fasted mice received a single
intraperitoneal injection of 800 mg/kg APAP (Sigma–Aldrich, St.
Louis, MO, USA) and were sacrificed 0, 1, 3, and 6 h after adminis-
tration. To investigate the outcome of RIPK1 inhibition, fasted mice
received an intravenous injection of 12.5 mg/kg Nec-1 (Calbio-
chem, San Diego, CA, USA), which was dissolved in dimethyl sulf-
oxide (DMSO) diluted in a warm saline solution. Control mice
were intravenously injected with the same volume of DMSO in a
warm saline solution, because DMSO reduces APAP-induced liver
damage [17]. All mice received an intraperitoneal injection of
800 mg/kg acetaminophen dissolved in warm saline 15 min after
pretreatment with Nec-1 or DMSO, and were sacrificed 6 h after
administration. Blood was collected from the vena cava under gen-
eral anesthesia, and serum was separated to measure aspartate
aminotransferase (AST), alanine aminotransferase (ALT), and lac-
tate dehydrogenase (LDH). Portions of the liver tissue specimens
were frozen immediately in liquid nitrogen for further use, and

the remaining portions were fixed in 10% neutral buffered formalin
for microscopic analysis. The Animal Research Committee of Kyoto
University approved the animal protocol, and all experiments were
conducted in accordance with the Guidelines for the Care and Use
of Laboratory Animals promulgated by the National Institutes of
Health.

2.2. Immunohistochemical analysis

Formalin-fixed, paraffin-embedded sections were cut into a
thickness of 4 lm and mounted on Matsunami adhesive silane-
coated glass slides (Matsunami Glass, Osaka, Japan). After deparaff-
inization and rehydration, the slides were autoclaved in 10 mM cit-
rate buffer for 20 min to retrieve the antigens. Then, endogenous
peroxidase was quenched with 0.3% hydrogen peroxide (H2O2) in
methanol at room temperature for 10 min. After blocking, the sec-
tions were incubated at 4 "C overnight with the following primary
diluted antibodies: anti-CYP2E1 (dilution, 1:500; Abcam, Cam-
bridge, UK), anti-RIPK1 (dilution, 1:200; Santa Cruz Biotechnology,
Dallas, TX, USA), and anti-RIPK3 (dilution, 1:300; Imgenex, San
Diego, CA, USA). Subsequently, the sections were incubated with
peroxidase-labeled polymer conjugated secondary antibody (Dako
Japan, Tokyo, Japan) for 30 min at room temperature. Immunoreac-
tivity was detected with a diaminobenzidine substrate kit (Dako
Japan), and the sections were counterstained with hematoxylin.
ImageJ imaging analysis software (National Institutes of Health,
Bethesda, MD, USA) was used to quantitate the percentage of
necrotic area. Field images at !100 magnification were selected
at random from different individuals. The percentage of necrosis
was determined by measuring the total dimension of the field
and comparing it with the dimension of the necrotic area.

2.3. Measurement of inflammatory and regenerative cytokines

The frozen mouse liver tissues were homogenized using the
FastPrep-24 tissue homogenizer (MP Biomedicals Japan, Tokyo,
Japan) with 2.0 mm zirconia beads for 1 min while cooling. Bio-
Plex multiplex system (Bio-Rad Laboratories, Hercules, CA, USA)
was used in conjunction with the Bio-Plex 200 (Bio-Rad Laborato-
ries) to measure inflammatory mediators, according to the manu-
facturer’s directions. Data were analyzed using Bio-Plex Manager
6.1 software (Bio-Rad Laboratories).

2.4. Isolation and culture of primary mouse hepatocytes

Primary hepatocytes were isolated from C57BL/6 mice as
described previously [18] and cultured on a collagen-coated plastic
dish in Williams’ medium E (Life Technologies, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/
mL penicillin, and 100 lg/mL streptomycin at 37 "C in a humidified
atmosphere of 5% CO2. The medium was replaced with serum-free
Williams’ medium E, including the vehicle (0.05% DMSO) or each of
the tested Nec-1 concentrations 3 h after plating. An hour later, the
cells were treated with 10 mM APAP (Sigma–Aldrich) and incu-
bated for an additional 18 h. The APAP incubation period was rel-
atively short after isolation, because cultured hepatocytes have
less CYP2E1 and are less sensitive to APAP with time [19].

2.5. Cell death assay

Cell death was assayed by measuring LDH in the supernatant
using the Cytotoxicity Detection Kit Plus (Roche Diagnostics
GmbH, Mannheim, Germany). Then, the cells were incubated for
60–120 min with 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-
phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8; Dojindo
Laboratories, Kumamoto, Japan) reagent supplemented in culture
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media prior to absorbance readings at 450 nm with an iMark
Microplate Absorbance Reader (Bio-Rad Laboratories). Thereafter,
the cells were stained with Hoechst 33342 (Dojindo Laboratories)
and propidium iodide (PI; Dojindo Laboratories). PI-positive cells
were considered as dead cells.

2.6. Total GSH measurements

GSH levels in cultured hepatocytes treated with or without
APAP were determined using the Total Glutathione Quantification
Kit (Dojindo Laboratories), according to the manufacturer’s
instructions. Each GSH value was expressed as a ratio of the control
value.

2.7. ROS measurements

ROS content was quantified using the fluorescent dye 5-(and-
6)-chloromethyl-20,70-dichlorodihydrofluorescein diacetate, acetyl
ester (CM-H2DCFDA) (Life Technologies) as described previously
[20]. Hepatocytes were isolated from C57BL/6 mice and cultured
in 96-well black plates with transparent bottoms in Williams’
medium E containing 10% FBS, 2 mM L-glutamine, 100 U/mL peni-
cillin, and 100 lg/mL streptomycin at 37 "C for 3 h. The cells were
then incubated in serum-free media, including 0.05% DMSO and
several Nec-1 concentrations for 1 h. Then, 10 mM APAP diluted
in serum-free media was added, and the incubation was continued
for an additional 6 h. The hepatocytes were subsequently loaded
with CM-H2DCFDA (10 lM) diluted in phenol red and serum-free
media for 30 min at 37 "C. The cells were then rinsed twice with
Williams’ medium E without phenol red. CM-H2DCFDA fluores-
cence was detected at excitation and emission wavelengths of
490 nm and 520 nm, respectively. ROS formation was measured
over a time period of 60 min using a FlexStation 3 microplate
reader (Molecular Devices, Sunnyvale, CA, USA). Hepatic ROS gen-
eration was detected microscopically using the MitoSOX Red Mito-
chondrial Superoxide Indicator (Life Technologies), which
selectively targets superoxide production in mitochondria, accord-
ing to the manufacturer’s instructions.

2.8. Protein blotting

Frozen liver tissue or cultured hepatocytes were homogenized
in RIPA buffer (Cell Signaling Technology, Danvers, MA, USA) con-
taining benzylsulfonyl fluoride (Tokyo Chemical Industry, Tokyo,
Japan), Halt protease inhibitor cocktail (Pierce Biotechnology,
Rockford, IL, USA), and PhosSTOP phosphatase inhibitor cocktail
(Roche Diagnostics GmbH) or in a buffer containing 20 mM Tris–
HCl, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and Halt
protease inhibitor cocktail. Aliquots of hepatocyte extracts were
fractionated by electrophoresis on a 7.5% or 10% sodium dodecyl
sulfate (SDS) polyacrylamide gel (Bio-Rad Laboratories). In some
cases, phosphate-affinity gel electrophoresis was performed using
gels containing 8.5% acrylamide, 50 lM MnCl2, and 25 lM acryl-
amide-pendant Phos-tag ligand (NARD Institute, Ltd., Amagasaki,
Japan) [21], and an equal aliquot was incubated for 30 min at
30 "C with or without 400 U kPP (New England Biolabs Inc., Ips-
wich, MA, USA) prior to electrophoresis. The proteins were trans-
ferred onto polyvinylidene fluoride membranes (Bio-Rad
Laboratories), blocked with Blocking One blocking solution (Naca-
lai Tesque, Ltd., Kyoto, Japan), and incubated at 4 "C overnight with
anti-CYP2E1 (dilution, 1:1000), anti-RIP1 (dilution, 1:1000; Cell
Signaling Technology), and anti-b-actin (dilution, 1:1000;
Sigma–Aldrich). The membranes were washed and incubated with
horseradish peroxidase-conjugated secondary antibodies. Chemi-
luminescence was detected using Clarity Western ECL substrate
(Bio-Rad Laboratories), the membranes were subjected to direct

densitometric analysis, and images were captured using a
charge-coupled device camera system (LAS-4000 mini; Fujifilm,
Tokyo, Japan). Band intensity was quantified using ImageJ software
and normalized with respect to b-actin levels as an internal
control.

2.9. Cell death induction by an exogenous ROS inducer

To evaluate the effects of ROS on RIPK1-inhibited hepato-
cytes, the medium was replaced with serum-free Williams’ med-
ium E, including the vehicle (0.05% DMSO), or each of the tested
Nec-1 concentrations. After 1 h, H2O2 (30% v/v; Wako Pure
Chemical Industries, Osaka, Japan) or the nitric oxide (NO) donor
S-nitroso-N-acetyl-DL-penicillamine (SNAP; Sigma–Aldrich),
which was diluted to a final concentration of 250 lM and
2 mM in serum-free Williams’ medium E, was added, and the
cells were incubated for 6 h. Thereafter, cell death assays were
performed.

2.10. 2,20-Azino-bis (3-ethylbenzothiazoline)-6-sulfonic acid (ABTS)
free radical decolorization assay

This spectrophotometric decolorization assay, which is widely
used for the assessment of antioxidant activity, measures the loss
of color when an antioxidant is added to the blue–green chromo-
phore ABTS radical cation (ABTS⁄+). The radical scavenging
capacity of a sample was previously determined [22] with some
modifications. In brief, ABTS (Wako Pure Chemical Industries)
was dissolved in UltraPure Distilled Water (Life Technologies)
to a concentration of 7 mM. The ABTS radical cation (ABTS⁄+)
was produced by reacting ABTS stock solution at a final concen-
tration of 2.45 mM potassium persulfate and allowing the mix-
ture to stand in the dark at room temperature for 12–16 h
before use. Because ABTS and potassium persulfate react stoi-
chiometrically at a ratio of 1:0.5, this will result in incomplete
oxidation of the ABTS. Oxidation of the ABTS commenced imme-
diately, but the absorbance was not maximal and stable until
more than 6 h had elapsed. The radical was stable in this form
for more than two days when stored in the dark at room temper-
ature. The ABTS⁄+ solution was diluted with UltraPure Distilled
Water or ethanol to an absorbance of 0.70–0.80 at 734 nm. After
the addition of 100 lL diluted ABTS⁄+ solution to 20 lL of
necrostatin-1, Inactive control (Calbiochem), which is an inactive
analogue of Nec-1, or L(+)-Ascorbic Acid (Wako Pure Chemical
Industries), absorbance (734 nm) was measured at exactly
4 min after initial mixing using a FlexStation 3 microplate reader
(Molecular Devices).

2.11. Concanavalin A-induced hepatitis

Concanavalin A (Sigma–Aldrich) was dissolved in pyrogen-free
normal saline solution at a concentration of 2.0 mg/mL and
injected intravenously at a dose of 20 mg/kg body weight to induce
hepatitis, as previously described [23].

2.12. Quantitative real-time reverse transcription polymerase chain
reaction (qPCR)

Total RNA of mouse liver was isolated and transcribed into
cDNA using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany)
and Superscript III reverse transcriptase (Life Technologies) accord-
ing to the manufacturer’s instructions. qPCR was performed using
THUNDERBIRD SYBR qPCR Mix (Toyobo, Osaka, Japan) on a Light-
Cycler 480 (Roche Diagnostics GmbH). The normalization of rela-
tive expression was calculated by the comparative Ct (2"DDCt)
method with 18s gene expression. The primer sequences used
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were as follows: TNF, forward 50-AGGGTCTGGGCCATAGAACT-30,
reverse 50-CCACCACGCTCTTCTGTCTAC-30; Heme Oxygenase-1,
forward 50-CACAGATGGCGTCACTTCGTC-30, reverse 50-GTGAG
GACCCACTGGAGGAG-30; 18s, forward 50-AGTCCCTGCCCTTTGTAC-
ACA-30, reverse 50-CGATCCGAGGGCCTCACTA-30.

2.13. Statistical analyses

Results are presented as means ± standard errors of the mean.
The two groups were compared using the unpaired Student’s t test
and analysis of variance, where appropriate. Multiple groups were
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compared by one-way analysis of variance using the Tukey’s multi-
ple comparison test or the Kruskal–Wallis test followed by Dunn’s
multiple comparisons. A probability (P) value <0.05 was considered

statistically significant. All statistical analyses were performed
using GraphPad Prism version 5.0 software (GraphPad Software,
Inc., La Jolla, CA, USA).
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3. Results

3.1. APAP-induced hepatotoxicity is associated with RIPK1 activation

Initially, we confirmed the time-dependent development of
APAP-induced liver damage in C57BL/6 mice with a single dose
of APAP (800 mg/kg). Serum AST, ALT, and LDH levels were
increased to 3–6 h after APAP administration (Fig. 1A). Next, we
evaluated RIPK1 expression and activation in mouse liver to exam-
ine the possibility that RIPK-dependent necrosis is involved in
APAP-induced hepatotoxicity. RIPK1 protein expression was
observed even in the absence of APAP administration, where APAP
administration led to the induction of slow-migrating bands at 1–
3 h (Fig. 1B). The upper RIPK1 bands disappeared following treat-
ment of the cell lysates with kPP (Fig. 1B and C), indicating that
those bands represented phosphorylated-RIPK1, which has been
characterized as a hall mark of RIPK1 activation [24]. These data
imply the possibility that RIPK1 may play a role in APAP-induced
hepatocyte injury in mice and that RIPK-dependent necrosis is
involved in this model. To further assess the involvement of
RIPK-dependent necrosis, the localization of RIPK1 and RIPK3
was immunohistochemically investigated (Fig. 1D). RIPK3 was
strongly expressed in hepatocytes around the central vein area
and co-localized with CYP2E1, which is a key enzyme in the con-
version of APAP to highly reactive NAPQI, whereas RIPK1 was dif-
fusely expressed in hepatocytes throughout the entire liver. Of
note, APAP-induced cell death mainly proceeds around the central
vein [25], where CYP2E1, RIPK1, and RIPK3 expression occur. Inter-
estingly, Dot-like RIPK1 expression was strongly induced in and
around the necrotic area after APAP administration (Fig. 1D). These
results also suggested that APAP-induced cell death in mice
involved RIPK-dependent necrosis.

3.2. Nec-1 protects against APAP-induced hepatic injury in vivo

To clearly demonstrate the involvement of RIPK1-dependent
necrosis in APAP-induced hepatotoxicity, we utilized a murine
model of APAP-induced ALF. Hepatic injury was induced by intra-
peritoneal injection of APAP. Mice that were administered DMSO
as a vehicle showed severe hepatic injury, as assessed histologi-
cally by hematoxylin and eosin staining (Fig. 2A). We observed
increased numbers of swollen hepatocytes around the central vein

(Fig. 2A), and severe hemorrhage was visible in the perinecrotic
area (Fig. 2A). However, mice treated with Nec-1 showed mild
injury, and the necrotic area was localized only to the pericentral
vein area (Fig. 2A and B). These results were confirmed by serum
transaminase and LDH levels, i.e., Nec-1 showed a significant pro-
tective effect against APAP-induced hepatic injury (Fig. 2C). With-
out administration of APAP, no significant difference was observed
between hepatocytes treated either with the vehicle alone or
50 lM Nec-1 alone (data not shown). Nec-1 significantly decreased
the production of the inflammatory and regenerative cytokines IL-
1b, IL-10, CXCL1, and basic FGF as compared with the vehicle
(Fig. 2D). Although, no significant difference was detected in IL-6
concentrations, a tendency towards decreased expression was
observed (Fig. 2D). TNF induction, which is a virulence determinant
of concanavalin A- and LPS/D-galactosamine-induced hepatitis
[23,26–28], was not observed in our experimental ALF settings,
i.e., the liver samples were harvested within 6 h after APAP admin-
istration (Fig. 3A). However, heme oxygenase-1, which is known to
be induced by APAP, was observed even in the early phase of liver
injury [29] (Fig. 3B), which is in agreement with previous reports
that showed APAP-induction of TNF only occurred in the later
phase and not in the acute phase [30,31].

Altogether, these results clearly demonstrated that RIPK1-spe-
cific agent Nec-1 has a protective effect against APAP-induced hep-
atotoxicity and that APAP-induced cell death is due, at least partly,
to RIPK-dependent necrosis.

3.3. Nec-1 inhibits ROS production and suppresses mitochondrial
dysfunction in APAP-damaged hepatocytes

To investigate the mechanism of how RIPK1 inhibition protects
hepatocytes from APAP-induced regulated necrosis, we isolated
primary hepatocytes and performed cell-based in vitro assays. In
agreement with our in vivo findings, RIPK1-phosphorylation also
increased in APAP-treated hepatocytes in a time-dependent man-
ner (Figs. 1B and 4A). Nec-1 protected primary hepatocytes from
APAP-induced cytotoxicity in a dose-dependent manner, as shown
by the reduction of LDH in the supernatant (Fig. 4B) and by
increased cell viability (Fig. 4C). The protective effect of Nec-1
against APAP-induced cell death was also observed microscopi-
cally, as assessed by staining with the membrane-impermeant
fluorescent molecule PI to evaluate cell death and the mem-
brane-permeant fluorescent dye Hoechst 33342 to stain cell nuclei
(Fig. 4D).

Next, we compared CYP2E1 expression levels to determine
whether the Nec-1 protective effect against hepatic injury
resulted from altered APAP metabolism. Therefore, we could
not detect any significant differences in CYP2E1 expression levels
between Nec-1- and vehicle-treated hepatocytes during APAP-
induced hepatocyte death (0–6 h post APAP-treatment) (Fig. 4E
and F). In addition, we examined the total GSH to assess the
detoxification status of the cells, because highly reactive NAPQI
is detoxified primarily by GSH conjugation. Nevertheless, total
GSH levels in APAP-injured hepatocytes decreased with time
regardless of Nec-1 treatment (Fig. 4G).

After GSH depletion, it is considered that NAPQI becomes hep-
atotoxic by binding to cellular macromolecules, which leads to cel-
lular organ damage including mitochondrial dysfunction through
ROS generation [32]. Therefore, we examined the effect of Nec-1
on intracellular ROS induction by APAP and found that Nec-1 sup-
pressed the cellular ROS levels in APAP-treated hepatocytes to lev-
els similar to those in APAP-untreated hepatocytes (Fig. 4H).
Similarly, Nec-1 suppressed the mitochondrial ROS induction in
APAP-treated hepatocytes, as determined using MitoSOX Red,
whereas mitochondrial ROS were strongly induced in APAP-dam-
aged hepatocytes treated with the vehicle alone (Fig. 4I).
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Fig. 3. Differential regulation of TNF vs. heme oxygenase-1 mRNA expression in
APAP- and concanavalin A-induced acute hepatic injury; mRNA expression of TNF
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These findings raise the possibility that Nec-1 protects against
APAP-induced hepatocyte injury by suppressing the intracellular
burden of ROS formation, including mitochondrial superoxide pro-
duction, without affecting CYP2E1 expression or depleting GSH.

3.4. RIPK1 inhibition confers hepatocytes resistance to oxidative stress

Extensive mitochondrial GSH depletion is associated with a sig-
nificant increase in H2O2 released from stressed mitochondria [33].
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Fig. 5. RIPK1 inhibition by Nec-1 confers hepatocytes resistance to oxidative stress, isolated hepatocytes were cultured with different Nec-1 concentrations or the vehicle
alone for 1 h and then treated with 250 lM H2O2 or 2 mM SNAP. (A and D) LDH was measured 6 h after H2O2 (A) or SNAP (D) administration (n = 6). (B and E) Cell viability was
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(C) or SNAP (F), and then examined by fluorescent microscopy. (G and H) The antioxidant effect of Nec-1 was evaluated using the ABTS free-radical decolorization assay. An
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Peroxynitrite (ONOO"), which is formed by the reaction of nitric
oxide (NO) with superoxide, is detoxified by GSH during APAP-
induced hepatotoxicity [34]. These oxidizing agents produced in
living cells and/or leaked from dead cells not only damage organs
intracellularly, but may also affect neighboring cells extracellularly
[35,36]. Therefore, we attempted to test whether RIPK1 inhibition
influenced hepatocyte response to exogenous oxidative stress. We
treated mouse hepatocytes with H2O2 or SNAP, which serves as a
NO donor. Low SNAP concentrations provide protection from cell
death in various cell types, including hepatocytes [37–39]; how-
ever, at higher concentrations, SNAP is highly toxic [39–42]. Thus,
we used SNAP in a concentration range that was toxic to hepato-
cytes (data not shown) and found a dose-dependent protective
effect of Nec-1 against exogenous oxidative stress in cell viability
and LDH-release assays (Fig. 5A, B, D and E). A microscopic analysis
confirmed that RIPK1 inhibition by Nec-1 protected the primary
hepatocytes from exogenous oxidizing agents (Fig. 5C and F). How-
ever, there was no antioxidant activity in Nec-1 compared with
L(+)-Ascorbic Acid, which is an antioxidant well-known as Vitamin
C, as determined by an ABTS free-radical decolorization assay
(Fig. 5G and H). This suggests that Nec-1 does not act as a scaven-
ger for H2O2 or SNAP. These results collectively indicate that RIPK1
inhibition not only suppresses ROS production in hepatocytes but
also ameliorates hepatocyte damage caused by extracellular ROS
(Fig. 6); although the exact mechanism remains to be addressed.

4. Discussion

Our results demonstrate that RIPK-dependent necrosis is
involved in the pathological manifestation of APAP-induced acute
liver damage. Indeed, RIPK1 inhibition by Nec-1 showed a protec-
tive effect against APAP-induced hepatocyte injury both in vivo and
in vitro. The in vitro studies revealed that RIPK1 inhibition reduces

APAP-induced ROS production, which is one of the main causes of
APAP-induced hepatocyte damage (Fig. 5) [43], whereas CYP2E1
expression and APAP-induced GSH exhaustion were unaffected
(Fig. 4E–G). A pathological examination of the liver before and after
APAP injury demonstrated co-localization of RIPK1 with RIPK3 and
CYP2E1 in hepatocytes around the central vein area (Fig. 1D),
which is the most vulnerable area for APAP-induced hepatocyte
injury [25], also supporting the notion that RIPK-dependent mech-
anisms operate in APAP liver injury. Furthermore, although Nec-1
has no antioxidant activity (Fig. 4G and H) [14], we found that
Nec-1-treated hepatocytes acquired resistance to oxidative stress.
This resistance mechanism remains to be elucidated; however,
the resistance would be beneficial to further protect against
APAP-induced liver damage, because extracellular ROS increase
in response to initial hepatocyte cell death [35,36], and those
ROS together with inflammatory cytokines lead to secondary hepa-
tocyte damage [44] (Figs. 5 and 6).

APAP-induced cell death is predominantly necrotic [6]. Our
results clearly demonstrated that APAP-induced necrosis includes,
if not all, regulated forms of necrosis that are a druggable target of
RIPK1 inhibitors (Fig. 6). Nec-1 has a short half-life span [45], but
demonstrated efficacy against APAP-induced ALF. Thus, the devel-
opment of inhibitors with better pharmacokinetic properties may
pave the way for therapeutic intervention of human APAP-induced
ALF, for which efficient treatment is truly required.
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Fig. 6. Schematic illustration of the model for the protective effect(s) of Nec-1 against acetaminophen (APAP)-induced hepatocyte necrosis. APAP is converted to the highly
reactive metabolite NAPQI by CYP2E1 and other cytochrome P450 enzymes (CYPs) in the liver. NAPQI is inactivated by conjugation to GSH and detoxified. However, excess
NAPQI leads to GSH depletion and unconjugated NAPQI binds to cellular proteins, causing further formation of ROS. Resultant oxidative injuries, including mitochondria
dysfunction, result in massive hepatic necrosis. Although the mechanism of RIPK1 activation remains unclear, Nec-1 inhibits necrosome formation and intracellular ROS
production, which eventually prevent RIPK-dependent necrosis. ROS and reactive nitrogen species (RNS) produced by living cells and/or leaked from dead cells (extracellular
ROS/RNS) also provoke hepatocyte cell death. By unknown mechanisms, Nec-1 also inhibits this cell death pathway.
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