
Reconstructing Biological Systems Incorporating Multi-Source

Biological Data via Data Assimilation Techniques

データ同化手法を用いた多種生体内データの統合による

生体内システム再構築の研究

Takanori Hasegawa

長谷川 嵩矩

Dissertation submitted to Graduate School of Informatics

Kyoto University

Thesis Supervisor: Tatsuya Akutsu





Abstract

More than twenty thousands genes are coded on human’s 3 billion base pairs of deoxyribonucleic

acid (DNA) sequences. The functions of these genes are mutually regulated by their products,

e.g., proteins and ribonucleic acid (RNA), and other factors, and the elucidation of the entire

structure of these biological systems has broad utility in applications of drug development,

medical treatment and preventive medicine. Therefore, this has been one of the major challenges

in the field of systems biology. Especially, in recent technological advances in biotechnology,

microarray technologies have been greatly contributed to systems biology researches since we

can infer the regulatory relationships and biological processes by comparing the expression levels

of RNAs and proteins in several conditions. In the field of systems biology, there exist two types

of data obtained by microarrays; thus, time-course data and static (non time-course) data.

The time-course data is a set of expression data measured at designed time points after drug

stimulations, heat shocks and so on. The static data is measured at the steady state condition

in knock-down cells, drug stimulated cells and so on. In this thesis, we handle the time-course

microarray data for the elucidation of biological systems.

In using such time-course observation data, there are two major approaches, i.e., simulation-

based and statistical approaches. The simulation-based approach uses biologically validated

mathematical equations, e.g., ordinary differential equation (ODE) and stochastic differential

equation (SDE), to represent the complex dynamics of biological systems and has constructed

several biological simulation models including gene regulatory networks and metabolic pathways

by combining the accumulated knowledge of biomolecular reactions. Here, the purposes of

these constructions are to understand the dynamic behavior of biological systems, to infer the

relationships among genes and to predict the changes of their dynamics when adding or removing

some biomolecules. However, we have two major problems in this approach; (i) we cannot apply

this approach when most part of target systems are unknown due to computational difficulties in

evaluating a lot of candidate models and (ii) we cannot handle systems consisting of ten or more

genes due to a computational problem known as the curse of dimensionality. In contrast, the

statistical approach uses highly abstract models with assumptions such as linearity and simply

describes biological systems to infer relationships among several hundreds of genes from the data.

In this approach, many computational methods, e.g., dynamic Bayesian networks, state space

models (SSM) and vector auto-regressive (VAR) models, have been proposed. Recently, these

approaches have further incorporated several biological findings, e.g., transcription factor (TF)
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information and protein-protein interaction, to infer biologically validated results. However, the

high abstraction generates false regulations that are not permitted biologically. Thus, there is

a trade-off relationship between accuracy and computational ease.

In this thesis, we propose a set of analysis procedures for biological systems using time-

course observation data in the context of genomic data assimilation, which tries to collaborate

simulation-based and statistical approaches to reveal biological systems. Depending on the

accumulation of biological knowledge and the required accuracy of inference results, we attempt

to infer biological systems that can best predict observation data based on (i) a linear SSM that

covers basic processes of gene regulatory systems as represented in complex nonlinear differential

equations, (ii) a simple nonlinear SSM that is constructed by extending the linear SSM, and

(iii) a complex nonlinear differential equations. For each case, we propose a novel method to

estimate the values of the parameters under several biological constraints and infer regulatory

relationships among genes and biomolecules to be consistent with the data.

At first, we consider the case of dealing with several tens of genes of which regulatory relation-

ships are partially known. Then, we propose a novel method for the inference of gene regulatory

networks (GRNs) using a newly established state space representation of a vector auto-regressive

model with L1 regularization. In contrast to the previous linear VAR models and SSMs, the

proposed model can represent basic components of gene regulatory systems and the proposed

method can infer the regulatory structure with a sparse constraint. Furthermore, the method is

capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and

literature-recorded pathways. For an application example, we infer corticosteroid pharmacoge-

nomic pathways consisting of 40 genes in rat skeletal muscle using time-course microarray data,

TF information, corticosteroid pharmacodynamics and literature-derived pathways.

Next, we consider the case that we have GRNs that are derived from literature or inferred

by some computational methods. In this case, we try to improve and extend the networks in

which parts of regulations can be reliable based on a state space representation of a simple

nonlinear model termed the combinatorial transcription model. In contrast to the previous

approaches, e.g., nonlinear VAR models, the proposed model can handle non-equally spaced

time-course data and separately deal with system and observation noises. For the inference of

GRNs and the estimation of the parameter values in the nonlinear SSM, we propose an algorithm

to efficiently explore candidate networks utilizing the unscented Kalman filter (UKF). Under this

algorithm, UKF calculates approximate conditional distributions of the hidden state variables

to efficiently estimate the parameter values maximizing prediction ability for observational data

by the EM-algorithm. Although UKF can efficiently estimate the parameter values and explore

model space, it does not fully satisfy the requirements of estimating the optimal parameter

values; thus, the first four moments are required to obtain the optimal ones. Therefore, we

further develop a novel method termed a higher moment ensemble particle filter that can retain

the first two and the third and the fourth central moments of the conditional distributions of

the hidden state variables through prediction, filtering and smoothing steps. Starting from the

original model, which is derived from literature or inferred by some computational methods,
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the proposed algorithm can sequentially evaluate candidate models, which are generated by

partially changing the current best model, to find the model that can best predict the data. For

an application example, we also use corticosteroid pharmacogenomic pathways in rat skeletal

muscle.

Finally, we consider the case of handling relatively small pathways that are described by

differential equations. Utilizing corticosteroid pharmacogenomic pathways in rat liver cells as

an application example, we first propose a computational approach to comprehensively screen

candidate pathways for gene expression profiles. In this approach, a systematic model generation

strategy is developed; candidate pharmacogenomic pathways are automatically generated from

some prototype pathways constructed from existing literature. The parameters values in the

nonlinear differential equations within a state space model are estimated based on time-course

gene expression data by the particle filter. The candidate pathways are also ranked based on

their prediction power measured by Bayesian information criterion. However, this procedure

is computationally costly and can not handle a large number of candidates that are required

to find models whose simulation results are highly consistent with the data. To overcome the

problem, we focus on the fact that the qualitative dynamics of candidate pathways are highly

similar if they share a certain amount of regulatory structures. This indicates that better fitting

candidates tend to share basic regulatory structures of the best fitting candidate, which can best

predict the data among candidates. Thus, instead of evaluating all candidates, we propose an

efficient exploration method that can selectively and sequentially evaluate candidates based on

the similarity of their regulatory structures.





論文概要

ヒトの細胞内に存在する三十億塩基対もの DeoxyriboNucleic Acid (DNA)には, 二万を超える遺

伝子が記述されている. これらの遺伝子の機能はそれぞれの遺伝子の生産物, 即ちタンパク質や

RiboNucleic Acid (RNA), 若しくはその他の要因によって相互に制御されており, この生体内シス

テムの全体像を明らかにすることは創薬や医学療法, 予防医学への応用に於ける幅広い実用可能性

を秘めている為, システム生物学に於ける最も中心的な目標の一つとなっている. この目標に対し,

計算機的若しくは統計的手法を用いて幾つもの状況下に於ける RNAやタンパク質の発現値を比

較することで遺伝子の制御関係や生体内プロセスを推定することが出来る為, マイクロアレイ技術

の発達は近年の生命工学の進展の中でも, 特にシステム生物学に貢献する技術の一つだと考えられ

る. ここで, システム生物学領域に於いて使われるこれらマイクロアレイによって得られるデータ

は, 時系列データと非時系列データの二つに大別することが出来る. 時系列データは, 例えば薬物

投与や熱ショックを与えた細胞内の遺伝子の発現値を, ある適当な時間間隔で測定した一連のデー

タセットのことを示し, 非時系列データは, 例えばノックアウト遺伝子細胞や薬物刺激を与えた細

胞の定常状態に於ける遺伝子の発現値を測定したデータセットなどのことを示す. 本論文では, 時

系列データを用いた細胞内システムの解析を取り扱う.

このような時系列データを解析する手法は大きく, シミュレーションモデルベース手法と統計

学的手法の二つに分けることが出来る. シミュレーションモデルベースの手法に於いて, 生体内シ

ステムの複雑な動的振る舞いは, 生物学的に妥当であると検証が成されている常微分方程式や確率

微分方程式によって再現することが出来, 文献化されている生体内分子の反応を組み合わせるこ

とで, これまでに多くの遺伝子制御ネットワークや代謝ネットワークなどが構築されてきた. ここ

で, これらのモデルは生体内システムの動的な振る舞いの理解や遺伝子の制御関係の推定, 生体内

分子を付加若しくは取り除いたときの生体内システムの振る舞いの変化を予測するために構築さ

れる. しかしながら, この手法は二つの大きな問題を抱えている. 一つ目として, この手法は計算

負荷が非常に大きい為, 生体内システムの大部分が未知で候補となる多数の生体内システムを評価

しなくてはならない場合に適用不可能であることが挙げられる. 二つ目としては, 次元の呪いとし

て知られる数学的制約によって, 十を超える生体内分子を含むようなシステムの評価を行うことが

著しく困難であることが挙げられる. 一方で, 統計学的手法に於いては, 例えば線形性などの仮定

を置くことで複雑な生体内システムを抽象化した統計モデルなどを用いることにより, 観測データ

から百を超える遺伝子間の制御関係を推定することが可能である. このような手法としては, 動的

ベイジアンネットワークや状態空間モデル, ベクトル回帰モデルなどの手法が提案されてる. 近年

では, 転写因子やタンパク質相互作用などの生物学的知見を組み合わせることで, 推定精度の向上

を達成する手法も提案されている. しかしながら, 抽象化されたモデルを用いた推定結果はしばし



vi

ば生物学的な知見と相反する結果を多分に含むことが分かっている. 即ち, 精度と計算上の取り扱

いやすさの間にはトレードオフの関係性が成立しているのである.

本論文では, シミュレーションベース手法と統計学的手法の融合によって生体内システムの解

明を目指す, ゲノムデータ同化という手法を用いて, 時系列データから生体内システムを解析する

一連の手法を提案する. ここでは, 既存のデータ同化手法が取り扱っていない, 対象とする生体内

システムに関する知見の多さと必要な精度に関する幾つかの条件に対応するモデルを提案し, その

モデルに於いて生体内観測データを最も良く予測し得る生体内システムを推定する. 提案したモ

デルは, (i) 生体内システムを叙述する非線形微分方程式に組み込まれている遺伝子制御システム

の基本要素を含む線形モデルを用いた状態空間モデル, (ii) (i)のモデルを拡張した単純な非線形状

態空間モデル, (iii) 複雑なシステムを表現可能な非線形の微分方程式を組み込んだ状態空間モデル

の三つのモデルである. それぞれのケースに対して, 幾つかの生物学的な制約の元で, モデルのパ

ラメータを推定し, 生体内観測データに一致するような制御関係を持つモデルを推定する手法を提

案する.

まず初めに, 部分的に制御関係が判明している数十の遺伝子を対象とするケースを考える. こ

のようなケースに対して, 生体内システムの基本的な要素を表し得る新しいベクトル回帰モデルの

状態空間表現を用い, L1制約下で遺伝子の制御構造を推定する手法を提案する. このモデルは一

般的なベクトル回帰モデルや状態空間モデルと異なり, 遺伝子制御システムの基本的な要素を網羅

した上で, 疎構造の条件下に於いて遺伝子間の制御関係を推定することが可能である. 加えて, 薬

物動態や文献由来制御構造などを取り組むことが出来るように拡張を施する. 適用例として, ラッ

ト骨筋細胞に対してコルチコステロイド刺激を加えたときのmRNAの時系列観測データと転写因

子の情報, コルチコステロイド薬物動態, 文献由来制御関係の情報を組み合わせ, 四十のコルチコ

ステロイド関連遺伝子とコルチコステロイドの間の制御構造を推定する.

次に, 文献由来や, 何らかの遺伝子制御構造の推定手法を用いて得られた遺伝子制御構造を有

しているケースを考える. このケースに於いて, これら一部に信頼性の高い制御関係を含むような

遺伝子制御構造を, combinatorial transcription modelという非線形システムの状態空間表現を用

いて, 修正若しくは拡張する. 非線形ベクトル回帰モデルなどの従来手法と異なり, 提案手法は非

等間隔時点に於いて観測された時系列データを扱うことが出来, 更にシステムノイズと観測ノイズ

を別々に扱うことが出来る. 遺伝子間制御構造とパラメータの推定に関しては unscented Kalman

filterという手法を適用することで, 候補モデルを効率的に探索するアルゴリズムを開発した. こ

のアルゴリズムでは, ガウス分布として近似された隠れ変数の確率分布を逐次的に計算し, 観測

データを最大限予測し得るようなパラメータ値を EMアルゴリズムを用いて推定する. unscented

Kalman filterを用いたアルゴリズムでは効率的にパラメータ値を推定し, モデル空間を探索する

ことが可能であるが, 提案モデルの観測データに対する最適なパラメータ値を推定する為には隠れ

変数の条件付き分布の一次から四次までのモーメントが用いられる為, この近似を用いて選ばれた

モデルと真のモデルに差異が発生する可能性がある. そこで我々は, 予測と濾波, 平滑化を通して

隠れ変数の条件付き分布の一次と二次のモーメント, 更に三次と四次の中心モーメントを維持する

ことが可能である, higher moment ensemble particle filterという手法を開発した. 文献情報や他

の手法によって推定されたモデルを元にし, 提案手法は現在の最適モデルを部分的に修正すること

で作成した候補モデルを逐次的に評価していくことによって, 観測データを最も良く予測し得る

モデルを探索する. 適用例として, 同様のラット骨筋細胞に対するコルチコステロイド刺激経路の
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データを用いる.

最後に, 微分方程式で叙述される比較的小さい生体内システムを取り扱うことを考える. ここで

はラット肝細胞に於けるコルチコステロイド薬理遺伝学パスウェイを適用例として取り扱い, ラッ

ト肝細胞に於けるコルチコステロイド刺激に対応する遺伝子発現データを予測し得るような候補

パスウェイを網羅的にスクリーニングする方法論を提案する. この手法に於いてはまず, 文献由来

のプロトタイプパスウェイから自動的に候補モデルを作成するモデル構築戦略を考える. 次に, 非

線形微分方程式を持つ状態空間モデルのパラメータ推定には粒子フィルタアルゴリズムを適用し,

候補モデルの観測データに対する予測性能の評価にはベイズ情報量規準を利用する. しかしなが

ら候補モデルの網羅的評価は計算機コストが非常に大きく, 複雑な観測データを高い精度で予測し

得るようなモデルを含むような多数の候補モデルセットを扱うことは出来ない. この問題に対処

するため, 我々は, 制御構造の一部若しくは大部分を共有しているようなモデル間に於いて, それ

らのパスウェイモデルの動的振る舞いが非常に似通っていという事実に注目する. 即ち, 観測デー

タに対する高い予測精度を持つモデルの制御構造は, それを最も良く予測し得るモデルの制御構造

の一部を共有し得るという傾向を用いる. このような, 観測データの予測に関する制御構造の類似

関係を利用することで, 全ての候補モデルを評価すること無しに, 効率的かつ選択的に候補モデル

を評価可能な手法を提案する.
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Chapter 1

Introduction

1.1 Background and Motivation

The cells in living things have the complete set of huge DNA sequences, termed genome, that

sustains, controls and differentiates complex biological systems through the expression of genes.

For example, human beings have almost 3.1 billion base-pairs of DNA sequences and almost 20

thousands genes are on the DNA sequences. The expression of these genes are controlled by

several factors, e.g., mutual regulations among genes, chromatin structures, activities of microR-

NAs and geographic positions among genes. In the field of systems biology, which focuses on

researches of analyzing such intracellular biological systems including regulatory relationships

among DNAs, RNAs, proteins and chemical compounds, one of the main goals is the com-

prehensive understanding of the biological systems since it can contribute to developments of

innovative drugs with fewer side effects and medical treatments for new and unknown diseases.

In order to achieve this purpose, a great deal of computational methodologies, e.g., Bayesian

statistics and time-series modeling, have been developed using biological data of DNAs, RNAs,

proteins and chemical compounds.

Due to technological developments of biology, several types of biological data such as microar-

rays, Chromatin immunoprecipitation Sequencing (Chip-Seq), Chip-Chip and whole genome se-

quence data have been accumulated. Especially, developments of microarray technologies, which

can measure the expression levels of, e.g., mRNA and microRNA, have been greatly contributed

to systems biology researches since we can infer regulatory relationships among genes by compar-

ing their expression levels on many different times or conditions. Then, several computational

approaches using these data have been developed from the late 20th century according to devel-

opments of hardware and software in computer science. For example, methodologies in Bayesian

statistics, information theory and time-series analysis, have been developed [9, 30, 45, 70]. Fur-

thermore, recent progresses of biological researches have elucidated parts of biological systems

through biological experiments [53]. Thus, although the goal is still far from being understood,

many findings related to intracellular biological systems have been published, for example, gene

regulatory networks (GRNs), protein-protein interactions (PPI) and transcription factor (TF)
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information. Recently, systems biology researches have tried to reveal biological systems incor-

porating these accumulated findings and observation data from biological experiments.

In regard to these attempts analyzing gene expression data, there exist roughly two types of

microarray data, i.e., static and time-course data. The static data is obtained by measuring the

expression levels of RNAs at the steady state in, e.g., knockdown cells, which are silenced the

expression of some specific genes or are removed such genes. For example, in Bayesian statistics,

conditional decencies among genes are represented as probabilistic graphical models and their

causal relationships are inferred [30,45]. The time-course data is obtained by measuring the time-

dependent expression levels of RNAs after heat shocks, drug stimulations and so on at designed

time points. For example, dynamic Bayesian networks [56] and vector auto-regressive (VAR)

models [33,34], have been applied to infer the regulatory relationships among genes by assessing

the variations of these expressions. In this thesis, we handle the time-course microarray data

for the elucidation of biological systems.

For the analysis using these data, there are two major approaches, i.e., simulation-based

and statistical approaches. It is well known that the dynamic behavior of biomolecules can be

represented by mathematical equations such as differential equations [18,24], e.g., the Michaelis-

Menten model [91] and S-system [92]. Thus, in the simulation-based approach, chemical reaction

networks (CRNs) and GRNs have been analyzed through the evaluation of these mathematical

models that are constructed by combining biomolecular reactions in literature. Following the

direction, several methods have been proposed to infer regulatory structures [42,81], to reproduce

the dynamic behavior of biological systems recorded in the literature [59,73,79,83,85,117], and

to improve published pathways so that they are consistent with the data [39, 40]. Although

these models can represent detailed dynamics of biological systems, the estimation of their

parameter values is computationally heavy task and we cannot evaluate a lot of candidate

models. Besides the case, we cannot estimate the parameter values of complex models due

to the curse of dimensionality. Therefore, when most part of target systems are unknown, we

cannot apply this approach.

In contrast, a statistical approach using highly abstracted models, e.g., Bayesian networks [29,

43, 54, 107, 118, 120], information theory [70, 123], regression-based methods [31–33, 98, 99] and

state space models (SSM) [9,12,43,86,112,114], has been successfully applied to infer the struc-

tures of transcriptional regulation and chemical reactions from biological observational data.

Because these methods simply describe biological systems, more than a hundred genes can be

handled computationally with ease. Whereas methods relying purely on data need to consider

all possibilities of transcriptional regulation, some studies have further incorporated other in-

formation including protein-protein interaction networks (PINs), literature-recorded pathways

and TF information [7, 20, 22, 88, 109]. Although these methods can infer relationships among

more than a hundred genes simultaneously, high levels of abstraction can also generate false

regulations that are difficult to interpret biologically.

In this thesis, we propose a set of genomic data assimilation techniques, which tries to

collaborate simulation-based and statistical approaches for the inference of biological systems,
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using time-course observation data. In order to extend the previous genomic data assimilation,

which considers to infer regulatory relationships among more than a hundred genes or evalu-

ates well-known systems consisting of less than ten genes, we establish new models that can be

selected depending on the accumulation of biological knowledge and the required accuracy of

inference results for target systems, and propose novel methods for the estimation of the param-

eter values and the inference of regulatory relationships. Thus, incorporating several biological

findings, e.g., TF information and literature-based regulatory relationships, we try to explore

the biological systems that can best predict observation data based on (i) a linear state space

representation of a vector auto-regressive model (VAR-SSM) that covers basic processes of gene

regulatory systems as represented in complex nonlinear differential equations, (ii) a simple non-

linear SSM that is constructed by extending the linear VAR-SSM and (iii) a complex nonlinear

differential equations within a SSM. For each case, we propose a novel method to estimate the

values of the parameters under several biological constraints and infer regulatory relationships

among genes to be consistent with the data. The conceptual view is illustrated in Fig 1.1.

-Linear SSM for GRNs
-Difference Equation

-Nonlinear SSM
-Difference Equation

-Nonlinear SSM
-Differential Equation

-Inference of GRNs -Restoration of GRNs -Exploration of Models

-Chapter 2, 3 -Chapter 4, 5 -Chapter 6, 7

Around Ten Genes

Complex Dynamic SystemsSimple Dynamic Systems

Previous 

More Than A Hundred Genes

DA Methods

-Nonlinear SSM

-Differential Equation

-Evaluation of Models
Previous 

DA Methods

-Linear SSM

-Difference Equation

-Inference of GRNs

Figure 1.1: A conceptual view explaining the proposed methods in this thesis.

1.2 Data Assimilation

In order to predict response to input data using a set of training data, in the field of computer

science, there are roughly two major approaches, i.e., inductive and deductive approaches. The

inductive approach that is recently explained as, e.g., data mining, machine learning and statis-

tical science, has great potential for many application fields to achieve the purpose. In contrast,

the weakest point of the inductive approach is that it cannot predict incident that has not been

learned in the training data. Thus, in the context of a long-term time-series forecasting, it can

be difficult to apply the inductive approach to predict the data since it is not realistic to obtain

a set of the comprehensive data that covers whole incident.

In contract, theoretically, the deductive approach can overcome the problem. Thus, in this
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approach, we first derive the dominant equations describing target phenomena and obtain the

dynamic behavior using these equations through simulations because they are often analytically

intractable. However, due to the limitation of computational power and the lack of information

with respect to the initial conditions, the parameter values and often the dominant equations,

we cannot obtain exact results.

The data assimilation approach attempts to collaborate these two approaches by recursively

executing the simulation, analyzing the simulated results, estimating the parameter values and

reflecting the analyzed results to the simulation. Especially, in the sequential data assimila-

tion schema, SSMs have been utilized using observation data in many application fields, e.g.,

aerospace, biology and earth science. The basic theories of the state space model is explained

in Chapter 2. Then, the proposed extensions for genomic data assimilation are introduced in

Chapters 3-7.

1.3 Contribution of Thesis

In this thesis, we deal with four topics in the field of systems biology and genomic data assimi-

lation.

First, in Chapter 2, we introduce basic theories of linear/nonlinear SSMs and their parameter

estimation procedures in the context of systems biology. In addition, methodologies of statistics

and linear algebra that are used for deriving these theoretical results and the proposed methods

in Chapters 3-7 are introduced.

Second, in Chapter 3, we consider the case that the number of target genes is several tens

in which regulatory structures are partially known and the purpose is to infer the regulatory

relationships among genes incorporating several biological findings, e.g., TF information. Then,

we establish a new VAR-SSM that is constructed to cover basic processes of gene regulatory

systems as represented in hill function-based differential equations. In contrast to the previous

methods utilizing linear models [9, 12, 33, 43, 86, 98, 114], the proposed method can handle the

observation data with non-equally spaced time-point data, and system and observation noises

separately. Since GRNs are known to have sparse structures, the previous approaches using

linear SSMs applied statistical tests to obtain significant regulations. In contrast, we impose

L1-regularization to the VAR-SSM and propose a method to infer the regulatory structure

with updating the parameter values to maximally predict the data. Furthermore, the proposed

method can combine several biological findings in inferring the regulatory relationships. When

handling several tens of genes and time-course gene expression profiles with drug stimulation,

the proposed method shows better performance with respect to the accuracy for inferring the

regulatory structure through several computational experiments compared to the previous GRNs

inference methods.

Third, in Chapters 4 and 5, we consider the case that there are candidate regulatory networks

for target genes and the purpose is to restore the networks to better predict the data based on

less abstract models rather than linear models. Then, we employ a state space representation
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of a simple nonlinear model termed the combinatorial transcription model [81, 110]. The main

problem here is to calculate non-Gaussian conditional distributions of the hidden state vari-

ables. In Chapter 4, we apply the unscented Kalman filter (UKF) [16, 49, 51], which efficiently

calculates approximate conditional distributions of the hidden state variables, and propose a

novel algorithm to improve given GRNs, which are derived from literature or inferred by other

GRNs inference methods, utilizing the EM-algorithm. In Chapter 5, to overcome the drawback

of UKF for inferring the combinatorial transcription model in which approximate distributions

do not fully satisfy the requirements of estimating the optimal parameter values, we further

propose a novel method termed a higher moment ensemble particle filter (HMEnPF) that can

retain the first two moments and the third and the fourth central moments without reducing the

number of the survived particles. Through the simulation experiments, the proposed algorithms

successfully restore the given GRNs that are constructed by other GRNs inference methods.

Finally, in Chapters 6 and 7, we consider a SSM in which the system function is described by

differential equations to accurately represent the dynamic behavior of biological systems. The

purpose is to evaluate the validity of biological pathways, derived from literature, for biological

observation data and suggest better pathways that can predict the data. In this scenario, in

contrast to the GRNs inference methods in the previous chapters, which attempt to infer only

regulatory relationships among genes, we deal with detailed regulatory functions. For example,

even when we have a simple pathway that gene A is activated by gene B, we further evaluate

cases, e.g., A is linearly activated or not, and a synthesis process of A is activated or a degrada-

tion process of A is repressed. In Chapter 6, we propose an approach to systematically creates

candidate models from some prototype pathways and comprehensively evaluates these candidate

models. However, since we are required to use Monte Carlo approaches to calculate the condi-

tional distributions of the hidden states and the parameter values, it is computationally intensive

to evaluate many candidate models, e.g., more than a thousand. In Chapter 7, to overcome the

problem, we develop an efficient explorative method that sequentially creates plausible candi-

dates and evaluates them. Through the studies using real data of rat liver cells [47], we show

that the proposed method can find the best candidate that is selected by the comprehensive

method instead of evaluating all candidate models.

1.4 Organization of Thesis

The rest of this thesis is organized as follows.

In Chapter 2, we explain theories of linear and nonlinear SSMs in context of GRNs inference

and introduce solutions for the estimation of the parameter values. Furthermore, complementary

theories that are used for deriving these results and the proposed methodologies in Chapters 3-7

are also explained.

In Chapter 3, we establish a VAR-SSM representing gene regulatory systems and propose a

method for the inference of regulatory relationships with estimating the parameter values by

the EM-algorithm.
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In Chapters 4 and 5, we deal with a simple nonlinear SSM in which the system function is the

combinatorial transcription model. In Chapter 4, for the estimation of the parameter values,

we propose a novel algorithm to improve given GRNs utilizing UKF. In Chapter 5, we further

propose a novel method termed HMEnPF that can retain the first two moments and the third

and the fourth central moments through the prediction, filtering and smoothing steps.

In Chapters 6 and 7, we deal with a differential equation-based SSM. In Chapter 6, we propose a

procedure to explore candidate models that can better predict the data for expression profiles of

rat pharmacogenomics. In Chapter 7, we further propose an efficient model exploration method

for the same case.



Chapter 2

Preliminarily

2.1 Inference of Gene Regulatory Networks Using Linear State

Space Model

Theoretical results explained in this section are based on several literatures [43, 52, 101, 102,

112, 114] and almost all intermediate expression are given by the author (detailed solutions are

missing in these literatures).

2.1.1 Linear State Space Model

Let xt and yt (t = 1, . . . , T ) be the p-dimensional hidden state variables and the q-dimensional

observation variables at time t. We call a time-series modeling representing the following equa-

tions as the state space model;

xt = f(xt−1,vt), (2.1)

yt = h(xt,wt), (2.2)

where f , h, vt and wt are a parametric Rp → Rp system function generating the next state xt

from the current state xt−1, a parametric Rp → Rq observation function h mapping the state

variable xt to the observation variables yt, p-dimensional system and q-dimensional observation

noises, respectively. Here, f and h are possibly nonlinear functions. The basic concept of SSM

is shown in Figure 2.1.

Especially, when f and h are linear functions and vt and wt are according to Gaussian distri-

butions N(0, Q) where Q = diag(q1, ..., qp) and N(0, R) where R = diag(r1, ..., rq), respectively,

a linear SSM can be formulated as

xt = Fxt−1 + vt, (2.3)

yt = Hxt +wt, (2.4)

where F ∈ Rp×p and H ∈ Rp×q are termed system and observation matrices, respectively. In
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ty 1+ty

tx 1+tx 2+tx Tx

tw 1+tw

tv 1+tv 2+tv

⋯

2+ty

2+tw

⋯ ⋯ Ty

Tw

Tv

f f f f

3+tv

h h h h

Figure 2.1: A conceptual view of the state space model.

linear SSMs, when x0 is according to a Gaussian distribution, xt and yt (t = 1, . . . , T ) also

belong to Gaussian distributions.

2.1.2 Estimation of Hidden State Variables Using Kalman Filter

The Kalman filter (KF) is a sequential estimation algorithm for the conditional probability

distributions of the hidden state variables given observation data in linear SSMs. Let Ys =

{y1, . . . ,ys} be a set of observation data. Then, we describe the expectation and the variance-

covariance matrix of the hidden state xt given Ys as

xt|s = E[xt|Ys], (2.5)

Σt|s = E[(xt − xt|s)(xt − xt|s)
′|Ys]. (2.6)

KF formulates the procedure to calculate the optimal states of p(xt+1|Yt), p(xt|Yt) and p(xt|YT )
as followings;

1. Prediction: The conditional probability distribution p(xt|Yt−1) is calculated by using

p(xt−1|Yt−1) as follows.

xt|t−1 = Fxt−1|t−1, (2.7)

Σt|t−1 = FΣt−1|t−1F
′ +Q. (2.8)
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(Proof)

xt|t−1 = E[xt|Yt−1], (2.9)

= E[Fxt−1 + vt|Yt−1], (2.10)

= FE[xt−1|Yt−1], (2.11)

= Fxt−1|t−1, (2.12)

Σt|t−1 = V ar[xt|Yt−1], (2.13)

= E[{F (xt−1 − xt−1|t−1) + vt}{F (xt−1 − xt−1|t−1) + vt}′], (2.14)

= FE[{xt−1 − xt−1|t−1}{xt−1 − xt−1|t−1}′]F ′ + E[vtv
′
t]
′, (2.15)

= FΣt−1|t−1F
′ +Q′. (2.16)

2. Filtering: The conditional probability distribution p(xt|Yt) is calculated by using p(xt|Yt−1)

and yt as follows.

xt|t = xt|t−1 +Kt(yt −Hxt|t−1), (2.17)

Σt|t = (I −KtH)Σt|t−1, (2.18)

Kt = Σt|t−1H
′(HΣt|t−1H

′ +R)−1. (2.19)

For computational ease of calculating inverse matrices, we often apply the Woodbury

identity and consider

Kt = Σt|t−1H
′(R−1 −R−1H(Σ−1

t|t−1 +H ′R−1H)−1H ′R−1). (2.20)

(Proof) Let ϵt be

ϵt = yt − E[yt|Yt−1], (2.21)

= yt − E[Hxt +wt|Yt−1], (2.22)

= H(xt − xt|t−1) +wt. (2.23)

Then, ϵt satisfies the following equations;

E[ϵt] = 0, (2.24)

V ar[ϵt] = V [H(xt − xt|t−1) +wt], (2.25)

= HΣt|t−1H
′ +R, (2.26)

Cov[xt, ϵt|Yt−1] = E[{xt − xt|t−1}{H(xt − xt|t−1) +wt − E[ϵt]}′], (2.27)

= Σt|t−1H
′. (2.28)
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Thus, the joint distribution of xt and ϵt can be described as(
xt

ϵt

)
∼ N

((
xt|t−1

0

)
,

(
Σt|t−1 Σt|t−1H

′

HΣt|t−1 HΣt|t−1H
′ +R

))
. (2.29)

By applying Appendices A.1 and A.2 to Eq. (2.29), we can derive

xt|t = xt|t−1 +Kt(yt −Hxt|t−1), (2.30)

Σt|t = (I −KtH)Σt|t−1, (2.31)

Kt = Σt|t−1H
′(HΣt|t−1H

′ +R)−1. (2.32)

3. Smoothing: The conditional probability distribution p(xt|YT ) is calculated by using p(xt|Yt),
p(xt+1|Yt) and p(xt+1|YT ).

xt|T = xt|t + Jt(xt+1|T − xt+1|t), (2.33)

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J
′
t, (2.34)

Jt = Σt|tF
′Σ−1

t+1|t. (2.35)

(Proof) At first, we define the prediction error δt+1 of xt+1 as

δt+1 = xt+1 − xt+1|t. (2.36)

Then, δt+1 satisfies the following equations;

E[δt+1] = 0, (2.37)

V ar[δt+1] = Σt+1|t, (2.38)

Cov[xt, δt+1|Yt] = Cov[xt, F (xt − xt|t) + vt+1], (2.39)

= E[{xt − xt|t}{F (xt − xt|t) + vt+1}′], (2.40)

= E[xt − xt|t]
2F ′, (2.41)

= Σt|tF
′. (2.42)

Furthermore, we define Zt as

Zt = Yt ⊕ δt+1 ⊕ {vt+1, · · · ,vT } ⊕ {wt+1, · · · ,wT }, (2.43)

where ⊕ is a direct sum.

Let zt be the projection to Zt from xt. Considering Proj(x|y) = E[x|y], where Proj(x|y)
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is a projection from x to y as explained in Appendix A.3, we can obtain

zt ≡ Proj(xt|Zt), (2.44)

= Proj(xt|Yt) + Proj(xt|δt+1) + Proj(xt|vt+1, · · · ,vT ,wt+1, · · · ,wT ), (2.45)

because {vt+1, · · · ,vT }, {wt+1, · · · ,wT }, δt+1 and Yt are orthogonal each other since δt+1

and Yt cross at right angles as illustrated in Fig. 2.2 and vt and wt are independent from

other variables.

δ

tY

xt+1= t+1|tt+1 x-x t+1

Figure 2.2: δt+1 and Yt in the probability space.

Utilizing Appendices A.2 and A.3 to Eq. (2.45), we can obtain

Proj(xt|Yt) = E[xt|Yt], (2.46)

= xt|t, (2.47)

Proj(xt|δt+1) = E[xt|δt+1], (2.48)

= Cov[xt, δt+1]V ar[δt+1]
−1{δt+1 − E[δt+1]},

(2.49)

Proj(xt|vt+1, · · · ,vT ,wt+1, · · · ,wT ) = 0. (2.50)

Then, we can derive

zt = xt|t + Jt(xt+1 − xt+1|t), (2.51)

Jt = Cov[xt, δt+1]V ar[δt+1]
−1, (2.52)

= Σt|tF
′
t+1Σ

−1
t+1. (2.53)

The relationship between Zt and YT can be shown in Fig. 2.3.
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Figure 2.3: The relationship between Zt and YT .

As illustrated in Fig. 2.3, we can obtain YT by Zt; thus, all of the basis vectors in YT can

be represented by parts of the basis vectors of Zt. This concludes that the projection to

YT from the projection to Zt from xt corresponds to the projection to YT from xt. These

relationships are illustrated in Fig. 2.4 and described by

xt|T = Proj(xt|YT ), (2.54)

= Proj{Proj(xt|Zt)|YT }, (2.55)

= Proj(zt|YT ), (2.56)

= xt|t + Jt(xt+1|T − xt+1|t). (2.57)

α

β

γ
x

t

Proj(x  |Y  )

Proj(x  |Z  )

Proj(Proj(x  |Z  )|Y  )+

t t

t t

t t t

Figure 2.4: The relationships between Zt and YT . α⊕β⊕ γ :the entire probability space and α⊕β : the
probability space of Zt, β : the probability space of Yt
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Next, we derive the variance-covariance matrix Σt|T . Considering the second moment of

xt given YT , Eq. (2.57) is transformed to

xt|T = xt|t + Jt(xt+1|T − xt+1|t), (2.58)

⇔ xt − xt|T + Jtxt+1|T = xt − xt|t + Jtxt+1|t, (2.59)

⇒ Σt|T + JtE[(xt − xt|T )x
′
t+1|T |YT ] + JtE[xt+1|Tx

′
t+1|T ]J

′
t,

(2.60)

= Σt|t + JtE[(xt − xt|t)x
′
t+1|t|YT ] + JtE[xt+1|tx

′
t+1|t]J

′
t.

(2.61)

⇔ Σt|T + JtE[xt+1|Tx
′
t+1|T ]J

′
t = Σt|t + JtE[xt+1|tx

′
t+1|t]J

′
t, (2.62)

since

E[(xt − xt|T )x
′
t+1|T |YT ] = E[(xt − xt|t)x

′
t+1|t|YT ] = 0. (2.63)

Furthermore, we can derive

E[xt+1|Tx
′
t+1|T ] = E[(xt+1|T − xt+1 + xt+1)((xt+1|T − xt+1 + xt+1))

′], (2.64)

= Σt+1|T + 2E[(xt+1|T − xt+1)x
′
t+1] + E[xt+1x

′
t+1], (2.65)

= Σt+1|T − 2E[(xt+1|T − xt+1)(x
′
t+1 − xt+1)]

+ 2E[(xt+1|T − xt+1)x
′
t+1] + E[xt+1x

′
t+1], (2.66)

= E[xt+1x
′
t+1]− Σt+1|T , (2.67)

= E[xt+1|tx
′
t+1|t] + Σt+1|t − Σt+1|T . (2.68)

Finally, by substituting Eq. (2.68) to Eq. (2.62), we can derive

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J
′
t. (2.69)

4. The lag-covariance matrix: The lag-covariance matrix between xt−1 and xt−2 is obtained

as folows.

Σt−1,t−2|T = Σt−1|t−1J
′
t−2 + Jt−1(Σt,t−1|T − FΣt−1|t−1)J

′
t−2, (2.70)

ΣT,T−1|T = (I −KTH)FΣT−1|T−1. (2.71)
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(Proof) Define x̃t|s = xt − xt|s. Then,

Σt,t−1|t = E[x̃t|tx̃
′
t−1|t], (2.72)

= E[{(x̃t|t−1 −Kt(yt −Hxt|t−1)}{x̃t−1|t−1 − Jt−1Kt(yt −Hxt|t−1)}′], (2.73)

= E[{(xt − xt|t−1)−Kt(Hx̃t|t−1 +wt)}{x̃t−1|t−1 − Jt−1Kt(Hx̃t|t−1 +wt)}′],
(2.74)

= Σt,t−1|t−1 − Σt|t−1H
′K ′

tJ
′
t−1 −KtHΣ′

t,t−1|t−1 +Kt(HΣt|t−1H
′ +R)K ′

tJ
′
t−1.

(2.75)

At t = T , we can obtain

ΣT,T−1|T = (I −KTH)FΣT−1|T−1, (2.76)

since

Kt(HΣt|t−1H
′ +R) = Σt|t−1H

′, (2.77)

Σt,t−1|t−1 = FΣt−1|t−1. (2.78)

In order to derive Eq. (2.70), Eq. (2.33) is transformed to

x̃t−1|T + Jt−1xt|T = xt−1 − xt−1|T + Jt−1xt|T , (2.79)

= xt−1 − xt−1|t−1 − Jt−1(xt|T − xt|t−1) + Jt−1xt|T , (2.80)

= x̃t−1|t−1 + Jt−1Fxt−1|t−1. (2.81)

Similarly, we can obtain

x̃t−2|T + Jt−2xt−1|T = x̃t−2|t−2 + Jt−2Fxt−2|t−2. (2.82)

In regard to the left equation of Eqs. (2.78) and (2.82), we consider the following trans-

formations.

E[(x̃t−1|T + Jt−1xt|T )(x̃t−2|T + Jt−2xt−1|T )
′|YT ], (2.83)

=E[(xt−1 − xt−1|T )(xt−2 − xt−2|T )
′ + (xt−1 − xt−1|T )xt−1|TJ

′
t−2 (2.84)

+ Jt−1xt|T (xt−2 − xt−2|T )
′ + Jt−1xt|Tx

′
t−1|TJ

′
t−2|YT ], (2.85)

=Σt−1,t−2 + Jt−2E[xt|Tx
′
t−1|T ]Jt−2, (2.86)
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where

E[xt|Tx
′
t−1|T ] =E[{xt − (xt − xt|T }{xt−1 − (xt−1 − xt−1|T }′|YT ], (2.87)

=E[xtx
′
t−1]− E[(xt − xt|T )x

′
t−1]− E[xt(xt−1 − xt−1|T )

′] + Σt,t−1|T ,

(2.88)

=E[xtx
′
t−1]− E[(xt − xt|T ){(xt−1 − xt−1|T ) + xt−1|T }′]

−E[{(xt − xt|T ) + xt|T }(xt−1 − xt−1|T )
′] + Σt,t−1|T , (2.89)

=E[xtx
′
t−1]− Σt,t−1|T , (2.90)

=E[(Fxt−1 + vt)(Fxt−2 + vt−1)
′]− Σt,t−1|T , (2.91)

=E[Fxt−1x
′
t−2F

′ + Fxt−1v
′
t−1]Σt,t−1|T , (2.92)

=E[Fxt−1x
′
t−2F

′ + F (Fxt−2 + vt−1)v
′
t−1]− Σt,t−1|T , (2.93)

=FE[xt−1x
′
t−2]F

′ + FQ− Σt,t−1|T . (2.94)

In regard to the right equation of Eq. (2.81), we consider the following transformations.

x̃t−1|t−1 + Jt−1Fxt−1|t−1, (2.95)

=xt−1{xt−1|t−2 +Kt−1(yt−1 −Hxt−1|t−2)}+ Jt−1Fxt−1|t−1, (2.96)

=(xt−1 − xt−1|t−2)−Kt−1(H{xt−1 − xt−1|t−2) +wt−1}+ Jt−1Fxt−1|t−1. (2.97)

Then, we can obtain

E[{x̃t−1|t−1 + Jt−1Fxt−1|t−1}{x̃t−2|t−2 + Jt−2Fxt−2|t−2}′], (2.98)

=Σt−1,t−2|t−2 −Kt−1HΣt−1,t−2|t−2 + Jt−1FKtHΣt−1,t−2|t−2 (2.99)

+ Jt−1FE[xt−1|t−2x
′
t−2|t−2]F

′J ′
t−2, (2.100)

where

E[xt−1|t−2xt−2|t−2] =E[xt−2|t−1xt−2x
′
t−2] = E[xt−1x

′
t−2]− Σt−1,t−2|t−2. (2.101)
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By solving Eq. (2.94) = Eq. (2.100), we obtain

Σt−1,t−2|T =Jt−1Σt,t−1|TJ
′
t−2 +Σt−1,t−2|t−2 −Kt−1HΣt−1,t−2|t−2

− Jt−1FQJ ′
t−2 − Jt−1FΣt−1,t−2|t−2F

′J ′
t−2 + Jt−1FKt−1HΣt−1,t−2|t−2,

(2.102)

=Jt−1Σt,t−1|TJ
′
t−2 − Jt−1F (Σt−1,t−2|t−2F

′ +Q)J ′
t−2

− Jt−1FQJ ′
t−2 − Jt−1FΣt−1,t−2|t−2F

′J ′
t−2 + Jt−1FKt−1HΣt−1,t−2|t−2,

(2.103)

=Jt−1Σt,t−1|TJ
′
t−2 − Jt−1FΣt−2|t−1J

′
t−2

− Jt−1FQJ ′
t−2 − Jt−1FΣt−1,t−2|t−2F

′J ′
t−2 + Jt−1FKt−1HΣt−1,t−2|t−2,

(2.104)

since

Σt−1,t−2|t−2 −Kt−1HΣt−1,t−2|t−2 = FΣt−2|t−2 −Kt−1HFΣt−2|t−2, (2.105)

= Σt−1|t−2J
′
t−2 −Kt−1HΣt−1|t−2J

′
t−2, (2.106)

= Σt−1|t−1J
′
t−2,−Jt−1FQJ ′

t−2 − Jt−1FΣt−1,t−2|t−2F
′J ′

t−2,

(2.107)

= −Jt−1F (Σt−1,t−2|t−2F
′ +Q)J ′

t−2, (2.108)

and

Σt−1,t−2|t−2F
′ +Q = E[(xt−1 − xt−1|t−2)(Fxt−2 − Fxt−2|t−2)

′] +Q, (2.109)

= E[(xt−1 − xt−1|t−2)(xt−1 − xt−1|t−2)
′]

− E[(xt−1 − xt−1|t−2)w
′
t−1] +Q, (2.110)

= Σt−2|t−1. (2.111)

Using Eq. (2.111) for the third and fourth terms in Eq. (2.104), we have

−Jt−1FQJ ′
t−2 − Jt−1FΣt−1,t−2|t−2F

′J ′
t−2 = −Jt−1FΣt−2|t−1J

′
t−2. (2.112)

In addition, using Eq. (2.78) for the fifth term in Eq. (2.104), we have

Jt−1FKt−1HΣt−1,t−2|t−2 = Jt−1FKt−1HFΣt−2|t−2. (2.113)
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Concluding Eqs. (2.112) and (2.113), we obtain

Jt−1FKt−1HFΣt−2|t−2 − Jt−1FΣt−2|t−1J
′
t−2 = −Jt−1F (I −Kt−1H)Σt−1|t−2Jt−2,

(2.114)

= −Jt−1Σt−1|t−1Jt−2. (2.115)

Finally, summarizing Eq. (2.104), we can derive

Σt−1,t−2|T = Σt−1|t−1J
′
t−2 + Jt−1(Σt,t−1|T − FΣt−1|t−1)J

′
t−2, (2.116)

= {Σt−1|t−1 + Jt−1(Σt,t−1|T − FΣt−1|t−1)}J ′
t−2, (2.117)

= {Σt−1|t−1 + Jt−1(Σt,t−1|T − Σt|t−1)}J ′
t−2, (2.118)

= Σt−1|TJ
′
t−2. (2.119)

2.1.3 EM-algorithm for Linear Gaussian State Space Model

Let {YT , XT } be the complete data, where XT = {x0, ...,xT } is the set of hidden state variables.

Here, the likelihood function for the complete data is described as

P (YT , XT ;θ) = P (x0)

T∏
t=1

P (xt|xt−1)P (yt|xt), (2.120)

where θ = {H,F,R,Q,µ0} and µ0 = E[x0]. We consider to estimate the parameter values θ

maximizing Eq. (2.120) by the EM-algorithm.

In linear SSMs, P (x0), P (xt|xt−1) and P (yt|xt) are according to Gaussian distributions,

Np(µ0,Σ0), Np(Fxt−1, Q) and Nq(Hxt, R), respectively. Then, the logarithm of Eq. (2.120) is

described as

logP (YT ,XT ; θ) = −
1

2
log | Σ0 | −

1

2
(x0 − µ0)

′Σ−1
0 (x0 − µ0) (2.121)

− T

2
log | Q | −1

2

T∑
t=1

(xt − Fxt−1)
′Q−1(xt − Fxt−1) (2.122)

− T

2
log | R | −1

2

T∑
t=1

(yt −Hxt)
′R−1(yt −Hxt) (2.123)

− p+ T (p+ q)

2
log 2π. (2.124)

In the EM algorithm, the conditional expectation of the joint log-likelihood of the complete

data set

q(θ|θi) = E[logP (YT ,XT |θ)|YT ,θi)], (2.125)

is iteratively maximized with respect to θ until convergence, where θi is the parameter vector
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obtained at the ith iteration.

Considering the transformations

E[(x0 − µ0)
′Σ−1

0 (x0 − µ0)] =E[tr{Σ−1
0 (x0 − µ0)(x0 − µ0)

′}], (2.126)

=trE[{Σ−1
0 (x0 − µ0)(x0 − µ0)

′}], (2.127)

=tr{Σ−1
0 E[(x0 − µ0)(x0 − µ0)

′]}, (2.128)

=tr{Σ−1
0 E[(x0 − x0|T + x0|T − µ0)

·(x0 − x0|T + x0|T − µ0)
′]}, (2.129)

=tr{Σ−1
0 (Σ0|T + (x0|T − µ0)(x0|T − µ0)

′)}, (2.130)

we can obtain

q(θ|θi) = −
1

2
log | Σ0 | −

1

2
tr{Σ−1

0 (Σ0|T + (x0|T − µ0)(x0|T − µ0)
′)} (2.131)

− T

2
log | Q | −1

2
tr{Q−1(C −BF ′ − FB′ + FAF ′)} (2.132)

− T

2
log | R | −1

2
tr[R−1

T∑
t=1

{(yt −Hxt|T )(yt −Hxt|T )
′ (2.133)

+HΣt|TH
′}]− p+ T (p+ q)

2
log 2π, (2.134)

and

A =

T∑
t=1

(Σt−1|T + xt−1|Tx
′
t−1|T ), (2.135)

B =
T∑
t=1

(Σt,t−1|T + xt|Tx
′
t−1|T ), (2.136)

C =

T∑
t=1

(Σt|T + xt|Tx
′
t|T ), (2.137)

where xt|T , yt|T , Σt|T and Σt,t−1 (t = 1, · · · , T ) are calculated by KF.

In the M-step, we differentiate
∂q(θ|θi)

∂θ
= 0, (2.138)

to update the parameter values. Note that we apply the procedure of the differentiation ex-

plained in Appendix A.4.

For H, we solve

∂q(θ|θi)
∂H

= 0. (2.139)
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Then, we can obtain

∂q(θ|θi)
∂H

=
∂tr{R−1

∑T
t=1[(yt −Hxt|T )(yt −Hxt|T )

′ +HΣt|TH
′]}

∂H
, (2.140)

= R−1
T∑
t=1

{−2ytx
′
t|T + 2Hxt|Tx

′
t|T + 2HΣt|T }, (2.141)

= 0, (2.142)

⇐⇒ H =
T∑
t=1

(ytx
′
t|T )

T∑
t=1

(Σt|T + xt|Tx
′
t|T )

−1, (2.143)

⇐⇒ H = {
T∑
t=1

E(ytx
′
t|YT )} · C−1. (2.144)

For F , we solve

∂q(θ|θi)
∂F

= 0. (2.145)

Then, we can obtain

∂q(θ|θi)
∂F

= (Q−1)′{−B′ −B + F (A+A′)}, (2.146)

= Q−1{−2B + 2FA}, (2.147)

= 0, (2.148)

⇐⇒ F = BA−1. (2.149)

For µ0, we solve

∂q(θ|θi)
∂µ0

= 0. (2.150)

Then, we can obtain

∂q(θ|θi)
∂µ0

= −1

2
Σ−1
0 (x0|T − µ0), (2.151)

= 0, (2.152)

⇐⇒ µ0 = x0|T . (2.153)

For R, considering R−1 = P , we solve

∂q(θ|θi)
∂P

= 0. (2.154)
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Then, we can obtain

∂q(θ|θi)
∂P

=
T

2
R− 1

2

T∑
t=1

[(yt −Hxt|T )(yt −Hxt|T )
′ +HΣt|TH

′], (2.155)

= 0, (2.156)

⇐⇒ R =
1

T

T∑
t=1

[(yt −Hxt|T )(yt −Hxt|T )
′ +HΣt|TH

′]. (2.157)

For Q, considering Q−1 = K, we solve

∂q(θ|θi)
∂K

= 0. (2.158)

Then, we can obtain

∂q(θ|θi)
∂K

= TQ− {C −BF ′ − FB′ + FAF ′}, (2.159)

= TQ− {C −B(BA−1)′ −BA−1B′ +B(A−1)′B′}, (2.160)

= TQ− {C −BA−1B′}, (2.161)

= 0, (2.162)

⇐⇒ Q =
1

T
(C −BA−1B′). (2.163)

The EM-algorithm monotonically increases the log-likelihood of the observation data

logP (YT ) = −
1

2

T∑
t=1

{log |2πVt|t−1|+ (yt −Hxt|t−1)
′V −1

t|t−1(yt −Hxt|t−1)}, (2.164)

Vt|t−1 = HΣt|t−1H
′ +R. (2.165)

2.2 Nonlinear State Space Model

Consider the system and observation equations

xt+1 = f(xt,vt+1), (2.166)

yt = h(xt,wt), (2.167)

in the context of nonlinear SSMs.

We can calculate the conditional probability distributions p(xt+1|Yt) and p(xt+1|Yt+1) as

follows.
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Prediction

p(xt+1|Yt) =

∫
p(xt+1,xt|Yt)dxt, (2.168)

=

∫
p(xt+1|xt, Yt)p(xt|Yt)dxt, (2.169)

=

∫
p(xt+1|xt)p(xt|Yt)dxt. (2.170)

Filtering

p(xt|Yt) = p(xt|yt, Yt−1), (2.171)

=
p(yt|xt, Yt−1)p(xt|Yt−1)

p(yt|Yt−1)
, (2.172)

=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2.173)

=
p(yt|xt)p(xt|Yt−1)∫
p(yt|xt)p(xt|Yt−1)dxt

. (2.174)

We can calculate p(xt+1|xt) by the system function f and p(yt|xt) by the observation function

h. Therefore, we can recursively obtain p(xt+1|Yt) and p(xt|Yt) from p(x0).

Smoothing

p(xt,xt−1|Yt) = p(xt|YN )p(xt−1|xt, Yt−1), (2.175)

= p(xt|YN )p(xt−1|xt, Yt−1), (2.176)

= p(xt|YN )
p(xt−1|Yt−1)p(xt|xt−1, Yt−1)

p(xt|Yt−1)
, (2.177)

= p(xt|YN )
p(xt−1|Yt−1)p(xt|xt−1)

p(xt|Yt−1)
, (2.178)

p(xt−1|Yt) =

∫ ∞

−∞
p(xt−1,xt|Yt−1)dxt. (2.179)

In contrast to linear SSMs, actual calculations of these distributions in nonlinear SSMs are

difficult in many cases. Therefore, we introduce the particle filter (PF) [36, 57, 58] for actual

calculations.

2.2.1 Particle Filter

PF was developed by Gordon et al. [36] and Kitagawa et al. [58] at the same time but in

another place. Although the particle filter had been called ‘Monte Carlo filter’ by Kitagawa and

‘bootstrap filter’ by Gordon, now we generally call ‘particle filter’ as the name for the algorithm.
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The basic idea of PF is to approximate a probability distribution by using a set of particles

termed ensemble as shown in Fig. 2.5.

−5 0 5

−5 0 5

(a)

(b)

Figure 2.5: An example of the approximation of a probability distribution using PF. The probability
distribution illustrated in (a) is approximated by a set of particles as illustrated in (b). The number of
particles N = 500.

This algorithm is easy to be implemented computationally, and can be adopted to problems

handling non-Gaussian distributions but requires huge memory space.

Let sets of particles {p1
t , . . . ,p

n
t , . . . ,p

N
t }, {f1

t , . . . ,f
n
t , . . . ,f

N
t }, {s1t , . . . , snt , . . . , sNt } and

{v1
t , . . . ,v

n
t , . . . ,v

N
t } be samples from p(xt|Yt−1), p(xt|Yt), p(xt|YT ) and p(vt), respectively.

Using these sets of particles we approximate p(xt|Yt) as

p(xt|Yt) ≃
1

N

N∑
n=1

δ(xt − fn
t ), (2.180)

where δ(·) and N are the Dirac delta function and the amount of particles, respectively. Theo-

retically, we can represent any complex distribution by ensemble if there exists enough amount

of particles. Similar to section 2.2, we derive the conditional distributions through ‘Prediction’

and ‘Filtering’ and ‘Smoothing’ in the context of PF.
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Prediction

We have the ensemble {fn
t−1} and {vn

t }. Then, the conditional probability distribution of xt

given Yt−1 is calculated by

p(xt|Yt−1) =

∫ ∫
p(xt,xt−1,vt|Yt−1)dxt−1dvt, (2.181)

=

∫ [∫
p(xt|xt−1,vt, Yt−1)p(vt|xt−1, Yt−1)dvt

]
· p(xt−1|Yt−1)dxt−1.(2.182)

Hence xt depends only on xt−1 and vt, and the system noise vt is independent from all param-

eters, Eq. (2.182) can be written as

p(xt|Yt−1) =

∫ ∫
p(xt|xt−1,vt)p(vt)p(xt−1|Yt−1)dxt−1dvt. (2.183)

The probability distribution of the system noise vt is described as

p(vt) ≃
1

N

N∑
n=1

δ(vt − vn
t ), (2.184)

then,

p(xt|Yt−1) ≃
∫ ∫ [

1

N

N∑
n=1

p(xt|xt−1,vt)δ(xt−1 − fn
t−1)δ(vt − vn

t )

]
dxt−1dvt, (2.185)

=
1

N

N∑
n=1

p(xt|xn
t−1,v

n
t ), (2.186)

=
1

N

N∑
n=1

δ(xt − f(fn
t−1,v

n
t )). (2.187)

Consequently, we can obtain

pn
t = f(fn

t−1,v
n
t ). (2.188)

Filtering

Assume that we have the ensemble {pn
t }. In the filtering step, we first calculate the likelihoods

of pn
t based on the observed value yt. Let α

n
t be the likelihood of pn

t . Then, α
n
t is calculated by

αn
t = p(yt|pn

t ). (2.189)
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From Eq. (2.174), we can approximate the conditional distribution p(xt|Yt) as

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)∫
p(yt|xt)p(xt|Yt−1)dxt

, (2.190)

≃ 1∑N
n=1 p(yt|pn

t )

N∑
n=1

p(yt|pn
t )δ(xt − pn

t ), (2.191)

=

N∑
n=1

αn
t∑N

m=1 α
m
t

δ(xt − pn
t ). (2.192)

Since we can consider αn
t as the importance of pn

t for constructing p(xt|Yt), we sample pn
t in

proportion to αn
t . Thus, the ensemble {fn

t } is obtained by sampling with replacement as

fn
t =


p1
t with

α1
t∑N

n=1 α
n
t

,

...
...

pN
t , with

αN
t∑N

n=1 α
n
t

.

(2.193)

Particle Filter

Consequently, we can obtain the conditional distributions of the hidden state variables as follows.

1. Generate {pn
0} = {fn

0} according to the prior distribution p(x0).

2. Calculate {pn
t } by using {fn

t−1} and {vn
t }.

3. Calculate {αn
t } based on yt and {wn

t }.

4. Obtain {fn
t } by resampling {pn

t }.

5. Repeat (2)-(4) until t becomes T .

Smoothing

From Eq. (2.179), we have

p(xt−1|Yt) =

∫
p(xt|YN )

p(xt−1|Yt−1)p(xt|xt−1)

p(xt|Yt−1)
dxt. (2.194)

Based on the Bayse theorem, we obtain

p(xt|Yt)
p(xt|Yt−1)

=
p(xt|Yt−1, Yt:T )

p(xt|Yt−1)
, (2.195)

=

p(xt,Yt:T |Yt−1)
p(Yt:T |Yt−1)

p(xt|Yt−1)
, (2.196)

=
p(Yt:T |xt, Yt−1)

p(Yt:T |Yt−1)
, (2.197)
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where Yt:T = {yt, . . . ,yT }.

Then, Eq. (2.194) is transformed to

p(xt−1|Yt) =

∫
p(Yt:T |xt, Yt−1)

p(Yt:T |Yt−1)
p(xt−1|Yt−1)p(xt|xt−1)dxt, (2.198)

=

∫ ∫
p(Yt:T |xt, Yt−1)

p(Yt:T |Yt−1)
· p(xt−1|Yt−1)p(xt|xt−1,vt)p(vt)dxtdvt, (2.199)

≃
∫

p(Yt:T |xt, Yt−1)

p(Yt:T |Yt−1)
· 1
N

N∑
n=1

δ(xt − pn
t ), δ(xt−1 − fn

t−1)dxt, (2.200)

≃
N∑

n=1

p(Yt:T |pn
t , Yt−1)∑N

m=1 p(Yt:T |pm
t , Yt−1)

δ(xt−1 − fn
t ). (2.201)

As a result, we can calculate the smoothed distributions as same as the filtering distributions.

{snt } is called ‘particle smoother’.

Likelihood

In PF, the likelihood is approximated to be calculated by

p(yt|Yt−1;θ) =

∫
p(yt|xt;θ)p(xt|Yt−1;θ)dxt, (2.202)

≃ 1

N

T∑
t=1

p(yt|pn
t ), (2.203)

=
1

N

N∑
n=1

αn
t . (2.204)

Then, we have

l(θ) = log p(YT ;θ) =

T∑
t=1

log p(yt|Yt−1;θ), (2.205)

≃
T∑
t=1

log(

N∑
n=1

αn
t )− T logN. (2.206)

In principle, we prompt to maximize the likelihood by estimating the optimal parameter vector

θ̂. However, due to the approximation errors and often the difficulties of applying optimization

methods such as Newton method, Kitagawa et al. [58] developed the self-organized state space

model to obtain the posterior distributions of the parameter values.
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2.3 Self-organizing State Space Model

To obtain the posterior distributions of the parameter vector θ, Kitagawa et al. [58] developed

the self-organizing state space model. Set the hidden state vector zt as

zt =

[
xt

θ

]
,θ =

[
θs

θo

]
, (2.207)

where θs is the parameter vector for the system model, θo is the parameter vector for the

observation model. Therefore, Eqs. (2.166) and (2.167) are written by

zt+1 = f(zt,vt+1,θs), (2.208)

yt = h(zt,wt,θo), (2.209)

where

f(zt,vt+1,θs) =

[
f(xt,vt+1,θs)

θ

]
, (2.210)

h(zt,wt,θo) = h(xt,wt,θo). (2.211)

After obtaining the posterior distribution p(zt|YT ) by PF, we can get the maximum likelihood

estimator θ̂ by marginalizing p(zt|YT ).

2.4 Bayesian Information Criterion

To evaluate a model fittingness to the observed data, Akaike et al. [2] and Schwarzet al. [96]

developed the Bayesian information criterion (BIC) based on the posterior probabilities of ob-

served data given models. Here, we have a set of candidate models {M1, . . ., Mk, . . ., MK},
parametric model fk(xt,θk) (= fk) according to the model Mk, the observed data D, the pa-

rameter vector θk ∈ Rνk and the prior distribution πk(θk). Our interest is a marginal likelihood

L(Mk) or log-likelihood l(Mk) of the model Mk, i.e.,

L(Mk) = P (Yt|Mk) =

∫
p(fk|θk)πk(θk)dθr, (2.212)

=

∫
exp{log p(fk|θk)}πk(θk)dθr, (2.213)

= exp{l′(θk)}πk(θk), (2.214)

l′(θk) = log p(fk|θk), (2.215)

where P (Yt|Mk) is the probability of the data given the model Mk. In the notation below, we

write Mk, fk, θk, νk and πk(·) as M , f , θ, ν and π(·) for brevity. Using the Taylor expansion,
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l′(θ) is extended around maximum likelihood estimator θ̂ as follows.

l′(θ) = l′(θ̂)− N

2
(θ − θ̂)′J(θ̂)(θ − θ̂) + · · · , (2.216)

J(θ̂) = − 1

N

∂2 log p(fk|θk)

∂θ∂θ′ |ˆθ, (2.217)

where N is the amount of data. As same as the above equations, π(θ) is approximated by the

Taylor expansion as

π(θ) = π(θ̂) + (θ − θ̂)′
∂π(θ)

∂θ
|ˆθ · · · . (2.218)

Furthermore, by substituting Eq. (2.216) and (2.218) to (2.214), we can derive the following

equations,

P (Yt|M) =

∫
exp{l′(θ̂)− N

2
(θ − θ̂)′J(θ̂)(θ − θ̂) + · · ·}{π(θ̂) + (θ − θ̂)′

∂π(θ)

∂θ
|ˆθ · · · },

≃ exp{l′(θ̂)}π(θ̂)
∫

exp{−N

2
(θ − θ̂)TJ(θ̂)(θ − θ̂)}dθ, (2.219)

≃ exp{l′(θ̂)}π(θ̂)(2π)
ν
2n− ν

2 |J(θ̂)|−
1
2 (N →∞), (2.220)

by using ∫
(θ − θ̂) exp{−N

2
(θ − θ̂)TJ(θ̂)(θ − θ̂)}dθ = 0, (2.221)

and (θ̂−θ) converges to 0 when N becomes infinity. The order of the convergence is Oν(N
− 1

2 ).

Taking the logarithm of Eq. (2.220), we can get

−2 logP (Yt|M) = −2 log exp{l′(θ)}π(θ), (2.222)

= −2l′(θ̂) + ν logN + log |J(θ̂)| − ν log(2π)− 2 log π(θ̂), (2.223)

≃ −2l′(θ̂) + ν logN. (2.224)

Eq. (2.224) equals to BIC.

2.5 Appendix

2.5.1 A.1 Minimum Variance Estimator

Let X and Y be random variables, y be a real value of Y . Then, we define the minimum variance

estimator ζ̂ as

ζ̂ = argmin
ζ

EX [∥ X − ζ̂ ∥2 |Y = y]. (2.225)
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ζ̂ is obtained as

ζ̂ = EX [X|Y = y] =

∫ ∞

−∞
XP (X|Y = y)dX, (2.226)

and

EX [∥ X − ζ̂ ∥2 |Y = y] = tr{EX [(X − ζ̂)(X − ζ̂)′|Y = y]}, (2.227)

= EX [∥ X ∥2 |Y = y]− ∥ ζ̂ ∥2 . (2.228)

(Proof)

EX [∥ X − ζ̂ ∥2 |Y = y] =

∫ ∞

−∞
(X − ζ̂)′(X − ζ̂)P (X|Y = y)dX, (2.229)

=

∫ ∞

−∞
X ′XP (X|Y = y)dX − 2ζ ′

∫ ∞

−∞
XP (X|Y = y)dX + ζ′ζ,

(2.230)

=

∫ ∞

−∞
X ′XP (X|Y = y)dX,

+ {ζ −
∫ ∞

−∞
XP (X|Y = y)dX}′{ζ −

∫ ∞

−∞
XP (X|Y = y)dX}

− ∥
∫ ∞

−∞
XP (X|Y = y)dX ∥2 (2.231)

= EX [∥ X ∥2 |Y = y] + {ζ −
∫ ∞

−∞
XP (X|Y = y)dX}2− ∥ EX [X|Y = y] ∥2 .

(2.232)

In the last equation, since only the second term includes ζ, we obtain ζ̂ = EX [X|Y = y] that

minimizes {ζ −
∫∞
−∞XP (X|Y = y)dX}2 = 0.

2.5.2 A.2 Conditional Distribution Minimizing Mean Square Errors

Lest X and Y be random variables according to Gaussian distributions Then, set EX [X] = X̄,

EY [Y ] = Ȳ , VX [X] = ΣX , VY [Y ] = ΣY and Cov[X,Y ] = ΣXY . We have

ζ̂ = EX [X|Y = y] = X̄ +ΣXY Σ
−1
Y (y − Ȳ ), (2.233)

EX [(X − ζ̂)(X − ζ̂)′|Y = y] = ΣX − ΣXY Σ
−1
Y ΣY X . (2.234)

(Proof) Set

Z =

(
X

Y

)
, (X ∈ Rp, Y ∈ Rq). (2.235)
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Then, Z̄ = EZ [Z] and VZ [Z] = ΣZ can be described as

Z̄ =

(
X̄

Ȳ

)
, (2.236)

ΣZ =

(
ΣX ΣXY

ΣY X ΣY

)
. (2.237)

Assume that Σ is a positive definite and X and Y are multivariate normal distributions.

Then, we can obtain

P (X|Y ) =
P (X,Y )

P (Y )
=
∥ ΣY ∥

1
2 exp{−1

2(X − X̄, Y − Ȳ )′Σ−1
Z (X − X̄, Y − Ȳ )}

(2π)
p
2 ∥ ΣZ ∥

1
2 exp{−1

2(Y − Ȳ )′Σ−1
Y (Y − Ȳ )}

. (2.238)

We have (
A B

C D

)
=

(
A 0

C I

)(
I A−1B

0 D − CA−1B

)
, (2.239)

=

(
I B

0 D

)(
A−BD−1C 0

D−1C I

)
. (2.240)

From Eq. (2.240), we can obtain

∥ ΣZ ∥=∥ ΣX − ΣXY Σ
−1
Y ΣY X ∥ · ∥ ΣY ∥ . (2.241)

Next, Σ−1
Z can be obtained as follows.(

I −ΣY XΣ−1
Y

0 I

)
ΣZ

(
I 0

−Σ−1
Y Σ′

XY I

)
=

(
ΣX − ΣXY Σ

−1
Y ΣY X 0

0 ΣY

)
, (2.242)

⇐⇒ ΣZ =

(
I −ΣXY Σ

−1
Y

0 I

)−1(
ΣX − ΣXY Σ

−1
Y ΣY X 0

0 ΣY

)(
I 0

−Σ−1
Y Σ′

XY I

)−1

, (2.243)

⇐⇒ Σ−1
Z =

(
I 0

−Σ−1
Y Σ′

XY I

)(
(ΣX − ΣXY Σ

−1
Y ΣY X)−1 0

0 Σ−1
Y

)(
I −ΣXY Σ

−1
Y

0 I

)
. (2.244)

Finally, by substituting Eqs. (2.241) and (2.244) to Eq. (2.238), we can derive

P (X|Y ) =
1

(2π)
p
2 ∥ ΣX − ΣXY Σ

−1
Y ΣY X ∥

1
2

exp{−1

2
(X − X̄)′(ΣX − ΣXY Σ

−1
Y ΣY X)−1(X − X̄)}.

(2.245)

2.5.3 A.3 Projection

Define the probability space Ω, its subspace A and B (A ⊃ B) and finitely additive measures ω

on Ω. We consider the optimal approximation on B of the random variable X(ω) on A as X̃(ω).
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Then, we have

X̃(ω) = ProjB(X(ω)) = E[X(ω)|B]. (2.246)

(Proof) In the space of square-summable sequences L2(Ω, A, ω) ⊃ L2(Ω, B, ω), which are also

known as a Hilbert space, the optimal basis functions on L2(Ω, B, ω) of X(ω) are represented

by orthographic projection as

X̃(ω) = ProjB(X(ω)). (2.247)

Since X(ω)− X̃(ω) crosses L2(Ω, B, ω) at right angles, we have∫
B
(X(ω)− X̃(ω))dP (ω) =

⟨
X(ω)− X̃(ω), χ(B)

⟩
, (2.248)

= 0, (2.249)

⇐⇒
∫
B
X(ω)dP (ω) =

∫
B
X̃(ω)dP (ω), (2.250)

⇐⇒ E[X(ω)|B] = X̃(ω), (2.251)

where ⟨X,Y ⟩ is the inner product between X and Y , and χ(B) is the measurable set of B.

2.5.4 A.4 Matrix Transformation and Differentiation

Let X = (x1, . . . ,xp)
′, xt = (xt1, . . . , xtk)

′, R = diag(r1, . . . , rp) and A ∈ Rk×k where A = A′.

Then, we have

∂X ′AX

∂X
=

∂tr(AXX ′)

∂X
= (A+A′)X = 2AX, (2.252)
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and

∂tr(RXAX ′)

∂X
=

∂
p∑

i=1
rixi

′Axi

∂X
, (2.253)

=


∂

p∑
i=1

rixi
′Axi

∂x11
· · ·

∂
p∑

i=1
rixi

′Axi

∂x1k
,

...
. . .

...

∂
p∑

i=1
rixi

′Axi

∂xp1
· · ·

∂
p∑

i=1
rixi

′Axi

∂xpk

 (2.254)

=


∂r1x1

′Ax1
∂x11

· · · ∂r1x1
′Ax1

∂x1k
...

. . .
...

∂rpxp
′Axp

∂xp1
· · · ∂rpxp

′Axp

∂xpk



= R


∂x1

′Ax1
∂x11

· · · ∂x1
′Ax1

∂x1k
,

...
. . .

...
∂xp

′Axp

∂xp1
· · · ∂xp

′Axp

∂xpk


= R∂tr(XAX′)

∂X .

(2.255)





Chapter 3

Inference of Gene Regulatory

Networks Incorporating

Multi-Source Biological Knowledge

via a State Space Model with L1

Regularization

3.1 Background

Transcriptional regulation, which is controlled by several factors, plays essential roles to sustain

complex biological systems in cells. Thus, identifying the structure and dynamics of such reg-

ulation can facilitate recognition of and control over systems for many practical purposes, e.g.,

treatment of diseases. To accomplish this, many mathematical methods have been developed

for the analysis of high-throughput biological data, e.g., time-course microarray data [30,45,70].

In addition, recent technological advances have facilitated experimental discoveries, e.g., DNA-

protein interactions and the pharmacogenomics of chemical compounds. These contributions

have allowed the knowledge of GRNs to accumulate.

For elucidation of GRN dynamics, time-course observational data have been generally used.

Currently, one strategy to elucidate transcriptional regulation using observational data is to

apply ODE (or SDE)-based approach, which can represent the dynamic behavior of biomolecular

reactions based on biologically reliable models, e.g., the Michaelis-Menten equation [91] or the S-

system [92], which are described by differential equations. Thus, this approach can recapitulate

the complex dynamic behavior of biological systems [62, 87]. In this approach, several methods

have been proposed to infer regulatory structures [42,81], to reproduce the dynamic behavior of

biological systems recorded in the literature [77,79,83,85] and also to improve literature-recorded

pathways so as to be consistent with the data [40]. However, nonlinearity of the system results
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in an analytically intractable problem of estimating the parameter values that minimize loss

function with updating simulated results. Thus, under this statistically efficient paradigm [8],

this approach cannot be applied to ten or more genes to infer regulatory structures if the missing

information is extensive [79].

In contrast, a statistical model-based approach using highly abstracted models, e.g., Bayesian

networks [29, 54, 120] and the state space model [9, 12, 43, 86], has been successfully applied to

infer the structure of transcriptional regulation from biological observational data. Because

these methods simply describe biological systems, hundreds of genes can be handled computa-

tionally with ease. Whereas methods relying purely on data need to consider all possibilities of

transcriptional regulation, some studies have further incorporated other information, e.g., PINs,

literature-recorded pathways and TF information [7,20,22,37,88]. Although these methods can

infer relationships among hundreds of genes simultaneously, high levels of abstraction can also

generate false regulations that are difficult to interpret biologically. Thus, when several tens of

genes are handled with partially understood relationships, highly abstract models can be insuf-

ficient to represent biological systems. In this case, there is an urgent need for a method that

can infer system dynamics and the structure of GRNs based on a model with a low abstraction

that can emulate the dynamics of ODE-based gene regulatory models incorporating existing

biological knowledge.

We propose a novel method for inference of GRNs based on a newly developed model that uses

a VAR-SSM [21,43,60]. The model is a type of state space models constructed from a typical gene

regulatory system consisting of a synthesis process, a degradation process and regulatory effects

by other genes within a linear Gaussian model. The method can infer the dynamic behavior of

gene expression profiles and the regulatory structure for several tens of genes by assimilating

time-course observational data. Furthermore, the method is capable of integrating the existing

biological knowledge, e.g., literature-recorded pathways and intracellular kinetics/dynamics of

chemical compounds, and can deal with even non-equally spaced time-course observational data.

A regulatory structure is inferred by maximization of the L1 regularized likelihood. To this end,

we developed a new algorithm to obtain active sets of parameters and estimate a maximizer of

the L1 regularized likelihood using the EM algorithm.

To demonstrate its effectiveness, we compared this method to a SSM [43], a general VAR

model using LARS-LASSO algorithm [23], GeneNet [80, 94] based on an empirical graphical

Gaussian model (GGM), dynamic Bayesian networks using first order conditional dependen-

cies [63], GLASSO [29] based on sparse GGM and the mutual information-based network in-

ference algorithms: ARACNE [70], CLR [26] and MRNET [75] by implementing artificial sim-

ulation models. The first two observational datasets are generated by two simulation models

representing pharmacogenomic pathways [5, 115], including drug kinetics/dynamics, described

by difference and differential equations, respectively. These pathways are initiated by the drug

stimulation and observational data are obtained as non-equally spaced time-course data. The

next observational dataset is generated by GeneNetWaver [69,95] using a yeast network that is

a part of Dialogue for Reverse Engineering Assessments and Methods (DREAM) 4 challenge.
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As an application example, we applied the proposed method to corticosteroid pharmacoge-

nomics in rat skeletal muscle [5,100,115]. Because this system has been investigated previously

through biological experiments, corticosteroid kinetics/dynamics and the related genes are al-

ready partly elucidated. Therefore, we incorporated time-course mRNA expression data (obser-

vational data), candidate genes/pathways related to corticosteroids, intracellular corticosteroid

kinetics/dynamics and, additionally, TF information from ITFP (Integrated Transcription Fac-

tor Platform) [122]. As in the simulation experiment, the observational data were obtained as

non-equally spaced time-course data (GSE490) after stimulating rat skeletal muscle with corti-

costeroid. Consequently, we propose candidate pathways for extensions of corticosteroid-related

pathways and their simulation dynamics in the presence of corticosteroid.

3.2 Methods

3.2.1 Linear Description of Biological Systems

For gene regulatory systems, we consider a general hill function-based model of transcriptional

control, in which each gene has a synthesis process (regulated by other factors) and a degradation

process, described by a differential equation [18, 24]. Let xn(t) be a time-dependent function

representing the abundance of the nth (n =1, . . . ,N) mRNA in a cell, where t means time.

Further, we consider subsets of {1, . . . , N}, N1 and N2 (N1⊕N2 = {1, . . . , N}), whose regulatory
functions are described by two different forms [41,47,115]. Then, the time-evolution of xn(t) is

represented by

d

dt
xn(t) =

N∏
k=1

{1 + ϕn,k(xk(t))} · un − xn(t) · dn, n ∈ N1, (3.1)

d

dt
xn(t) = {1 +

N∑
k=1

ϕn,k(xk(t))} · un − xn(t) · dn, n ∈ N2, (3.2)

where ϕn,k represents the regulatory effect of the kth gene on the nth gene as a hill-function,

un > 0 and dn > 0 are the synthesis and degradation rates of the mRNA, respectively. For

example, in a previous pharmacogenomic study [115] that is analyzed in the results section,

ϕn,k(xk(t)) was represented by

ϕn,k(xk(t)) =
αn,k · xk(t)γn,k

β
γn,k

n,k + xk(t)
γn,k

, (3.3)

where αn,k, βn,k and γn,k are tuning parameters.

In inferring the regulatory structure of GRNs consisting of several tens of genes, hill-function

based differential equations, e.g., Eqs. (3.1) and (3.2), become intractable. Therefore, as same

as the previous researches [9,12,18,37,43,60,81,86,119], we postulate discretized and linearized

gene regulatory systems instead of using these equations. Thus, linear functions are utilized
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for representing the regulatory effects. The influence of these simplifications was discussed in

the previous researches [18, 24] and we also assess the performance of inferring the regulatory

structure described by Eqs. (3.1) and (3.2) based on simplified models in the results section.

Furthermore, we assume that biological processes should include the effects by noise [14]. Let

xt = (xt,1, . . . , xt,n, . . . , xt,N )′ be a series of N dimensional vectors containing expression levels

of N genes at the tth time point. Then, we consider a gene regulatory system represented by

xt+∆t,n − xt,n = {(1 + a′
nxt)un − xt,n · dn + vt,n}∆t, (3.4)

where an= (an,1, . . . , an,N )′ is an N -dimensional vector including regulatory effects on the nth

gene by other genes, vt,n is the effects by noise at the tth time point, and ∆t indicates a minute

displacement. Then, a VAR model for GRNs simulation can be constructed.

In constructing gene regulatory models, we make an assumption that observational data

are measured with observational noise. Under this assumption, to separately handle a system

model (i.e., Eq. (3.4)) and biological observational data, we utilize a state space representation

[7, 43, 60, 66, 83]. Here, a minimum observational time step and ∆t are usually handled as 1

for reducing computational cost, however, we can set any value for ∆t less than a minimum

observational time step. Therefore, we evaluated the influence of changing ∆t in the results

section and describe the case of ∆t = 1 in the following for simplicity. Consequently, we

consider a model described by

xt+1 = Axt + u+ dt + vt+1, (3.5)

yt = xt +wt, (3.6)

dt = ((1− d1) · xt,1, . . . , (1− dN ) · xt,N )′, (3.7)

where A = (a1, . . . ,aN )′ is an N × N matrix representing regulation among genes, xt is an

N -dimensional hidden state variable, u = (u1, . . . , uN )′ is an N -dimensional vector including

synthesis rates, yt ∈ RN is a series of vectors containing observed expression levels of N genes

at the tth time point and wt ∈ RN is observational noise. Here, we define a set of all points

of time T (t ∈ T ), consisting of the observed time set Tobs (Tobs ⊂ T ). We set system noise

vt ∼ NN (0N , Q) and observation noise wt ∼ NN (0N , R), where Q and R are N × N diagonal

matrices. The initial state vector x0 is assumed to be a Gaussian random vector with mean

vector µ0 and covariance matrix Σ0, i.e., x0 ∼ NN (µ0,Σ0). Note that u and d must be dense

vectors; nevertheless, A should be a sparse matrix, and activation and repression correspond to

positive and negative values of an,k, respectively.

Contrary to the derivation of Eq. (3.5), in previous linear state space models for GRN

analysis [43,60], a simulation model was constructed as

xt+1 = Fxt + vt+1, (3.8)
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where F is an N ×N matrix in which the nth row and kth column element is represented by

fn,k =

1− dn + an,k (n = k)

an,k (n ̸= k)
. (3.9)

In this model, u is removed by shifting the average of the observed time-course data for each

element to 0, i.e.,
∑

t∈Tobs yt,n = 0 for n = 1, . . . , N , where yt,n is the nth row element of yt, as

a normalization procedure. However, this model may cause marked difficulty in estimating gene

regulatory relationships if the observed time-course includes a steady state. Fig. 3.1 exemplifies

such a situation.

A
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Drug(t=0)

0

E
x
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re
s
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Time(t)
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Drug(t=0)
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(a) (b)
Simulation Profile

Observational Data
(normalized)

Figure 3.1: The problem of deleting a term representing a synthesis rate. A toy model indicating the
problem of deleting a synthesis rate u by shifting an average of observed time-course data for each element
to 0, i.e.,

∑
t∈Tobs

yt,n = 0 for n = 1, . . . , N as a normalization procedure. The true network and the
adjusted data are illustrated in the left panel in (a) and (b), respectively. As shown in the right panel in
(a), some false positive edges are possibly estimated in comparison to the true relationships.

Fig. 3.1 shows a small pathway consisting of three genes (left panel in Fig. 3.1 (a)) and the

averages of the observed time-course data for each element are shifted to 0 (Fig. 3.1(b)). By

applying Eq. (3.8) to the observed data, we expect to obtain three false edges added to the true

pathway (right panel in Fig. 3.1(a)) because nodes must retain a constant steady state regardless

of their negative steady state values and positive regulation from negative nodes. In some cases,

such additional false regulation possibly hide true regulation. The above result encourages us

to use a model explicitly implementing terms to represent a steady state of gene expressions to

estimate gene regulatory relationships precisely. Furthermore, in using Eq. (3.8), when elements

of F are regularized to be selected non-zero elements, even 1 − dn is regularized and fn,n can

be zero. To penalize the regulatory effect an,k only, A and dt are separately described in our

proposed model.
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3.2.2 Incorporation of Biomolecules Affecting Biological Systems

When simulating the dynamic behavior of GRNs including biomolecules that cannot be repre-

sented by xt and can affect biological systems, e.g., corticosteroids in corticosteroid-stimulated

GRNs, we should consider the concentration of such biomolecules. For these cases, we remodel

Eq. (3.5) to add a term representing the concentration of such biomolecules as

xt+1 = Axt + u+ dt +Gzt + vt+1, (3.10)

where zt is an M -dimensional vector containing the concentration of the biomolecules at the

tth time point, G = (g1, . . . , gN )′ is an N ×M matrix and gn = (gn,1, . . . , gn,M )′ is an M -

dimensional vector representing their regulatory effects on the nth gene. We consider the case

that the concentration is known or can be simulated. In the results section, for an appli-

cation example, we deal with corticosteroid drug pathways that have been well studied pre-

viously [5, 100, 115]; zt is given the concentration of the intra-nuclear corticosteroid-receptor

complex employed in Yao et al. [115].

3.2.3 State Space Model and Kalman Filter for Estimating the Hidden State

Recently, many types of state space models have been proposed and applied in the context of

systems biology [9, 12, 43, 66, 83, 88, 105]. They are roughly divided into two major classes, i.e.,

linear and nonlinear models. In using linear state space models, posterior probability densities of

the hidden state can be obtained as Gaussian distributions and the optimal mean and covariance

matrices can be analytically calculated by the Kalman filter algorithm [52,101]. In contrast, for

nonlinear state space models, because the analytical form can be intractable, several extensions of

the Kalman filter algorithm, e.g., extended Kalman filter [74], unscented Kalman filter [49, 51]

and particle filter [57], which utilize approximation techniques, have been applied to obtain

posterior probability densities of hidden state and parameters [7, 66,67,83,105]. In using linear

state space models [9,12,43,86], the main concern is to infer causal relationships among genes, for

which regulatory structure is assumed to be sparse, i.e., genes are regulated by only a few specific

regulators. Imposing such a sparse constraint to regression approaches is a general problem,

but for state space models to simultaneously estimate optimal hidden state and parameter

values (including penalization parameters), it is not a trivial problem [21, 23, 37, 60, 99]. Then,

for example, a sparse regulatory structure was extracted by statistical tests after estimating

parameter values [43]. In this article, under the framework of a state space representation of a

VAR model, we intend to infer the parameter values and the hidden state maximizing prediction

ability for observational data with a sparse regulatory structure. For this purpose, we apply the

regularized EM algorithm [19,46,64,104] in the next subsection and the conditional expectations

of hidden state are given by using the Kalman filter algorithm.
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3.2.3.1 Kalman Filter Algorithm for VAR-SSM

Let U t be the sum of u and Gzt. For simplicity, we here use F in Eq. (3.8) rather than A.

The prediction, filtering, and smoothing of the Kalman filter are calculated by the following

formulas:

• Prediction:

xt|t−1 = Fxt−1|t−1 +U t−1, (3.11)

Σt|t−1 = FΣt−1|t−1F
′ +Q, (3.12)

• Filtering:

xt|t = xt|t−1 +Σt|tR
−1(yt − xt|t−1), (3.13)

Σt|t = (R−1 +Σ−1
t|t−1)

−1, (3.14)

• Smoothing

xt|T = xt|t + Jt(xt+1|T − xt+1|t), (3.15)

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J
′
t, (3.16)

Σt,t−1|T = Σt|tJ
′
t−1 + Jt(Σt+1,t|T − FΣt|t)J

′
t−1, (3.17)

Jt = Σt|tF
′Σ−1

t+1|t, (3.18)

ΣT,T−1|T = (I − ΣT |TR
−1)FΣT−1|T−1, (3.19)

where E[xt] given y1, . . ., ys is represented by xt|s and Var[xt] given y1, . . ., ys is represented

by Σt|s. To calculate an inverse of the N × N matrix, we use a matrix inversion theorem [60].

The derivations of KF are introduced in Chapter 2.

3.2.4 Maximum Likelihood Estimation Using the Regularized EM Algorithm

with L1 Regularization

In biological systems, most genes are regulated by a few specific genes, i.e., A andG can be sparse

matrices. Thus, we applied L1 regularization to select effective sets of elements for A and G. Let

{YT , XT } be the complete data set, where YT = {y1, · · · ,yT } is the set of observed data and XT

= {x0, · · · , xT } is the set of state variables. Furthermore, let the probability densities P (x0),

P (xt|xt−1) and P (yt|xt) be the N -dimensional Gaussian distributions N(µ0,Σ0), N(Ft−1xt−1+

Ut−1, Q) and N(xt, R), respectively. Then joint likelihood for the complete data set is given by

P (YT , XT ;θ) = P (x0)
∏
t∈T

P (xt|xt−1)
∏

t∈Tobs

P (yt|xt), (3.20)
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where θ = {A, u, d, G, Q, R, µ0}. In this study, we used the regularized EM algorithm [19,46,

64, 104] to search for the parameter vector θ that maximizes P (YT ;θ) under L1 regularization.

The L1 regularized log-likelihood is given by

log

∫
P (x0)

∏
t∈T

P (xt|xt−1)
∏

t∈Tobs

P (yt|xt)dx0 . . . dxT −
N∑

n=1

N∑
k=1

λn|An,k| −
N∑

n=1

M∑
k=1

λn|Gn,k|,

(3.21)

where λn is the L1 regularization term for the nth row. In the EM algorithm, the conditional

expectation of the joint log-likelihood of the complete data set

q(θ|θi) = E[logP (YT , XT |θ)|YT ,θi]−
N∑

n=1

N∑
k=1

λn|An,k| −
N∑

n=1

M∑
k=1

λn|Gn,k|, (3.22)

is iteratively maximized with respect to θ until convergence, where θi is the parameter vector

obtained at the ith (previous) iteration. Note that the convergence of the L1 regularized log-

likelihood using the EM algorithm was guaranteed [46,64,104].

In the Expectation-step, q(θ|θi) is calculated by

q(θ|θi) =−
1

2
log | Σ0 | −

1

2
tr{Σ−1

0 (Σ0|T + (x0|T − µ0)(x0|T − µ0)
′)}

− T

2
log | Q | −1

2
tr{Q−1(Vt − VlagF

′FV ′
lag + FVt−1F

′ + FEt−1G
′ +GE′

t−1F
′

− ElagG
′ −GElag +GZG′ +Gzu′ + uz′G′ + Fst−1u

′ + us′t−1F
′ − stu

′ − us′t + Tuu′)}

− T

2
log | R | −1

2
tr[R−1

T∑
t=1

{(yt − xt|T )(yt − xt|T )
′ +Σ′

t|T }]

−N(T +
1

2
) log 2π −

N∑
n=1

N∑
k=1

λn|An,k| −
N∑

n=1

M∑
k=1

λn|Gn,k|, (3.23)

where

Vt =
T∑

t∈T
(Σt|T + xt|Tx

′
t|T ), (3.24)

Vlag =

T∑
t∈T

(Σt,t−1|T + xt|Tx
′
t−1|T ), (3.25)

Vt−1 =

T∑
t∈T

(Σt−1|T + xt−1|Tx
′
t−1|T ), (3.26)
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st =

T∑
t∈T

xt|T , (3.27)

st−1 =

T∑
t∈T

xt−1|T , (3.28)

Elag =

T∑
t∈T

xt|Tz
′
t−1|T , (3.29)

Et−1 =
T∑

t∈T
xt−1|Tz

′
t−1|T , (3.30)

z =
T∑

t∈T
zt−1|T , (3.31)

Z =

T∑
t∈T

zt−1|Tz
′
t−1|T . (3.32)

In the Maximization-step, θi is updated to θi+1 to be θi+1 = argmaxθ q(θ|θi). Let vt,n,

vlag,n, vt−1,n, et,n and elag,n set a transpose of nth row vector of Vt, Vlag, Vt−1, Elag and Et−1,

respectively. Further, set st,n and st−1,n as an nth element of st and st−1, and vt,n,k and vt−1,n,k

as an nth row kth column element of Vt and Vt−1, respectively. Then, θ is updated as

an = argmin
an

{a′
nVt−1an + 2(1− dn)v

′
t−1,nan − 2v′

lag,nan + 2uns
′
t−1an

+ 2g′
nE

′
t−1an + 2qn

N∑
k=1

λn|an,k|}, (3.33)

gn = argmin
gn

{g′
nZgn + 2f ′

nEt−1gn − 2e′lag,ngn + 2unz
′gn + 2qn

M∑
k=1

λn|gn,k|}, (3.34)

dn = 1−
vt,n,n − unst−1,n − v′

t−1,nan − g′
nelag,n

vt−1,n,n
, (3.35)

u =
st − Fst−1 −Gz

T
, (3.36)

Q =
1

T
(Vt − VlagF

′ − FV ′
lag + FVtF

′ + FElagG
′ +GE′

lagF
′ −EtG

′ −GEt +GZG′

+Gzu′ + uz′G′ + Fst−1u
′ + us′t−1F

′ − stu
′ − us′t + Tuu′), (3.37)

R =
1

T

T∑
t∈Tobs

{(yt − xt|T )(yt − xt|T )
′ +Σt|T }, (3.38)
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where dn is set 0 if dn < 0.

In solving Eqs. (3.33) and (3.34), we further consider the non-zero/zero elements in A and

G. Let A = {A1, . . . ,AN} and G = {G1, . . . ,GN}, where An and Gn be active sets of elements

for an and gn, i.e., ∀{an,k ̸= 0} ∈ An and ∀{gn,k ̸= 0} ∈ Gn for k = 1, . . . , N , respectively. The

descriptions of An and Gn stand for an |An| × |An| matrix or an |An| dimensional vector and a

|Gn| × |Gn| matrix or a |Gn| dimensional vector, respectively. Then, Eqs. (3.33) and (3.34) are

differentiated to satisfy

(3.33)⇔ aAn
n = V An

−1

t−1 (vAn
lag,n − (1− dn)v

An
t−1,n − uns

An
t−1 − EAn

t−1g
An
n − qnλnsign(a

An
n )), (3.39)

(3.34)⇔ gGn
n = −ZGn

−1

(eGn
lag,n − E

G′
n

t−1f
Gn
n − unz

Gn − qnλnsign(g
Gn
n )), (3.40)

where sign means a sign vector consisting positive (+1) or negative (-1) values. These equations

are derived as the same way explained in Chapter 2.

3.2.5 Parameter Optimization Algorithm with L1 Regularization

Because of the combination of the regularization terms and a state space representation, up-

dating an element of λ = (λ1, . . . , λN )′ influences the other active sets. Thus, it is difficult to

select the optimal active sets A and G, the values of θ and λ at the same time. Therefore,

we proposed a novel algorithm to separately update θ and λ in each row as follows. In this

algorithm, we consider candidates of active sets for An and Gn as Ãn and G̃n, respectively. In

the EM algorithm, we constraint that the active sets An and Gn can be selected from Ãn and

G̃n, respectively, i.e., An ⫅ Ãn and Gn ⫅ G̃n. In contrast to other algorithms using the L1 reg-

ularization such as least absolute shrinkage and selection operator (LASSO), we cannot obtain

the global maximum/minimum of the objective function depending on initial parameter values.

Then, we performed several trials starting from different initial values.

3.2.5.1 Algorithm

-Initial Settings

1. Set λ = 0 and recursively update θ to obtain xt|T (t = 1, . . . , T ) using the EM algorithm

until convergence is attained. In this step, active sets An and Gn (n = 1, . . . , N) consist of

all elements, i.e., A and G become dense matrices, since the regularization terms can be

neglected. Thus, the solution of the EM algorithm is directly obtained from Eqs. (3.33)-

(3.38).

2. Set the maximum number of iterations to be imax, the maximum number of regulatory

edges for each gene to be kmax and λ to be sufficiently high to allow all elements of A

and G to become 0, and Ãn and G̃n to be full. Alternatively, imax can be set as a value

when BIC [96,112,124], which are used to select the best model in this algorithms, is not

updated through iterations and kmax can be set a sufficiently high value, e.g., N
2 . The BIC
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score in this algorithm is defined as

BICV ARSSM = −2logL(YN |θ) + df(λ,θ)logν, (3.41)

L(YN |θ) =
∫

P (x0)
∏
t∈T

P (xt|xt−1)
∏

t∈Tobs

P (yt|xt)dx0 . . . dxT , (3.42)

where df(λ,θ) is the degree of freedom, i.e., the number of active parameters [124],

and ν is the number of samples. The derivation of BIC is briefly introduced in Chap-

ter 2. Approaches for selecting appropriate model complexity and fit when maximizing

regularized log-likelihood at some regularization parameter values were discussed previ-

ously [98,104,124].

3. Set i = 1 and recursively update {λ,A,G, Ã = {Ã1, . . . , ÃN}, G̃ = {G̃1, . . . , G̃N},θ} as

follows. Note that, at i = 1, we fix xt|T as the values obtained at Step 1, except for the

updating elements indicated as nupd in the next step. Thus, we only update the values of

the parameters for the nupdth row at i = 1.

-Main Routine

4. For nupd = 1, . . . , N

a). Set Ãnupd
and G̃nupd

full and λnupd
sufficiently high to allow all elements of anupd

and

gnupd
become 0. Through the following steps, fixing λn (n ̸= nupd), λnupd

is gradually

decreased to find an optimum λnupd
for which the BIC score is minimized.

b). Calculate conditional expectations using the Kalman filter.

c). Update A, G, and θ by Eqs. (3.33)-(3.40). Here, An and Gn of Eqs. (3.39)-(3.40) can

be constructed from Ãn and G̃n, respectively.

d). Calculate the BIC score and decrease λnupd
if the regularized log-likelihood of Eq. (3.21)

is converged. Then, repeat from step (b) until the sum total of Anupd
and Gnupd

be-

comes kmax.

e). Set {λ,A,G,θ} as the value with the lowest BIC score obtained through the above

described steps. Furthermore, set Ã ← A and G̃ ← G.

f). Consider the set of all subsets of Anupd
and Gnupd

as subA and subG, respectively. For

all sA ∈ subA and sG ∈ subG, setting Ãnupd
← sA and G̃nupd

← sG, repeat steps 4(b)

and (c), and then obtain the BIC scores of converged log-likelihood.

g). Set {A,G,θ} as the value with the lowest BIC score. Furthermore, Ã ← A and

G̃ ← G.

5. Set i→ i+ 1 and repeat from step 4 until i becomes imax.

A conceptual view and a pseudo code of the algorithm are shown in Figure 3.2 and Algorithm

1, respectively. We should note that, since the active sets A and G obtained at step 4(e) may
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not be the optimal ones for the selected λ, i.e., there can exist better ones having lower BIC

scores for the selected λ, the proposed algorithm further explores such better ones by evaluating

subsets of the obtained active sets at step 4(e) through steps 4(f) and (g).

...

A  ,G n n

Initial Setting

Parameter Update
(KF and EM-algorithm)

Parameter Update

Output

n=nupd

n=nupd

subset

~ ~

A  ,G n n
~ ~

A  ,G n n
~ ~A  ,G n n

~ ~
A  ,G n nset

A  ,G n n
~ ~

A  ,G n nset

decrease λ

 i+1 i

Step 1.2.3

Step 4(a,b,c,d)

Step 4(f)

n=nupd n=nupd

A  ,G n n
~ ~

= full

loop

loop

reset λnupd

1

nupdnupd+1

nupd

nupd

full

Step 4(e)

Step 4(g)

(KF and EM-algorithm)

reset λnupd

Figure 3.2: The conceptual view of the proposed algorithm. This figure illustrates a conceptual view
of the proposed algorithm. The notations ‘Step’ correspond to those of the proposed algorithm. Solid,
dashed and chain lines represent flowchart of the algorithm, setting the parameter values and active sets,
and setting candidates of active sets used for selecting active sets.
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Algorithm 1 A pseudo code of Main Routine (step 4 and 5) in the proposed algorithm.

1: BICmin ← +∞;
2: for i = 1 to imax do
3: for nupd = 1 to N do
4: Ãnupd

← full; G̃nupd
← full;λnupd

← a sufficiently high value;
5: while |Anupd

|+ |Gnupd
| ≤ kmax do

6: while convergence criterion is not satisfied do
7: Update XT and parameter values using the Kalman filter and the EM algorithm;
8: end while
9: if BICmin > BICcurrent; then

10: BICmin ← BICcurrent; Store the current parameter values;
11: where BICcurrent is the BIC score of the current parameter values
12: end if
13: Decrease λnupd

;
14: end while
15: Set the stored parameter values as the current parameter values;
16: subA ← the set of all subsets of the current Anupd

;
17: subG ← the set of all subsets of the current Gnupd

;
18: for all sA ∈ subA do
19: Ãnupd

← sA;
20: for all sG ∈ subG do
21: G̃nupd

← sG;
22: while convergence criterion is not satisfied do
23: Update XT and parameter values using the Kalman filter and the EM algorithm;
24: end while
25: if BICmin > BICcurrent then
26: BICmin ← BICcurrent; Store the current parameter values;
27: end if
28: end for
29: end for
30: Set the stored parameter values as the current parameter values;
31: end for
32: end for
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3.2.6 Weighting Known Regulations

To weight parameters of known regulations, e.g., as recorded in the literature, we derive the

weighted regularization [98]. For the nth row, we define the weight vectors ωa
n = (ωa

n,1, . . . ,

ωa
n,N )′ and ωg

n = (ωg
n,1, . . . , ω

g
n,M )′. The elements of these vectors for known regulations are

set to less than 1 or, otherwise set to 1. Then, in the M step of the EM algorithm and the

regularized log-likelihood, regularization terms are handled as

N∑
k=1

λn|an,k| →
N∑
k=1

ωa
n,kλn|an,k|, (3.43)

M∑
k=1

λn|gn,k| →
M∑
k=1

ωg
n,kλn|gn,k|. (3.44)

In practice, the purpose of the weight is to select known regulation in the instance where multiple

candidates are highly correlated with the same gene. Thus, when the correlation of a known

regulation is still a low value, the regulation should not be selected as an active regulation. For

example, weights for literature-recorded pathways and regulations by TFs are set as 1
20 and 1

10

in the real data experiment, respectively. The effectiveness of the weighted regularization is

demonstrated in the results section.

3.3 Results

3.3.1 Comparison Results

To show the effectiveness of the proposed method, we compared it with other GRN inference

methods, i.e., a SSM [43,107], a general VAR model using the LARS-LASSO algorithm [23,124],

GeneNet [80, 94] based on an empirical graphical Gaussian model (GGM), dynamic Bayesian

networks using first order conditional dependencies (G1DBN) [63], GLASSO [29] based on sparse

GGM and the mutual information-based network inference algorithms: ARACNE [70], CLR

[26] and MRNET [75]. We applied these inference methods by using R-package (‘GeneNet’,

‘G1DBN’, ‘glasso’ and ‘parmigene’) and implementing the others. The comparison analysis

was performed using three artificial data, which were generated based on pharmacogenomic

pathways that we assumed and a yeast network that was produced as a part of the DREAM4

(Dialogue for Reverse Engineering Assessments and Methods) challenge. We should note that,

because ARACNE, CLR and MRNET are intended to infer static relationships between genes,

we considered time-course observational data as static data utilizing a time-lag matrix, in which

the tth row vector consists of yt+1 − yt, according to Shimamura et al. [99]. Note that the Jar

file of the proposed method is available at: http://sunflower.kuicr.kyoto-u.ac.jp.
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3.3.1.1 Comparison Using Pharmacogenomic Pathways

For the comparison, we first generated two time-courses from (i) linear difference equations as

Eq. (3.4) and (ii) nonlinear differential equations as Eqs. (3.1)-(3.3) representing pharmacoge-

nomic pathways (e.g., Yao et al. [115]) using Cell Illustrator 5.0 (http://www.cellillustrator.com/home).

The details of the artificial simulation models are as follows.

-Dataset (i)

1. The number of genes is 18.

2. Each gene undergoes synthesis and degradation processes, and genes are mutually regu-

lated as shown in Fig 3.3 (The details of the figure are explained below).

3. A drug is added at t = 0 and its concentration gradually decreases according to one

compartment model, i.e., d
dtz(t) = ζz(t), where z(t) is the concentration of the drug as a

function of time t and ζ is the degradation rate. The simulated expression profiles of the

genes are initiated by the drug at t = 0 and gradually converge to their steady states as

illustrated in Fig. 3.4.

4. The expression data is observed at Tobs=(0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 52, 96, 128, 160,

192, 224, 256 and 288) with Gaussian observation noise of mean 0 and a variance that is

proportional to the intensity.

5. The number of replicated observations with different observational noise for each time

point is three.

6. The simulated expression is updated according to the linear difference equations repre-

sented by Eq. (3.4) at ∆t = 1
5 .

-Dataset (ii)

1 to 5 of dataset (i) are also satisfied in dataset (ii).

6. The simulated expression is updated according to the differential equations. Regulatory

relationships are the same as in (i) but the regulatory effects are represented by hill func-

tions, such as Eqs. (3.1)-(3.3), or linear functions, as illustrated in Fig 3.3. In this figure,

h(c) indicates that the regulation is described by Eq. (3.3) when γn,k = c.

A true positive (TP), false positive (FP), false negative (FN), precision rate (PR= TP
TP+FP),

and recall rate (RR= TP
TP+FN) were used to measure the performance. At first, in applying

the proposed method to the data, we changed the simulation time interval of Eq. (3.4) to
1
∆t = (1, 2, . . . , 15), and estimated active sets of regulation (A and G) and the values of the

parameters for each 1
∆t for each dataset. The results for datasets (i) and (ii) are illustrated in

Figs. 3.5 and 3.6, respectively. The precision and recall rates in Figs. 3.5 and 3.6 show that

the performance of the structure inference gradually increases from 1
∆t ∈ 1 and is optimal at

1
∆t = 10 for (i) and 1

∆t = 9 for (ii). This indicates that the simulation time interval ∆t can
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Figure 3.3: A pharmacogenomic pathway of the artificial simulation model. The figure illustrates the
pathway of the artificial simulation model used for datasets (i) and (ii). Each regulation is represented
by (i) a linear and (ii) a nonlinear function, such as Eq. (3.3). For dataset (ii), descriptions on edges
as linear or h(c = 1, 2, 3 or 4) means a linear function and a hill function, described in Eq. (3.3) when
γn,k = c, respectively. The system is stable at first (t < 0) and undergoes stimulation by a drug at t = 0.
The concentration of the drug is gradually decreased according to the drug kinetics. A solid arrow and
a dotted arrow mean activation and repression, respectively.
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Figure 3.4: The simulation expression profiles of genes of the artificial simulation model. This illustrates
the simulation expression profiles of genes of the artificial simulation model used for dataset (ii). The
simulated data for datasets (i) and (ii) have both dynamic and steady state, and stimulated by the drug
at t = 0. Observational time-course data is obtained with Gaussian noise from the simulation expression
at the time points that are indicated on the bottom axis.

influence the performance of structure inference and we should carefully design ∆t for biological

simulations. In order to determine ∆t, we measured the BIC scores and the sum of squared

prediction errors (SPE) at three time points (t = 6, 8 and 12) for each 1
∆t using (i) and (ii),

as represented in Fig. 3.7 and Fig. 3.8, respectively. Here, we measured the prediction errors

for each time point by optimizing the values of the estimated parameters without using the

observational data at the corresponding time point (t = 6, 8, 12).

For dataset (i), although the PR and RR values peak at 1
∆t = 10, the BIC scores become

lowest at 1
∆t = 2. Similarly, the BIC score becomes lowest at 1

∆t = 7 but peaks at 1
∆t = 9

for dataset (ii). SPE gradually converges when 1
∆t becomes large and has the lowest value at

1
∆t = 11 and 1

∆t = 9 for datasets (i) and (ii), respectively. Therefore, SPE can be an indicator

for determining the best time interval for this hill function-based system of pharmacogenomics.

Note that the measured time points for the prediction errors should be the points that are not

steady state values.

Next, we compared the results of (a) the proposed VAR-SSM with the lowest BIC and (b) the

proposed VAR-SSM with the lowest SPE to (c) SSM [43,107] (permutation tests were utilized to

select regulations), (d) VARmodel with L1 regularization using the LARS-LASSO algorithm [23,

124] (the BIC score is used to determine the value of the regularization parameters), GeneNet

[80,94], G1DBN [63], GLASSO [29], ARACNE [70], CLR [26] and MRNET [75]. The comparison

results for datasets (i) and (ii) are listed in Tables 3.1 and 3.2, respectively. In these comparisons,

we added the drug profiles to the observational data and did not count regulations in response

to drugs and self-regulation. For the methods inferring undirected regulations, i.e., GeneNet,

GLASSO, ARACNE, CLR and MRNET, we considered the true network (directed network)
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Figure 3.5: The results of the structure inference using dataset (i) of a pharmacogenomic pathway by
the proposed method. This figure illustrates the results of the structure inference after applying the
proposed method to dataset (i) for each simulation time interval ∆t. The histogram represents the
number of true positive (TP), false positive (FP), and false negative (FN) findings for each 1

∆t = (1, 2,
· · · , 15) as red, blue, and green bars, respectively. Black lines with circles and crosses represent ‘precision
rate (PR= TP

TP+FP )’ and ‘recall rate (RR= TP
TP+FN )’, respectively. The values of the histogram and lines

correspond to the left and right axes, respectively.
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Figure 3.6: The results of the structure inference using dataset (ii) of a pharmacogenomic pathway by
the proposed method. This figure illustrates the results of the structure inference after applying the
proposed method to dataset (ii) for each simulation time interval ∆t. The histogram represents the
number of true positive (TP), false positive (FP), and false negative (FN) findings for each 1

∆t = (1, 2,
· · · , 15) as red, blue, and green bars, respectively. Black lines with circles and crosses represent ‘precision
rate (PR= TP

TP+FP )’ and ‘recall rate (RR= TP
TP+FN )’, respectively. The values of the histogram and lines

correspond to the left and right axes, respectively.
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as an undirected network and then measured the performance by comparing this undirected

network to the inferred networks. Additionally, for GeneNet, G1DBN and mutual information-

based methods (ARACNE, CLR and MRNET), which are required to set a threshold value to

determine the existence of regulation, we checked the results of setting the threshold q-value

(GeneNet) and posterior probability (G1DBN) to (0.01, 0.05, 0.1, 0.2, . . . , and 0.5) and a cut-off

value (ARACNE, CLR and MRNET) to (0, 0.01, 0.05, 0.1, 0.2, . . . , and 0.8), and adopted the

best thresholds with respect to F -measure = 2·PR·RR
PR+RR . We should note that the simulation

time interval of SSM is set ∆t = 1 (no other choice is available) due to the implementation of

Tamada et al. [107]. It is hard to make the simulation time interval short; hence, the simulated

expression profiles often oscillated in such situations.

Table 3.1: Comparison of the proposed method and the existing methods using dataset (i).
PR RR TP FP TN FN

(a)VARSSM(BIC) 0.467 0.634 14 16 286 8
(b)VARSSM(SPE) 0.600 0.818 18 12 290 4

(c)SSM 0.308 0.182 4 9 293 18
(d)VAR 0.150 0.773 17 97 205 5

(e)Genenet 0.280 0.667 14 36 114 7
(f)G1DBN 0.314 0.500 11 24 278 11
(g)GLASSO 0.094 0.286 6 58 92 15
(h)ARACNE 0.131 0.524 11 71 79 10

(i)CLR 0.135 0.619 13 83 67 8
(j)MRNET 0.121 0.571 12 87 63 9

Table 3.2: Comparison of the proposed method and the existing methods using dataset (ii).
PR RR TP FP TN FN

(a)VARSSM(BIC) 0.563 0.818 18 14 288 4
(b)VARSSM(SPE) 0.613 0.864 19 12 290 3

(c)SSM 0.234 0.318 7 23 279 15
(d)VAR 0.206 1.000 22 84 236 0

(e)Genenet 0.278 0.714 15 39 111 6
(f)G1DBN 0.647 0.500 11 6 296 11
(g)GLASSO 0.052 0.143 3 55 95 18
(h)ARACNE 0.191 0.429 9 38 112 12

(i)CLR 0.156 0.667 14 76 74 7
(j)MRNET 0.156 0.667 14 76 74 7

Consequently, the proposed method achieved a low false positive rate while maintaining

a high true positive rate. These results may be acceptable because the system model of the

proposed method is the same as or similar to the artificial simulation models. Thus, it is con-

ceivable that the proposed method is highly capable of inferring the regulatory structure of

the assumed hill-function based model. Furthermore, we demonstrated the effectiveness of the

weighted regularization for known prior information using dataset (ii). To evaluate the perfor-

mance, we adapted a simulation time interval of 1
∆t = 9. Setting weights for true regulations
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as 1
wn,k

= (1.5, 2, 3, · · · , 20), PR and RR were evaluated as illustrated in Fig. 3.9. The correct

weights reduced the FP and FN edges, and the performance was gradually improved according

to the increase in the weight coefficient. In contrast, several FP edges still exist even when the

weight coefficients take on high values. It can be considered that the simplification of the true

regulatory system using the proposed model generates these false edges to effectively predict the

data.
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Figure 3.9: The performance of using prior knowledge as the weighted regularization. This figure il-
lustrates the effectiveness of the weighted regularization (prior knowledge) at simulation time interval
1
∆t = 9 using dataset (ii). The histogram represents the number of true positive (TP), false posi-
tive (FP), and false negative (FN) findings for each 1

wn,k
= (1, 1.5, 2, 3,, · · · , 20) as red, blue, and green

bars, respectively. Black lines with circles and crosses represent ‘precision rate (PR= TP
TP+FP )’ and ‘recall

rate (RR= TP
TP+FN )’, respectively. The values of the histogram and lines correspond to the left and right

axes, respectively.

3.3.1.2 Comparison Using Yeast Network of a Part of the DREAM4 Challenge

In contrast to the previous comparisons, for which the data were based on the assumed models

as Eqs. (3.1)-(3.4), we next prepared data generated by GeneNetWaver [69,95] using a 10-node

yeast network (yeast 1) of a part of the DREAM4 challenge (in silico network challenge). To

measure the performance of the proposed method, in this comparison, we generated dataset

(iii), which was a set of 100 time-course observational data, in which the measured time points

were t = (0, 1, . . . , 30).

According to the original setting, three genes, which were randomly selected for each time-

course, were perturbed among t = 0 to 15. Here, since we intended to consider the case that

observational data have a steady state, the number of time points was to be set larger than

those of the original setting t = (0, 1, . . . , 20).

We applied the methods (a)-(j) to dataset (iii); however, since SSM [43, 107] requires large

computational costs to perform permutation tests for each time-course, we neglected SSM for

this comparison. The time points to calculate SPE for the proposed method are t = (16, 17, 18),
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which are the time points shortly after removal of perturbations. For each method, we summed

the existence of the estimated regulation on the ith gene by jth gene as esti,j and considered

the values
esti,j
100 as the confidence level for the regulation. Then, TP rate (TPR= TP

TP+FN), FP

rate (FPR= FP
FP+TN), precision rate (PR= TP

TP+FP) and recall rate (RR= TP
TP+FN) were calculated

to draw ROC and PR curves. Using these curves, we measured the performance with respect

to the AUROC (area under the ROC curve) and AUPR (area under the PR curve). These

comparison results are illustrated in Fig. 3.10. Note that, similarly to the previous experiments,

we selected the best threshold values with respect to AUROC for the methods (e), (f) and

(h)-(j).
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Figure 3.10: The ROC and PR curves using dataset (iii). The left and the right figures illustrate the
ROC and PR curves for dataset (iii), respectively. In the left figure, the vertical axis and horizontal axis
correspond to TP rate and FP rate, respectively. In the right figure, the vertical axis and horizontal
axis correspond to PR and RR, respectively. AUROC and AUPR are represented at the right side of the
inference methods.

As a result, although the simulation model for dataset (iii) is different from the models

that we assumed, the proposed method using SPE outperformed the other methods in terms

of both AUROC and AUPR. The number of selected simulation time intervals ∆t is shown in

Table 3.3. These results indicate that the proposed method has good ability for inferring the

regulatory relationships using time-course observational data for which regulations are not based

on the model that we assumed. Furthermore, we can consider the SPE as a good indicator for

determining the simulation time interval.

Table 3.3: The number of selected simulation time intervals for dataset (iii).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BIC 99 0 0 0 0 1 0 0 0 0 0 0 0 0 0
SPE 3 13 9 1 4 0 2 6 5 6 3 11 6 12 19
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3.3.2 Application to Corticosteroid Pathways in Rats

As an application example, we analyzed microarray time-course gene expression data from rat

skeletal muscle [5, 115], which is assumed to have the same system used in simulation studies.

The microarray data were downloaded from the GEO database (GSE490). The time-course gene

expression was measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12, 18, 30, 48, and 72 [h] (16 time

points) after the glucocorticoid was applied. The data at time 0 represent controls (untreated).

There were two, three, or four replicated observations for each time point.

Because corticosteroid pharmacokinetics/dynamics in skeletal muscle have been modeled

based on differential equations [115] as shown in Fig. 3.11, the time-dependent concentration of

corticosteroid in nucleus in rat skeletal muscle zt can be obtained as followings;

dmRNAR(t)

dt
= ks Rm ·

{
1− DRN(t)

IC50 Rm +DRN(t)

}
− kd Rm ·mRNAR(t), (3.45)

dR(t)

dt
= ks R ·mRNAR(t) +Rf · kre ·DRN(t)− kon ·D(t) · R(t)− kd R · R(t),

(3.46)

dDR(t)

dt
= kon ·D(t) · R(t)− kT ·DR(t), (3.47)

dDRN(t)

dt
= kT ·DR(t)− kre ·DRN(t), (3.48)

where mRNAR(t) is the concentration of mRNA of the receptor protein, R(t) is the concentration

of the receptor protein, DR(t) is the concentration of the drug-receptor complex, DRN(t) is the

concentration of the drug-receptor complex in nucleus, and Synthesis and Degradation mean

synthesis and degradation processes, respectively. DRN(t) was used for zt. These parameter

values, ks Rm, IC50 Rm, kd Rm, ks R, kd R, Rf , kre, kon, kd R, kT , are shown in Table 3.4. According

to the previous research [106], the time-evolution of the plasma concentration of corticosteroid

is given as

D(t) = 39, 130 · e−7.54t + 12, 670 · e−1.20t. (3.49)

Table 3.4: The values of the parameters for corticosteroid pharmacodynamics.
parameter value

ks Rm(fmol/g/h) 0.416
kd Rm(1/h) 0.139

ks R(fmol/g/h) 0.777
kd R(1/h) 0.0356

kon(1/nmol/h) 0.00269
kT (1/T) 90
kre(1/h) 0.618

Rf 0.720
IC 50Rm(fmol/mg) 0.911
mRNA0

R(fmol/g) 2.99
R0(fmol/mg) 65.3
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Figure 3.11: The pharmacokinetics/dynamics developed previously [115]. The dynamics behavior of the
concentration of biomolecules is described by differential equations. mRNAR is the concentration of
mRNA of the receptor protein, R is the concentration of the receptor protein, DR is the concentration
of the drug-receptor complex, DRN is the concentration of the drug-receptor complex in nucleus, and
Synthesis and Degradation mean synthesis and degradation processes, respectively.

Furthermore, corticosteroid catabolic/anabolic processes in rat skeletal muscle have been

partly established [100]; thus, these regulatory relationships can also be used. Given this infor-

mation, we included Mtor, Anxa3, Bnip3, Bcat2, Foxo1, Trim63, Akt1, Akt2, Akt3, Rheb, Igf1,

Igf1r, Pik3c3, Pik3cd, Pik3cb, Pik3c2g, Slc2a4, and Mstn. Note that the microarray (GSE490)

does not include three genes in the original pathway [100], Redd1, Bcaa and Klf15. In addi-

tion, we employed the genes, Irs1, Srebf1, Rxrg, Scarb1, Gpam, Scd, Gpd2, Mapk6, Ace, Ptpn1,

Ptprf, Edn1, Agtr1a, Ppard, Hmgcs2, Serpine1, Cebpb, Cebpd, Il6r, Mapk14, Ucp3, and Pdk4,

which have been suggested to be corticosteroid-induced genes [5]. In summary, we applied the

method to these 40 genes with weights for the established pathway and the concentration of

corticosteroid.

First, to determine the simulation time interval from 1
∆t = {1, 2, . . . , 9}, we evaluated the

BIC scores and SPE (t = 1, 2, 4). The results are shown in Fig. 3.12. Interestingly, even for the

observational data, we obtained the same tendency for both indicators. Therefore, we obtained
1
∆t = 4 for the lowest SPE. Next, we analyzed the result of 1

∆t = 4. The inferred structure with

some simulated expression profiles are illustrated in Fig. 3.13. From the figure, we can capture

the propagation of gene expression stimulated by corticosteroid and hub genes regulating other

genes. However, these results may be difficult to biologically interpret because some mRNAs are

not considered to regulate other genes. Therefore, to exploit biological meaning correctly and

demonstrate the effectiveness of incorporating prior information in the case of real biological

data, we finally performed an experiment using TF information from ITFP [122]. Then, weights

for regulations by TFs, Trim63, Akt1, Akt2, Mstn, Irs1, Srebf1, Gpam, Cebpb, and Cebpd, were

set 1
wn,k

= 10. The inferred structure at 1
∆t = 4 using the TF information is illustrated in

Fig. 3.14.
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In Figs. 3.13 and 3.14, there are some interesting observations. At first, some genes are

directly regulated by corticosteroids, which are included in the model as zt. Thus, other models

that do not include the drug terms cannot estimate such regulation. Second, only weighted

regulations, i.e., literature-recorded pathways and regulation by TFs, were inferred in contrast to

the non-weighted network in Fig. 3.13. Thus, we could successfully incorporate prior knowledge,

and further candidates may extend our understanding of regulation not yet reported in literature.

Additionally, some weighted genes, Cebpb, Mstn, Cebpd, and Trim63, were also selected as hub

genes with no weight in Fig. 3.13. Third, Cebpb, which is known as a transcription factor related

to immune and inflammatory responses, is indicated as a hub gene (illustrated as a green circle).

Cebpd and Cebpb are assumed to be candidate genes for insulin-related transcription factors [28].

This finding may confirm the findings of previous studies [5, 115] indicating that corticosteroid

stimulation of skeletal muscle can induce the expression of insulin.

Finally, we applied the other methods, i.e., GeneNet and G1DBN, to the pharmacogenomic

data and attached significance levels (q-val and posterior probability for GeneNet and G1DBN,

respectively) for the regulations inferred by the proposed method. The results are presented in

Table 3.5. Interestingly, some regulations have very high significance levels but others do not. For

example, regulations of Srebf1, Agtr1a, Cebpb and Cepbd by a corticosteroid are quite probable.

In contrast, some regulations were not significant when using these methods. We can suppose, for

example, that differences between the models, the prior weights for TF candidates and literature

derived pathways, steady state gene expression profiles and corticosteroid drug dynamics in the

proposed model may have caused the results. Although some inferred regulations had low

significance levels in other approaches, we believe that these regulations can be candidates

for true regulation in corticosteroid pharmacogenomic pathways because the proposed method

outperformed the other methods through the comparison using synthetic pharmacogenomic

pathways.

Although we actually used 40 genes, only 35 genes were found to be regulated because the

expression of residual genes did not vary through the time-course. Hence the expression of

these genes can represent only synthesis and degradation processes, for which regulation was

not estimated.
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Table 3.5: The confidence levels of estimated pharmacogenomic regulations using GeneNet and G1DBN.
Regulator Target q–val post–prob.

Corticosteroid Srebf1 0.101 0.000
Corticosteroid Agtr1a 0.864 0.002
Corticosteroid Cebpd 0.021 0.003
Corticosteroid Cebpb 0.747 0.003

Trim63 Serpine1 0.375 0.005
Corticosteroid Mstn 0.198 0.012

Trim63 Irs1 0.385 0.065
Corticosteroid Scd 0.905 0.068

Akt2 Mtor 0.881 0.069
Cebpb Il6r 0.836 0.102
Trim63 Ppard 0.395 0.105
Trim63 Slc2a4 0.915 0.189

Corticosteroid Ucp3 0.663 0.195
Trim63 Bnip3 0.629 0.217
Trim63 Mstn 0.935 0.273
Mstn Cebpd 0.413 0.280
Irs1 Ptprf 0.928 0.452
Igf1 Pik3cd 0.897 0.457

Trim63 Mapk14 0.909 0.503
Irs1 Anxa3 0.107 0.632
Irs1 Gpd2 0.853 0.749

Corticosteroid Edn1 0.833 0.799
Corticosteroid Pik3c2g 0.929 0.821

Cebpb Trim63 0.864 0.991
Irs1 Akt3 0.396 1.000

Srebf1 Mapk6 0.453 1.000
Corticosteroid Scarb1 0.651 1.000

Cebpb Rxrg 0.734 1.000
Corticosteroid Ptpn1 0.827 1.000

Srebf1 Irs1 0.832 1.000
Akt2 Cebpb 0.863 1.000

Corticosteroid Pdk4 0.871 1.000
Cebpd Pik3c2g 0.888 1.000
Irs1 Foxo1 0.894 1.000

Cebpb Hmgcs2 0.897 1.000
Corticosteroid Igf1 0.908 1.000

Trim63 Akt3 0.913 1.000
Cebpd Igf1 0.924 1.000
Irs1 Bnip3 0.925 1.000

Cebpd Rheb 0.935 1.000
Trim63 Ace 0.936 1.000
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3.4 Discussion

In this study, we proposed a novel method for inference of gene regulatory networks incorporating

existing biological knowledge and time-course observation data. The properties of the method

are as follows; (i) the dynamics of the gene expression profiles can be estimated based on the

proposed linear model with a hidden state, (ii) L1 regularized log-likelihood is maximized to

infer the active sets of regulation, (iii) the dynamics of other biomolecules can be included in the

model, (iv) existing biological knowledge, e.g., literature-recorded pathways and TF information,

can be integrated. Furthermore, we proposed an indicator for selecting a simulation time interval

for the inference.

To show the effectiveness of the proposed method, we compared it to the previously reported

GRNs inference methods using hill function-based pharmacogenomic pathways [115] and a yeast

network that is a part of the DREAM4 challenge [69,95]. Since the artificial simulation models

were described by differential equations or difference equations, in which the time intervals were

smaller than the measurement interval, to reproduce a realistic biological system, the simulated

expressions was updated in detail. In this situation, we assumed that the simulation time interval

for the method is crucial for inference. As we expected, the results demonstrated that inference

of the regulatory structure depends greatly on the simulation time interval. This indicates that

we should carefully design the simulation time interval even for analysis of real observational

data. For this purpose, we introduced indicators to determine the simulation time interval and

measured their validity. Here, since the tendency of the indicator for the simulation time interval

depends on the analyzed biological system, it is recommended to check the tendency by using

simulation models. Upon comparison of the inferred structures, the proposed method using the

indicator showed the highest performance in terms of precision and recall rates for all three data

types. Although the first two synthetic data include the time-evolution of the drug profiles as

same as the real data of rat skeletal muscle that was focused in this study, the previous methods

can only handle the concentration of the drug at the observed non-equally spaced time points.

In addition, the previous methods cannot deal with data including both of the dynamic and the

steady states. This could contribute to the higher performance of the proposed method. The

fact that the proposed method outperformed the other methods in using synthetic datasets,

which includes the model we do not assume, indicates the adaptability of our proposed method.

For an application example, we applied the proposed method to a corticosteroid-stimulated

pathway in rat skeletal muscle. Because pathways and genes related to corticosteroids have been

widely investigated, we were able to obtain the concentration of the drug as a function of time

from the corticosteroid kinetics/dynamics and the literature-recorded pathways. By incorpo-

rating time-course mRNA expression data, corticosteroid kinetics/dynamics, literature-recorded

pathways and TF information, we inferred the regulatory relationships among 40 genes that

are candidate or known corticosteroid-related genes. The tendency of the BIC scores and the

SPE for the simulated time intervals were the same as in the simulation studies, in which the

regulatory systems were based on the previous corticosteroid pharmacogenomic studies, and
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interesting findings for corticosteroid regulation were obtained. For example, genes that are

suggested to be significant factors in corticosteroid pharmacogenomics were predicted to be hub

genes regulating other genes in the results both with and without prior information. Further-

more, we found that the properties of the proposed method, i.e., the weighted regularization

and inclusion of a term for other biomolecules, influenced the results of selecting potential reg-

ulators and introducing drug effects to genes, respectively. Finally, these inferred regulations

were evaluated by GeneNet and G1DBN, and some of the regulations had high significance.

Since our approach imposed prior weights for reliable regulations and included drug terms to

explicitly represent their dynamics, not only these regulations but also regulations that are eval-

uated as non-significant could be candidate regulations for corticosteroid pharmacogenomics.

These results indicate that the proposed method can help to elucidate candidates that will allow

extension of GRNs in which the regulation among genes is partly understood by incorporating

multi-source biological knowledge.



Chapter 4

An Efficient Data Assimilation

Schema for Restoration and

Extension of Gene Regulatory

Networks Using Time-course

Observation Data

4.1 Background

Intracellular systems in cells consist of many genetic and chemical interactions and GRNs play

a crucial role in sustaining such systems. Although comprehensive understanding of GRNs

is still lacking, much data have been recorded in the literature following recent advances in

biotechnology, e.g., microarray and Chip-Seq. Thus, by integrating these findings, we may be

able to reconstruct GRNs and understand the dynamic behavior of gene expression through

mathematical simulation models. However, since some unverified interactions are present in the

literature, simulation results may not match the observed data, e.g., microarray expression data.

In this respect, a method for finding candidate networks that are consistent with the data by

improving and extending literature-based models is needed to elucidate GRNs [39,40,78].

In order to construct simulation models of GRNs, interactions between biomolecules, e.g.,

mRNA and proteins, are firstly collected from the literature and are integrated to construct the

networks. Then, mathematical differential or difference equations are given to the constructed

networks to simulate the dynamic behavior of these biomolecules. Thus, biologically reliable

models, e.g., the Michaelis-Menten model [91] and S-system [92], described by differential equa-

tions, have been applied in dealing with the limited number of genes [40, 67, 76, 83, 87]. In

these approaches, a simulation-based methodology, called data assimilation, was employed for

estimating parameter values and evaluating such simulation models [77,79]. However, although
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simulation results generated from these models can be biologically reasonable, evaluation of even

one simulation model with estimating optimal parameter values is computationally demanding

since parameter estimation must rely on a type of Monte Carlo methodologies [51, 58, 59, 76].

Therefore, it is computationally implausible to find appropriate models from a large number of

candidate models.

In contrast to such approaches, in order to cope with the computational burden known as

the curse of dimensionality in applying mathematical models to elucidate GRNs, there exists

the other approach to use linear models for dealing with more than a hundred genes. In this

approach, many effective methods have been developed, e.g., state space models [12,43,86] and

Bayesian inference [29, 68, 111]. For restoring literature-based GRNs, a concept, called network

completion, has also been developed [3, 78]. However, these methods could fail in some cases,

e.g., handling non-equally spaced time-point data, because of simplified abstractions of biological

systems. Thus, since these models cannot adequately represent the dynamics of gene expression

due to simplified abstractions of biological systems, biologically invalid results might often be

obtained. For improving and extending literature-based GRNs, these models are not sufficient

because the number of genes is limited and their regulatory relationships are mostly reliable.

Here, applied simulation models should maximally emulate reliable biological dynamics under

the constraint that their parameter values can be efficiently estimated. To satisfy the require-

ments, we developed a new data assimilation schema that applies a simple nonlinear simulation

model, termed the combinatorial transcription model [81,110]. As a part of this schema, we ap-

plied the unscented Kalman filter (UKF) [16,49,51] to obtain approximate posterior probability

distributions of the hidden state and estimated parameter values maximizing prediction ability

for observational data by means of the EM-algorithm. Then, a novel algorithm was developed

to efficiently select and evaluate a candidate network to obtain a network that can best predict

the data within a framework of the nonlinear state space model.

To show the effectiveness of the proposed method, we performed a comparison using artificial

data in regard to a previously proposed network completion method [78]. For the comparison,

synthetic data with equally and non-equally spaced time-points were generated from WNT5A

[55] and a yeast cell cycle network [53]. Next, as real data experiments, a yeast cell-cycle network

from KEGG database [53] and candidate genes from The Saccharomyces Genome Database

(SGD) [15], which can have functions related to this network, were integrated to extend the

network using real mRNA expression data [103].

4.2 Methods

4.2.1 A State Space Representation of Combinatorial Transcription Model

Let xi(t) be the abundance of the ith (i = 1, . . . , p) gene as a function of time t. As a gene

regulatory model, we assume a system in which each gene undergoes synthesis and degradation

processes, and its expression value can be controlled through regulations of its synthesis process
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by other genes. Thus, xi(t) is determined by

dxi(t)

dt
= fi(x(t),θ) · ui − xi(t) · di + vi,t, (4.1)

where fi is a function of the regulatory effect on the ith gene, x(t) = (x1(t), . . . , xp(t))
′, θ is a

tuning parameter, ui is synthesis coefficient, di is a degradation coefficient and vi,t is a system

noise at time t. Typically, fi is represented by a hill function, such as the Michaelis-Menten

model [91].

Due to its heavy computational cost to estimate parameter values maximizing prediction

ability for the data, Eq. (4.1) is often approximated as a difference equation. Then, we apply

the combinatorial transcription model [81,110] as

xi,t+∆t = xi,t + (
∑
j∈Ai

ai,j · xj,t +
∑
j∈Ai

∑
k∈Ai\j

bi,(j,k) · xj,t · xk,t + ui − xi,t · di + vi,t) ·∆t, (4.2)

where xi,t is the amount of the ith gene at time t, ai,j is an individual effect of the jth gene on

the ith gene, bi,(j,k) is a combinatorial effect from the jth and the kth genes to the ith gene, Ai

is an active set of genes regulating the ith gene and ∆t is a minute displacement. Here, we set

∆t = 1 (:a minimum observational interval) for simplicity. Fig. 4.1 exemplifies this model.

Synthesis Degradation

Gene i

Gene j Gene k

a a

b

i, j
i, k

i,(j, k)

u i d i

Figure 4.1: An example of the combinatorial transcription model regarding the ith gene. A gene undergoes
synthesis and degradation processes, and its synthesis process is regulated through individual effects
ai,j , ai,k and a combinatorial effect bi,(j,k).

In order to assimilate a simulation model and observational data, we apply a nonlinear state

space model [7, 43, 60, 66, 83]. Let xt = (x1,t, . . . , xp,t)
′ be the vector of hidden variables and yt

be the observational data at time t. A state space representation of Eq. (4.2) is given by

xt+1 = Axt +Bvec(xtx
′
t) + u+ vt, (4.3)

yt = xt +wt, (4.4)

where A = (a1, . . . ,ap)
′ ∈ Rp×p is a linear effect matrix, ai = (ai,1, . . . , ai,p)

′ (i = 1, . . . , p), B =

(b1, . . . , bp)
′ ∈ Rp×p2 is a combinatorial effect matrix, bi = (bi,(1,1), . . . , bi,(1,p), bi,(2,1), . . . , bi,(p,p))

(i = 1, . . . , p), vec is a transformation function (Rp×p → Rp2), u = (u1, . . . , up)
′, and vt∼

N(0, Q) and wt ∼ N(0, R) are system and observational noises with diagonal covariance matri-
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ces, respectively. We define an entire set of time points T = {1, . . . , T}and the observed time

set Tobs (Tobs ⊂ T ).

4.2.2 Unscented Kalman Filter

In Eqs. (4.3) and (4.4), conditional probability densities P (xt|Yt−1), P (xt|Yt) and P (xt|YT )
can be non-Gaussian form, where Yt = (y1, . . . ,yt). Therefore, we apply UKF [16, 49, 51] to

approximately obtain these conditional probability densities. The procedure is explained below.

Prediction and Filtering Steps

Let xt|s and Vt|s be the expectation and the covariance matrix, given observational data Ys, at

time t. For t = 0, . . . , T − 1,

1. Select sigma points x
(n)
t|t (n = 0, . . . , 2p) as

x
(n)
t|t = xt|t, (n = 0), (4.5)

x
(n)
t|t = xt|t +

√
(p+ λ)Σ

(n)
t|t , (n = 1, . . . , p), (4.6)

x
(n)
t|t = xt|t −

√
(p+ λ)Σ

(n−p)
t|t , (n = p+ 1, . . . , 2p), (4.7)

where Σ
(n)
t|t is the nth column vector of Σt|t and λ = α2(p + κ) − p. Here, α2 = 3/10 and

κ = 0 were applied to set p+ λ = 3 [50].

2. Predict the next state of the generated sigma points x
(n)
t|t as x

(n)
t+1|t using the system equa-

tion of Eq. (4.3) without adding the system noise.

3. Calculate xt+1|t and Vt+1|t as

xt+1|t =

2p∑
n=0

W(n)
1 x

(n)
t+1|t, (4.8)

Σt+1|t =

2p∑
n=0

W(n)
2 (x

(n)
t+1|t − xt+1|t)(x

(n)
t+1|t − xt+1|t)

′ +Q, (4.9)

W(0)
1 =

λ

p+ λ
, (4.10)

W(0)
2 =

λ

p+ λ
+ 1− α2 + β, (4.11)

W(n)
1 =W(n)

2 =
1

2(p+ λ)
, (n = 1, . . . , 2p), (4.12)

where β is set 2 [48].
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4. In the combinatorial model, the observational equation of Eq. (4.4) is a linear function.

Then, we can apply the general Kalman filter algorithm [52, 60] to obtain the optimal

conditional expectation and covariance matrix as follows

xt+1|t+1 = xt+1|t +Σt+1|t+1R
−1(yt+1 − xt+1|t), (4.13)

Σt+1|t+1 = (R−1 +Σ−1
t+1|t)

−1. (4.14)

More details can be referred to [49,51].

Smoothing Step

In order to obtain the conditional expectation and covariance matrix of the hidden state given

full observational data YT , we apply the Rauch-Tung-Striebel (RTS) smoother for UKF [90].

The formulation of the RTS smoother is described as follows:

xt|T = xt|t +Kt(xt+1|T − xt+1|t−1), (4.15)

Σt|T = Σt|t +Kt(Σt+1|T − Σt+1|t−1)K
′
t, (4.16)

Kt = CtΣ
−1
t+1|t, (4.17)

Ct =

2p∑
n=0

W(n)
2 (x

(n)
t|t−1 − xt|t−1)(x

(n)
t+1|t − xt+1|t)

′. (4.18)

Since we have xT |T and ΣT |T after prediction and filtering steps, the above equations are recur-

sively applied for t = T − 1, . . . , 0.

4.2.3 Parameter Estimation Using EM-algorithm

Let XT = {x0, . . ., xT } be the set of state variables, and θ = {A, B, u, Q, R, µ0} be the

parameter vector. The log-likelihood of observational data is given by

logL = log

∫
P (x0)

∏
t∈T

P (xt|xt−1)
∏

t∈Tobs

P (yt|xt)dx1 . . . dxT , (4.19)

where P (x0) is a probability density ofN -dimensional Gaussian distributionsN(µ0,Σ0), P (xt|xt−1)

and P (yt|xt) can be probability densities of N -dimensional non-Gaussian distributions approxi-

mated by Eqs. (4.3) and (4.4) in Section 4.2.1 and the unscented transformation in Section 4.2.2.

In this chapter, we attempted to estimate the parameter vector θ by maximizing Eq. (4.19)

using the EM-algorithm [19]. Thus, the conditional expectation of the joint log-likelihood of the

complete data (XT , YT ) at the lth iteration

q(θ|θl) = E[logP (YT , XT |θ)|YT ,θl], (4.20)
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is iteratively maximized with respect to θ until convergence.

In the Expectation step, set conditional expectations of xt as

Vt =
∑
t∈T

2p∑
n=0

W(n)
2 x

(n)
t|Tx

(n)′

t|T , (4.21)

Vlag =
∑
t∈T

2p∑
n=0

W(n)
2 x

(n)
t|Tx

(n)′

t−1|T , (4.22)

Vt−1 =
∑
t∈T

2p∑
n=0

W(n)
2 x

(n)
t−1|Tx

(n)′

t−1|T , (4.23)

Φlag =
∑
t∈T

2p∑
n=0

W(n)
2 x

(n)
t|T vec(x

(n)
t−1|Tx

(n)′

t−1|T )
′, (4.24)

Φt−1 =
∑
t∈T

2p∑
n=0

W(n)
2 x

(n)
t−1|Tvec(x

(n)
t−1|Tx

(n)′

t−1|T )
′, (4.25)

Ψt−1 =
∑
t∈T

2p∑
n=0

W(n)
2 vec(x

(n)
t−1|Tx

(n)′

t−1|T )vec(x
(n)
t−1|Tx

(n)′

t−1|T )
′, (4.26)

st =
∑
t∈T

2p∑
n=0

W(n)
1 x

(n)
t|T , (4.27)

st−1 =
∑
t∈T

2p∑
n=0

W(n)
1 x

(n)
t−1|T , (4.28)

s2t−1 =
∑
t∈T

2p∑
n=0

W(n)
1 vec(x

(n)
t−1|Tx

(n)′

t−1|T )
′. (4.29)

In the Maximization-step, θl is updated to θl+1 = argmaxθ q(θ|θl). Let vlag,i, ϕlag,i and

ϕt−1,i be a transpose of the ith row vector of Vlag, Φlag and Φt−1, respectively. Then, θ is

updated as

aA
i = V A−1

t−1 (vA
lag,i − ϕA×B

t−1 bBi − uis
A
t−1), (4.30)

bBi = ΨB−1

t−1 (ϕ
B
lag,i − ϕA×B′

t−1 aA
i − uis

2B), (4.31)

u =
st −Ast−1 −Bs2

T
, (4.32)
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Q =
1

T

T∑
t=1

E[(xt −Axt−1 −Bvec(xt−1x
′
t−1)− u)

· (xt −Axt−1 −Bvec(xt−1x
′
t−1)− u)′|YT ], (4.33)

µ0 = x0|T , (4.34)

R =
1

T

∑
t∈Tobs

{(yt − xt|T )(yt − xt|T )
′ +Σt|T }, (4.35)

where A and B are active sets of elements for A and B, respectively. For example, aA
i is an

|A|-dimensional vector consisting of elements regulating the ith gene.

4.2.4 Network Restoration Algorithm

When an original gene regulatory networkMoriginal is given, the purpose is to find the model

Mbest that can best predict observational data. Here, the prediction ability of a model M is

evaluated using BIC [96] described by

BIC = −2 logL+D log ν, (4.36)

where D and ν are the number of samples and the non-zero parameters, respectively. The

derivation of BIC is briefly introduced in Chapter 2. Due to the high computational cost

involved in estimating the values of the parameters θ forM, we can not evaluate all candidate

models. Therefore, starting from Moriginal, one strategy is to sequentially evaluate candidate

models that are constructed by changing a part of the regulatory structure of the current model

Mcurrent of which prediction ability is the best among evaluated ones. In this paradigm, we

consider three operations, i.e., adding, deleting and replacing a regulation, which are shown in

Fig. 4.2, and the constraints addmax and delmax, which restrict the number of additional and

deleted regulations from Moriginal. Then, we propose a novel algorithm, which can efficiently

evaluate only highly possible candidates, for improving and extending GRNs to obtain Mbest

as concluded in Algorithms 2-4. In these algorithm, we consider a function for measuring the

possibility of the ModelM that is added or deleted a regulation to the ith gene fromMcurrent

as

e(M, i) = a′
iVt−1ai − 2vlag,iai + 2b′iϕ

′
t−1ai + 2uis

′
t−1ai. (4.37)

To measure the effectiveness of the candidate models when changing active sets, Eq. (4.37) of

which active sets are changed as those of the next candidate is calculated. Then, only for r

top models with respect to −e(M, i) for each i, the BIC scores are evaluated by estimating

the parameter values maximizing prediction ability for observational data using UKF and the

EM-algorithm. This procedure is shown in Fig. 4.3. Note that e(M, i) can be derived when

calculating argmaxai q(θ|θl).
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Add Edge Delete Edge Replace Edge

Current Network

Figure 4.2: The operations of changing the current network. We consider the three types of operations
for an improvement of GRN, i.e., ‘Add Edge’ (adding), ‘Delete Edge’ (deleting) and ‘Replace Edge’
(replacing). Under the constraints of addmax and delmax, these operations are recursively executed until
the network cannot be changed through these operations to decrease the BIC score.

Current Network

e(M ,i) = -10.22 e(M ,i) = -14.52 e(M ,i) = -15.12

Candidate M Candidate M Candidate M1 2 3

1 2 3

Estimate parameter values and the BIC score. 

Rank Candidates Regulating i th gene

Select r Top Candidates

i

i i i

Figure 4.3: A cartoon figure of the proposed algorithm. For the current network, the proposed algorithm
constructs candidates networks by adding, deleting and replacing edges and ranks them using e(M, i).
Then, only r top networks with respect to −e(M, i) are evaluated the BIC score by estimating the
parameter values.
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Algorithm 2 The proposed algorithm for improving GRNs based on the approximate posterior
probability.

1: Set r;
2: add←0; del←0; flag ← 0
3: BICcurrent ← the BIC score of the original model;
4: Mcurrent ←Moriginal;
5: while flag < N2 do
6: for i = 1 to N do
7: for j = 1 to N do
8: if Ai,j ofMcurrent = 0 then
9: changed← Execute sub-algorithm 1;

10: else
11: changed← Execute sub-algorithm 2;
12: end if
13: if changed then
14: flag ← 0;
15: else
16: flag ← flag + 1;
17: end if
18: if flag >= N2 then
19: break;
20: end if
21: end for
22: if flag >= N2 then
23: break;
24: end if
25: end for
26: end while
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Algorithm 3 Sub-algorithm 1

1: changed← FALSE;
2: Consider Mcandidate that is constructed from Mcandidate by setting a regulation to the ith

gene by the jth gene as an active element;
3: Estimate the parameter values and obtain the BIC score BICcandidate by the UKF and the

EM-algorithm;
4: if BICcurrent > BICcandidate and addmax > add then
5: SetMcandidate asMcurrent; BICcandidate ← BICcurrent;
6: changed← TRUE;
7: else
8: for i = 1 to N do
9: for k = 1 to r do

10: j ← the kth minimum element with respect to e(i, jcol) (jcol = 1, . . . , N) ofMcandidate;
11: if Ai,j ofMcandidate is 0 then
12: continue;
13: end if
14: if Ai,j ofMoriginal is 1 or addmax > add then
15: continue;
16: end if
17: Consider Mcandidate2 that is constructed from Mcandidate by setting a regulation to

the ith gene by the jth gene as a non-active set;
18: Estimate the parameter values and obtain the BIC score by the UKF and the EM-

algorithm;
19: end for
20: end for
21: if BICcurrent > the minimum BIC score among models calculated above then
22: SetMcurrent and BICcurrent as those of the minimum one;
23: changed← TRUE;
24: end if
25: end if
26: Set add and del as those of theMcurrent;
27: return changed;
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Algorithm 4 Sub-algorithm 2

1: changed← FALSE;
2: Consider Mcandidate that is constructed from Mcandidate by setting a regulation to the ith

gene by the jth gene as a non-active element;
3: Estimate the parameter values and obtain the BIC score BICcandidate by the UKF and the

EM-algorithm;
4: if BICcurrent > BICcandidate and delmax > del then
5: SetMcandidate asMcurrent; BICcandidate ← BICcurrent;
6: changed← TRUE;
7: else
8: for i = 1 to N do
9: for k = 1 to r do

10: j ← the kth minimum element with respect to e(i, jcol) (jcol = 1, . . . , N) ofMcandidate;
11: if Ai,j ofMcandidate is 1 then
12: continue;
13: end if
14: if Ai,j ofMoriginal is 0 or adddel > del then
15: continue;
16: end if
17: Consider Mcandidate2 that is constructed from Mcandidate by setting a regulation to

the ith gene by the jth gene as an active set;
18: Estimate the parameter values and obtain the BIC score by the UKF and the EM-

algorithm;
19: end for
20: end for
21: if BICcurrent > the minimum BIC score among models calculated above then
22: SetMcurrent and BICcurrent as those of the minimum one;
23: changed← TRUE;
24: end if
25: end if
26: Set add and del as those of theMcurrent;
27: return changed;
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4.3 Results

4.3.1 Comparison Analysis Using Synthetic Data of WNT5A and Yeast Net-

work

To show the effectiveness of the proposed algorithm, we used artificial time-course gene expres-

sion data from two synthetic networks of WNT5A [55] and a yeast cell cycle network [53] as

illustrated in Figs. 4.4 and 4.5, respectively. For each network, we generated two time-courses

consisting of T = {1, 2, . . . , 30} and {1, 2, . . . , 10, 12, . . . , 30} by using Eqs. (4.3) and (4.4). For

Eq. (4.3), the values of the parameters were determined between 0 and 1, and the system noise

was according to Gaussian distribution with a mean 0 and a variance 0.1. In Eq. (4.4), Gaussian

observational noise with a mean of 0 and a variance of 0.3 were added to these artificial data.

Note that the networks were used for the performance comparison in the previous study [78].

For this comparison, we applied (a) the proposed method, (b) a regression-based method

(DPLSQ) [78], (c) DPLSQ with the BIC [96], (d) Akaike information criterion (AIC) [1] to the

data sets. Here, since DPLSQ is based only on the least-square errors, it may infer many false

positives. Then, we modified the algorithm to use BIC and AIC. r in the proposed algorithm is

set 3.

For each data set, 10 trials were executed, for each of which the true network of Figs. 4.4

and 4.5 is randomly modified and given as an original network. Thus, a network obtained by

adding and deleting 5 edges from the true network was given as an original network and then

the (a)-(d) were applied to obtain the true network. We evaluated the average performance

of true positive (TP), false positive (FP), true negative (TN), false negative (FN), precision

rate (PR = TP
TP+FP), recall rate (RR = TP

TP+FN) and F-measure (=2PR·RR
PR+RR) over 10 trials for

each data. In contrast to a usual way, we counted TP when an altered edge was successfully

improved as the true model, FN when an altered edge was not improved, and FP when an edge in

the true model was changed in the improved model. The results of using the 4 time-courses are

summarized in Tables 4.1-4.4 (the proposed method is noted as ‘UKF-Completion’), respectively.

These results clearly show that the proposed algorithm has the highest performance as compared

to the other methods for all data sets. In particular, for non-equally spaced time-point data,

the proposed method could better infer true regulations than the previous methods since our

approach utilizes the hidden state and can handle non-observational time point.

Table 4.1: Comparison of the proposed method and DPLSQ using equally spaced artificial data from
WNT5A network.

PR RR F-measure TP FP TN FN
DPLSQ 0.580 0.290 0.386 2.9 2.1 87.9 7.1

DPLSQ (BIC) 0.677 0.670 0.673 6.7 3.2 86.8 3.3
DPLSQ (AIC) 0.700 0.650 0.673 6.5 2.8 87.2 3.5

UKF-Completion 0.760 0.760 0.760 7.6 2.4 87.6 2.4
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Figure 4.4: A real biological network termed WNT5A network [55], used for the comparison analysis.
Based on the network, the original networks are generated by randomly adding and deleting 5 edges.

YOX1
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CLN3

YHP1

CDC28

SWI6

SWI4

CLN1

CLB5

MBP1

Figure 4.5: A real biological network of yeast cell cycle from the KEGG database [53, 78] used for the
comparison analysis. Based on the network, the original networks are generated by randomly adding and
deleting 5 edges.
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Table 4.2: Comparison of the proposed method and DPLSQ using non-equally spaced artificial data from
WNT5A network.

PR RR F-measure TP FP TN FN
DPLSQ 0.540 0.270 0.360 2.7 2.3 87.7 7.3

DPLSQ (BIC) 0.520 0.520 0.520 5.2 4.8 85.2 4.8
DPLSQ (AIC) 0.523 0.49 0.506 4.9 4.5 85.5 5.1

UKF-Completion 0.720 0.720 0.720 7.2 2.8 87.2 2.8

Table 4.3: Comparison of the proposed method and DPLSQ using equally spaced artificial data from a
yeast cell cycle network.

PR RR F-measure TP FP TN FN
DPLSQ 0.600 0.300 0.400 3.0 2.0 88.0 7.0

DPLSQ (BIC) 0.597 0.590 0.593 5.9 4.0 86.0 4.1
DPLSQ (AIC) 0.600 0.600 0.600 6.0 4.0 86.0 4.0

UKF-Completion 0.650 0.650 0.650 6.5 3.5 86.5 3.5

4.3.2 Real Data Analysis Using Yeast Cell Cycle Network

As an application example of improving and extending literature-based networks, we dealt with

a yeast cell-cycle network from KEGG [53] and used the corresponding observational data [103].

By using time-course data including 25 genes of which regulatory relationships are represented

as red arrows in Fig. 4.6, and considering this as an original network, we attempted to improve

the network. However, since the network is classical and highly reliable in KEGG database, we

focused on the extension of the network using additional genes. Thus, we considered the network

consisting of these 25 genes and 38 additional candidate genes, which can have functions related

to a yeast cell cycle pathway, from SGD [15]. We did not set prior regulatory structure to these

38 genes and extended the KEGG-based network consisting of 25 genes by adding regulations

to these 38 genes (delmax = 0).

Consequently, 38 candidate genes were integrated in the KEGG-based yeast cell cycle net-

work as illustrated in Fig. 4.6. In this figure, the KEGG-based regulatory network consisting

of 25 genes was drawn as rectangles (gene) and red arrows (regulation), and newly estimated

relationships were drawn as circles (gene) and black chained arrows (regulation). Interestingly,

there exist many combinatorial regulations of which regulated genes have more than two reg-

ulations. Since these regulations can have non-zero values of the combinatorial effect bi,(j,k),

the results may not be obtained by linear models. Furthermore, some genes such as Y OX1

and Cdc6, becomes hub gene regulating many other genes and they are known as upper stream

genes regulating down stream genes on the KEGG database. These results show the possibility

of the causal relationships between them.
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Figure 4.6: A part of a yeast cell cycle network and candidate genes for extending the network. The
KEGG-based regulatory network consisting of 25 genes is drawn as rectangles (gene) and red arrows (reg-
ulation), and newly estimated relationships are drawn as circles (gene) and black chained arrows (regu-
lation).
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Table 4.4: Comparison of the proposed method and DPLSQ using non-equally spaced artificial data from
a yeast cell cycle network.

PR RR F-measure TP FP TN FN
DPLSQ 0.440 0.220 0.293 2.2 2.8 87.2 7.8

DPLSQ (BIC) 0.400 0.400 0.400 4.0 6.0 84.0 6.0
DPLSQ (AIC) 0.400 0.400 0.400 4.0 6.0 84.0 6.0

UKF-Completion 0.550 0.550 0.550 5.5 4.5 85.5 4.5

4.4 Discussion

We proposed a genomic data assimilation schema using a nonlinear simulation model for im-

proving and extending literature-based networks. The method can efficiently estimate parameter

values of a simulation model by using the EM-algorithm with UKF. Furthermore, the proposed

algorithm avoids to evaluate all possible candidates that are constructed by modifying the origi-

nal network and selects only plausible ones through measuring the effectiveness when modifying

the regulation of the current network for the data. Therefore, this schema makes it possible to

deal with many candidate networks and finds better networks for the data.

The performance of this approach was demonstrated by implementing artificial simulation

data from real biological networks termed WNT5A and a yeast cell cycle network. Consequently,

our proposed method can evaluate GRNs more accurately than could a previously developed

method (DPLSQ). In particular, since our method is based on the state space representation

using the hidden state for representing gene regulatory dynamics, the flexibility for the obser-

vational data, i.e., which can handle observational data with non-equally spaced time points,

can be ensured. These results indicated the high performance and adaptability of the proposed

method to improve and extend the original network using time-course observational data. As an

application example, using a part of a well-investigated yeast cell-cycle network from KEGG, we

applied the proposed method to extend the network by integrating additional candidate genes

from SGD [15]. Interestingly, we found hub genes regulating candidate genes that are indicated

as upstream genes in KEGG database. Since these are biologically related candidates of the

original networks, these extensions might be true regulations and thus should be confirmed by

biological experiments.

*This is a copy of an article published in the Journal of Computational Biology c⃝2014 [copyright

Mary Ann Liebert, Inc.]; [An Efficient Data Assimilation Schema for Restoration and Exten-

sion of Gene Regulatory Networks Using Time-course Observation Data] is available online at:

http://online.liebertpub.com.



Chapter 5

Genomic Data Assimilation Using a

Higher Moment Filtering Technique

for Restoration of Gene Regulatory

Networks

5.1 Background

GRNs are fundamental for sustaining complex biological systems in cells. Although a compre-

hensive understanding of intracellular systems is still far from complete, many findings regarding

intracellular systems have been published as a result of recent technological advances in biotech-

nology, e.g., microarray and Chip-Seq. By combining these findings, we can construct biological

simulation models in which the dynamics of biomolecules are described by mathematical equa-

tions, e.g., the Michaelis-Menten model [91] and S-system [92]. However, simulation results may

not match results from biological observations due to inaccurate or missing information about

intracellular systems.

In oder to infer unknown parts of biological systems, there exist roughly two major ap-

proaches, i.e., simulation model-based and statistical approaches. In constructing biological

simulation models, regulatory relationships among biomolecules are collected from the liter-

ature. To represent the regulatory systems, mathematical equations, often differential equa-

tions [18, 24, 91, 92], are given to describe the dynamic behavior of the involved biomolecules.

The parameter values of these simulation models have been estimated to be consistent with

the data by some computational methodologies. Several methods have been proposed to infer

regulatory structures [42,81], to reproduce the dynamic behavior of biological systems recorded

in the literature [59,73,79,83,85], and to improve published pathways so that they are consistent

with the data [39,40]. However, since differential equation-based approaches are computationally

intensive, when updating parameter values and simulation results simultaneously, they cannot

be applied to more than several genes when much of the regulatory structure is unknown.
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A statistical approach using more abstracted models, e.g., Bayesian networks [29,54,118,120]

and SSMs [9, 12, 43, 86], have been successfully applied to infer the structure of transcriptional

regulation using data from biological observations. Whereas purely data-driven methods need

to explore a large model space, some studies have further incorporated other information, e.g.,

literature-recorded pathways and TF information [7, 20, 22, 88, 109]. In contrast, these approx-

imations can generate false regulations; there is a trade-off relationship between accuracy and

computational ease. To overcome the problem, methods to improve and deconvolve networks,

which are inferred by some computational approaches, utilizing less abstract models to better

predict the data have been also proposed recently [10, 27, 78]. In following the direction, we

should apply models that can emulate the nonlinear dynamics of gene regulatory networks and

establish a method for estimating the parameter values that maximize the ability to predict the

data.

For this purpose, we proposed a novel data assimilation algorithm utilizing a simple nonlin-

ear model, termed the combinatorial transcription model [81, 110], and a state space represen-

tation [52, 101], to infer GRNs by restoring networks inferred by some GRNs inference meth-

ods or literature-derived networks. Since the nonlinearity results in generating non-Gaussian

posterior distributions of the hidden state variables, we applied the unscented Kalman filter

(UKF) [16, 49, 51] that can efficiently calculate the approximated posterior distributions as

Gaussian distributions. However, UKF cannot satisfy the requirements for estimating accurate

parameter values of the model; thus the first four moments of the posterior distributions of the

hidden states should be retained. To address this problem, we developed a novel method, termed

a higher-moment ensemble particle filter (HMEnPF), which can retain the first two moments

and the third and fourth central moments throughout the prediction, filtering, and smoothing

steps. Combining UKF and HMEnPF, the proposed algorithm improves and extends the original

model, which are derived from the literature and some GRNs inference algorithms, based on the

nonlinear state space model. A criterion that can rank candidate models, which are generated

by partially changing the current best model before evaluating them, enables us to evaluate

only plausible candidates within large model space to explore the best model. Furthermore,

the combinatorial transcription model was extended so that the model can handle additional

biomolecules such as drugs.

To show the effectiveness of the proposed algorithm, we first used synthetic data and com-

pared the proposed algorithm to previous methods, GeneNet [80, 94] based on an empirical

graphical Gaussian model (GGM) and G1DBN [63] based on dynamic Bayesian networks us-

ing first order conditional dependencies, and the proposed algorithm using UKF only. For the

comparison, synthetic data with 30 time-points were generated for a WNT5A [55] and a yeast-

cell-cycle network [53]. As an application example, we prepared the time-course microarray data

after stimulating rat skeletal muscle with corticosteroid, which were downloaded from the GEO

database (GSE490). For this experiment, we utilized corticosteroid pharmacogenomics [5, 115],

a previously defined regulatory structure for rat skeletal muscle [100], TF information from

ITFP [122] and the original network inferred by G1DBN. Consequently, we proposed candidate
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pathways for the extension of corticosteroid-related pathways.

5.2 Methods

5.2.1 A State Space Representation of Combinatorial Transcription Model

Under the framework of data assimilation, in order to combine the simulation results with

the observed experimental data, we apply a state space representation of the combinatorial

transcription model given by

xt+1 = Axt +Bvec(xtx
′
t) + u+ vt, (5.1)

yt = xt +wt, (5.2)

that are introduced in Chapter 4. Note that A and B should be sparse matrices, and we also

consider an active set of elements Bi (i = 1, . . . , p), which are sets of non-zero columns in the

ith row of B.

5.2.2 Incorporation of Biomolecules Affecting Biological Systems

Although the regulatory system of Eqs. (5.1) and (5.2) can only represent dynamic regulation

among genes, other biomolecules, such as drugs, can affect the regulatory system. To address

these cases, we further consider a term representing the concentration of other biomolecules, as

represented by

xt = Axt−1 +Bvec(xtx
′
t) +Gdt−1 + u+ vt, (5.3)

where dt is an M -dimensional vector containing the concentration of the biomolecules at the

tth time point, G = (g1, . . . , gp)
′ is an p×M matrix and gi = (gi,1, . . . , gi,M )′ (i = 1, . . . , p) is

an M -dimensional vector representing their regulatory effects on the ith gene. As with Ai and

Bi, we consider the active sets of elements Gi for the ith row of the drug effect G. This model

of Eq. (5.3) is exemplified in Fig. 5.1.

5.2.3 A Higher-Moment Ensemble Particle Filter

In Eqs. (5.1) and (5.2), conditional probability densities P (xt|Yt−1), P (xt|Yt) and P (xt|YT ) can
be non-Gaussian form, where Yt = (y1, . . . ,yt). Therefore, we applied an ensemble approxima-

tion, which is a type of Monte Carlo approach, to approximate these densities. In this approach,

for example, p(xt) is approximated by

p(xt) =
1

N

N∑
n=1

δ(xt − x
(n)
t ), (5.4)
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Synthesis Degradation

Gene i
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Figure 5.1: A cartoon figure of the combinatorial transcription model regarding the ith gene. A gene
undergoes synthesis and degradation processes, and its synthesis process is regulated through individual
effects ai,j , ai,k and a combinatorial effect bi,(j,k).

where x
(n)
t is the nth sample from p(xt), N is the number of samples and δ is a Dirac delta func-

tion. A sample x
(n)
t and a set of samples {x(n)

t } are called particle and ensemble, respectively.

Previously, many types of ensemble approximation methods have been developed to obtain con-

ditional distributions in a state space model, e.g., the ensemble Kalman filter (EnKF) [25] and

the particle filter (PF) [36,57]. Here, our requirements for this study are the following; (i) par-

ticles should survive through filtering steps even for the high-dimensional hidden variables xt

and the parameter vector θ, (ii) the third and fourth moments of probability densities should be

kept in order to optimize θ as explained in the next sub-section. To meet these requirements,

we extended a method termed the ensemble particle filter (EnPF) [6, 82], which can keep the

first two moments through filtering steps, and developed a novel method termed a HM-EnPF

that can additionally retain third and fourth central moments without reducing particles. The

procedure of the proposed method is explained below.

5.2.3.1 Prediction Step

Let x
(n)
t|t be a sample from a conditional probability density P (xt|Yt). Initially, generate particles

x
(n)
0|0 ∼ p(x0) for n = 1, . . . , N . Then, for t = 1, . . . , T ,

1. Generate particles v
(n)
t ∼ N(0, Q) for n = 1, . . . , N .

2. Calculate x
(n)
t+1|t by applying x

(n)
t|t and v

(n)
t to Eq. (5.1) for n = 1, . . . , N .

5.2.3.2 Filtering Step

It consists of the following three sub-steps. At tth (t ∈ Tobs) time step,

1. Particle Filter Step
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(a) Resample x̂
(n)
t|t according to

p(xt|Y t) =
1∑

ṅ p(yt|x
(ṅ)
t|t−1)

N∑
n=1

p(yt|x
(n)
t|t−1)δ(xt − x

(n)
t|t−1). (5.5)

(b) Calculate first and second moments µt|t = E[{x̂(n)
t|t }] and Vt|t = V ar[{x̂(n)

t|t }], respec-
tively.

(c) Standardize x̂
(n)
t|t as

ẑ
(n)
t|t = V

− 1
2

t|t · (x̂
(n)
t|t − µt|t). (5.6)

(d) Calculate third and fourth central moments m̂
(3)
t|t = E[{ẑ(n)

t|t }
3] and m̂

(4)
t|t = E[{ẑ(n)

t|t }
4],

respectively.

2. Ensemble Kalman Filter Step

(a) Generate particles w
(n)
t ∼ N(0, R) for n = 1, . . . , N .

(b) Calculate Kalman gain

Kt = Vt|t−1(Vt|t−1 +Rt)
−1, (5.7)

where Vt|t−1 = V ar[{x(n)
t|t−1}] and Rt = V ar[{w(n)

t }].

(c) Calculate x̃
(n)
t|t as

x̃
(n)
t|t = x

(n)
t|t−1 +Kt(yt − x

(n)
t|t−1 +w

(n)
t ). (5.8)

(d) Calculate first and second moments µ̃t|t = E[{x̃(n)
t|t }] and Ṽt|t = V ar[{x̃(n)

t|t }], respec-
tively.

(e) Standardize x̃
(n)
t|t as

z̃
(n)
t|t = Ṽ

− 1
2

t|t · (x̃
(n)
t|t − µ̃t|t). (5.9)

(f) Calculate third and fourth central moments m̃
(3)
t|t = E[{z̃(n)

t|t }
3] and m̃

(4)
t|t = E[{z̃(n)

t|t }
4],

respectively.

3. Merging Step

Here, we needed to use a standardization function S(γ,α,β) that transforms a normal

random vector γ into a normalized random vector x whose the third and fourth central

moments are α and β, respectively. Since a previous study [121] had proposed a stan-

dardization function satisfying the requirements, we applied this function as S(γ,α,β).
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Then, we obtained x
(n)
t|t as

x
(n)
t|t = V̂

1
2

t|tS(z
(n)
t , m̂

(3)
t|t , m̂

(4)
t|t ) + µ̂t|t, (5.10)

z
(n)
t = S(z̃

(n)
t|t , m̃

(3)
t|t , m̃

(4)
t|t )

−1. (5.11)

5.2.3.3 Smoothing Step

The smoothing step used for calculating xt|s (s > t) was essentially the same as the filtering

step. The smoothing step also consists of the following three sub-steps. At tth (t ∈ Tobs) time

step, for s = t+ 1, . . . , T ,

1. Particle Filter Step

(a) Resample x̂
(n)
t|s according to

p(xt|Y s) =
1∑

ṅ p(ys|x
(ṅ)
s|s−1)

N∑
n=1

p(ys|x
(n)
s|s−1)δ(xt − x

(n)
t|s−1), (5.12)

where δ(·) is a Dirac delta function.

(b) Calculate first and second moments µt|s = E[{x̂(n)
t|s }] and Vt|s = V ar[{x̂(n)

t|s }], respec-
tively.

(c) Standardize x̂
(n)
t|s as

ẑ
(n)
t|s = V

− 1
2

t|s · (x̂
(n)
t|s − µt|s). (5.13)

(d) Calculate third and fourth central moments m̂
(3)
t|s = E[{ẑ(n)

t|s }
3] and m̂

(4)
t|s = E[{ẑ(n)

t|s }
4],

respectively.

2. Ensemble Kalman Filter Step

(a) Calculate Kalman gain

Ks =
1

N − 1
{

N∑
n=1

(x
(n)
t|s−1 − E[{x(n)

t|s−1}])(x
(n)
s|s−1 − E[{x(n)

s|s−1}])
′}(Vs|s−1 +Rs)

−1.

(5.14)

(b) Calculate x̃
(n)
t|s as

x̃
(n)
t|s = x

(n)
t|s−1 +Ks(ys − x

(n)
s|s−1 +w(n)

s ). (5.15)
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(c) Calculate first and second moments µ̃t|s = E[{x̃(n)
t|s }] and Ṽt|s = V ar[{x̃(n)

t|s }], respec-
tively.

(d) Standardize x̃
(n)
t|s as

z̃
(n)
t|s = Ṽ

− 1
2

t|s · (x̃
(n)
t|s − µ̃t|s). (5.16)

(e) Calculate third and fourth central moments m̃
(3)
t|s = E[{z̃(n)

t|s }
3] and m̃

(4)
t|s = E[{z̃(n)

t|s }
4],

respectively.

3. Merging Step

Calculate x
(n)
t|s as

x
(n)
t|s = V̂

1
2

t|sS(z
(n)
t , m̂

(3)
t|s , m̂

(4)
t|s ) + µ̂t|s, (5.17)

z
(n)
t = S(z̃

(n)
t|s , m̃

(3)
t|s , m̃

(4)
t|s )

−1. (5.18)

5.2.4 Parameter Estimation Using EM-algorithm

Let XT = {x0, . . ., xT } be the set of state variables and θ = {A, B, G, u, Q, R, µ0} be the

parameter vector. The log-likelihood of observation data is given by

logL = log

∫
P (x0)

∏
t∈T

P (xt|xt−1)
∏

t∈Tobs

P (yt|xt)dx1 . . . dxT , (5.19)

where P (x0) is a probability density ofN -dimensional Gaussian distributionsN(µ0,Σ0), P (xt|xt−1)

and P (yt|xt) can be probability densities of N -dimensional non-Gaussian distributions obtained

by ensemble approximation.

In this study, we estimate the parameter values θ by maximizing Eq. (5.19) using the

EM-algorithm. Thus, the conditional expectation of the joint log-likelihood of the complete

data (XT , YT ) at lth iteration

q(θ|θl) = E[logP (YT , XT |θ)|YT ,θl], (5.20)

is iteratively maximized with respect to θ until convergence.
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In the Expectation-step, q(θ|θl) is calculated by

q(θ|θl) = −
1

2
tr{V −1

0|0 (V0|t + (x0|t − µ0)(x0|t − µ0)
′)} − 1

2
log |Σ0|t|

− 1

2

T∑
t=1

tr{Q−1E[(xt − Fxt−1 −Bvec(xt−1x
′
t−1)−Gdt−1 − u)

· (xt − Fxt−1 −Bvec(xt−1x
′
t−1)−Gdt−1 − u)′|YT ]}

− T

2
log |Q| − 1

2
tr{R−1

T∑
t=1

{(yt − xt|t)(yt − xt|t)
′ + V ′

t|t)} −
T

2
log |R| −N(T +

1

2
) log 2π.

(5.21)

In the Maximization-step, θl is updated to θl+1 = argmaxθ q(θ|θl). At first, set conditional

expectations of xt as

Vt =
1

N

∑
t∈T

N∑
n=1

x
(n)
t|Tx

(n)′

t|T , (5.22)

Vlag =
1

N

∑
t∈T

N∑
n=1

x
(n)
t|Tx

(n)′

t−1|T , (5.23)

Vt−1 =
1

N

∑
t∈T

N∑
n=1

x
(n)
t−1|Tx

(n)′

t−1|T , (5.24)

Φlag =
1

N

∑
t∈T

N∑
n=1

x
(n)
t|T vec(x

(n)
t−1|Tx

(n)′

t−1|T )
′, (5.25)

Φt−1 =
1

N

∑
t∈T

N∑
n=1

x
(n)
t−1|Tvec(x

(n)
t−1|Tx

(n)′

t−1|T )
′, (5.26)

Ψt−1 =
1

N

∑
t∈T

N∑
n=1

vec(x
(n)
t−1|Tx

(n)′

t−1|T )vec(x
(n)
t−1|Tx

(n)′

t−1|T )
′, (5.27)

Elag =
1

N

∑
t∈T

N∑
n=1

x
(n)
t|Td

′
t−1, (5.28)

Et−1 =
1

N

∑
t∈T

N∑
n=1

x
(n)
t−1|Td

′
t−1, (5.29)

E2
t−1 =

1

N

∑
t∈T

N∑
n=1

vec(x
(n)
t−1|Tx

(n)′

t−1|T )d
′
t−1, (5.30)



5.2. Methods 87

z =

T∑
t∈T

dt−1, (5.31)

Z =

T∑
t∈T

dt−1d
′
t−1. (5.32)

st =
1

N

∑
t∈T

N∑
n=1

x
(n)
t|T , (5.33)

st−1 =
1

N

∑
t∈T

N∑
n=1

x
(n)
t−1|T , (5.34)

s2t−1 =
1

N

∑
t∈T

N∑
n=1

vec(x
(n)
t−1|Tx

(n)′

t−1|T ). (5.35)

Let vlag,i, ϕlag,i and ϕt−1,i be a transpose of the ith row vector of Vlag, Φlag and Φt−1,

respectively. Then, θ is updated as

aAi
i = V Ai

−1

t−1 (vAi
lag,i − ϕAi×Bi

t−1 bBi
i − EAi×Gi

t−1 gGi
n − uis

Ai
t−1), (5.36)

bBi
i = Ψ

B−1
i

t−1 (ϕ
Bi
lag,i − ϕAi×Bi

′

t−1 aAi
i − E2Bi×Gi

t−1 gGi
i − uis

2Bi ), (5.37)

gGi
i = ZGi

−1

(eGi
lag,n − E

Ai×G′
i

t−1 aAi
n − E2Bi×Gi

′

t−1 bBi
i − unz

Gi) (5.38)

u =
st −Ast−1 −Bs2 −Gz

T
, (5.39)

Q =
1

T

T∑
t=1

E[(xt −Axt−1 −Bvec(xt−1x
′
t−1)−Gdt−1 − u)

· (xt −Axt−1 −Bvec(xt−1x
′
t−1)−Gdt−1 − u)′|YT ], (5.40)

µ0 = x0|T , (5.41)

R =
1

T

∑
t∈Tobs

{(yt − xt|t)(yt − xt|t)
′ + Vt|t}, (5.42)

where A, B and G are active sets of elements for A, B and G, respectively. For example, aA
i is

an |A|-dimensional vector consisting of elements regulating the ith gene.

5.2.5 Network Restoration Algorithm

We consider an algorithm to explore the best model by sequentially evaluating candidate models

generated from the current best modelMcurrent by partially modifying the regulation. Briefly,

given the original model Moriginal, we attempt to sequentially create and evaluate candidates

that are generated by adding, deleting and replacing regulatory components of Mcurrent until

the best model is no longer updated. The conceptual view is illustrated in Fig. 5.2.

Due to the heavy computational cost to evaluate the model by HMEnPF, we proposed a

novel algorithm for reconstructing GRNs with combining UKF and HMEnPF as described in
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Add/DeleteAdd/Delete

Replace

Replace

Add/Delete

Add/Delete

Figure 5.2: A conceptual view of the proposed algorithm. The proposed algorithm performs three ways
to explore model space, thus, adding, deleting and replacing a regulation from the current best model.
Starting from the original model, the proposed algorithm tries to find the best model with respect to the
BIC score.

A

Algorithms 5-9 and illustrated in Fig 5.3. In these algorithms, we first evaluate the candidates

comprehensively by UKF and then evaluate the r1,2 top candidates with respect to ea, eb and

eg, which are the effectiveness of individual, combinatorial and drug effects on to the ith gene

under the modelM, described as

ea(M, i) = a′
iVt−1ai − 2vlag,iai + 2b′iϕ

′
t−1ai + 2g′

iE
′
t−1ai + 2uis

′
t−1ai, (5.43)

eb(M, i) = b′iΨt−1bi − 2ϕ′
lag,ibi + 2a′

iϕt−1bi + 2g′
iE

2′
t−1bi + 2uis

2′
t−1bi, (5.44)

eg(M, i) = g′
iZgi − 2e′lag,igi + 2a′

iEt−1gi + 2b′iE
2
t−1gi + 2uiz

′gi, (5.45)

respectively. It should be noted that the functions are derived when calculating argmaxai q(θ|θl),

argmaxbi
q(θ|θl) and argmaxgi

q(θ|θl), respectively.

Note that, when the systems include G, regulations by the drugs are inferred in the same way

as A in Algorithms 5-9. In Results section, we set {r1, r2, addmax, delmax} = {5, 5,+∞,+∞}.

Algorithm 5 The proposed algorithm for improving GRNs utilizing UKF and HMEnPF.

1: Set addmax, delmax, r1 and r2;
2: Define that add and del are the number of added and deleted regulations from Moriginal,

respectively;
3: flag ← 0; c← 0;Mcurrent ←Moriginal;
4: BICcurrent ← the BIC score of the original model;
5: Execute the first phase of the proposed algorithm (Algorithm 2)
6: Execute the second phase of the proposed algorithm (Algorithm 3)
7: OutputMcurrent
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Algorithm 6 The first phase of the proposed algorithm.

1: flag ← 0;
2: c← 0;
3: while flag < 2 do
4: for i = 1 to p do
5: for k = 1 to r1 do
6: if c (mod2) = 0 and Ai,j ofMcurrent = 0 and add < addmax then
7: j ← the kth minimum element with respect to e(i, jcan) (jcan /∈ Ai) ofMcurrent;
8: Consider M that is constructed from Mcurrent by setting a regulation to the ith

gene by the jth gene as included in the active set;
9: else if c (mod2) = 1 and Ai,j ofMcurrent = 1 and del < delmax then

10: j ← the kth minimum element with respect to e(i, jcan) (jcan ∈ Ai) ofMcurrent;
11: Consider M that is constructed from Mcurrent by setting a regulation to the ith

gene by the jth gene as not included in the active set;
12: end if
13: Estimate the parameter values and obtain the BIC score ofM by UKF;
14: end for
15: end for
16: Estimate the parameter values and obtain the BIC score of the top r2 candidates by

HMEnPF;
17: if BICcurrent > the minimum BIC score among models calculated above then
18: SetMcurrent and BICcurrent as those of the minimum one;
19: flag ← 0;
20: else
21: flag ← flag + 1;
22: end if
23: c← c+ 1;
24: end while

Original Network

First Phase Second Phase

Entire Algorithm

Add/Delete Add/Delete/Replace

sub-algorithm1
sub-algorithm2

Improved Network

Figure 5.3: A procedure of exploring the best model using the proposed algorithm. The proposed
algorithm (Algorithm 5) consists of two phases (Algorithms 6 and 7) and the second phase consists of
two sub-algorithms (Algorithms 8 and 9). Starting from the original model, the proposed algorithm tries
to explore the best model.
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Algorithm 7 The second phase of the proposed algorithm.

1: flag ← 0;
2: while flag < p2 do
3: for i = 1 to p do
4: for j = 1 to p do
5: if Ai,j ofMcurrent = 1 then
6: changed← Execute sub-algorithm 1(i, j);
7: end if
8: if changed then
9: flag ← 0;

10: Execute sub-algorithm 2;
11: else
12: flag ← flag + 1;
13: end if
14: changed← FALSE;
15: if flag >= p2 then
16: break;
17: end if
18: end for
19: if flag >= p2 then
20: break;
21: end if
22: end for
23: end while
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Algorithm 8 Sub-algorithm 1(iorig, jorig).

1: changed← FALSE;
2: SetMcandidate asMcurrent with deleting a regulation to the iorigth gene by the jorigth gene;
3: Estimate the parameter values and obtain the BIC score BICcandidate by HMEnPF;
4: if BICcurrent > BICcandidate and delmax > del then
5: SetMcandidate asMcurrent; BICcandidate ← BICcurrent;
6: changed← TRUE;
7: else
8: for i = 1 to p do
9: for k = 1 to r1 do

10: j ← the kth minimum element with respect to e(i, jcan) (jcan /∈ Ai) ofMcandidate;
11: Consider Mcandidate that is constructed from Mcandidate by setting a regulation to

the ith gene by the jth gene as included in the active set;
12: if addmax < add or delmax < del ofMcandidate then
13: continue;
14: end if
15: Estimate the parameter values and obtain the BIC score by UKF;
16: end for
17: end for
18: Estimate the parameter values and obtain the BIC score of the top r2 candidates by

HMEnPF;
19: if BICcurrent > the minimum BIC score among candidate models calculated above then
20: SetMcurrent and BICcurrent as those of the minimum one;
21: changed← TRUE;
22: end if
23: end if
24: return changed;
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Algorithm 9 Sub-algorithm 2.

1: while TRUE do
2: for i = 1 to p do
3: for k = 1 to r do
4: j ← the kth minimum element with respect to e(i, jcan) (jcan /∈ Ai) ofMcurrent;
5: if Ai,j ofMcurrent = 0 and add < addmax then
6: Consider M that is constructed from Mcurrent by setting a regulation to the ith

gene by the jth gene as included in the active set;
7: Estimate the parameter values and obtain the BIC score ofM by UKF;
8: end if
9: end for

10: end for
11: Estimate the parameter values and obtain the BIC score of the top r2 candidates by

HMEnPF;
12: if BICcurrent > the minimum BIC score among models calculated above then
13: SetMcurrent and BICcurrent as those of the minimum one;
14: else
15: break;
16: end if
17: end while

5.3 Results

5.3.1 Comparison Using Synthetic Data

To show the effectiveness of the proposed method, we prepared artificial time-course gene ex-

pression data based on the synthetic networks, WNT5A [55] and the yeast cell cycle [53], as

illustrated in Figs. 4.4 and 4.5, respectively. For each network, we generated a time-course

(T = {1, 2, . . . , 30}) by using Eqs. (5.1) and (5.2). The values of the parameters A and B in

Eq. (5.1) were determined between 0 and 1, and the system noise vt was generated accord-

ing to a Gaussian distribution with a mean 0 and a variance 0.1. For Eq. (5.2), we generated

Gaussian observational noise with a mean of 0 and a variance of 0.3 and added to synthetic sim-

ulation data. For the original networks to be improved by the proposed algorithm, we utilized

GeneNet [80,94] based on an empirical graphical Gaussian model (GGM) and G1DBN [63] based

on dynamic Bayesian networks using first order conditional dependencies. Then, the original

and improved networks were evaluated by true positive (TP), false positive (FP), true nega-

tive (TN), false negative (FN), precision rate (PR = TP
TP+FP), recall rate (RR = TP

TP+FN) and

F-measure (=2PR·RR
PR+RR). Note that, since GeneNet infers undirected regulations between genes,

we evaluated the results using undirected true networks. In addition, to apply the network

inferred by GeneNet as an original network for the proposed algorithm, we generated networks

in which regulations was prepared as follows; (i) a true directed regulation was set when an

inferred undirected regulation was correct and (ii) a false directed regulation of which direction

was randomly selected was set when an inferred undirected regulation was incorrect. Here, to

clarify the significance of HMEnPF, we also showed the results of the proposed algorithm using
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UKF only. The results are summarized in Tables 5.1-5.4.

Table 5.1: Comparison of the proposed method, that of using UKF, and G1DBN fromWNTA5A network,
where networks inferred by G1DBN were used as the original networks for the former two methods.

PR RR F-measure TP FP TN FN
G1DBN 0.730 0.633 0.679 19 7 53 11
UKF 0.778 0.700 0.737 21 6 54 9

HMEnPF 0.786 0.733 0.759 22 6 54 9

Table 5.2: Comparison of the proposed method, that of using UKF, and GeneNet fromWNTA5A network,
where networks inferred by GeneNet were used as the original networks for the former two methods.

PR RR F-measure TP FP TN FN
GeneNet 0.500 0.433 0.464 13 13 47 17
UKF 0.656 0.700 0.677 21 11 49 9

HMEnPF 0.710 0.733 0.721 22 9 51 8

Table 5.3: Comparison of the proposed method, that of using UKF, and G1DBN from a yeast cell-cycle
network, where networks inferred by G1DBN were used as the original networks for the former two
methods.

PR RR F-measure TP FP TN FN
G1DBN 0.556 0.577 0.567 15 12 52 11
UKF 0.750 0.692 0.720 18 6 58 8

HMEnPF 0.730 0.730 0.730 19 7 57 7

The results indicate that the proposed methods using HMEnPF and only UKF could outper-

form G1DBN and GeneNet, and the proposed algorithm showed better performance than that

of using UKF only. This concludes that retaining higher moment information can improve the

accuracy of approximation and estimate correct parameter values. Additionally, we recognized

that the performance of the proposed algorithm strongly depends on the accuracy of the original

network. Thus, to obtain better results, we should carefully construct original networks or select

inference methods for creating the original network.

5.3.2 Inference Using Real Data

As an application example, we analyzed microarray time-course gene expression data from rat

skeletal muscle [5,115]. The microarray data were downloaded from the GEO database (GSE490).

The time-course gene expression data was measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12,

18, 30, 48, and 72 [h] (16 time points) after stimulation of corticosteroid, but we removed data

at 48 and 72[h] (steady state profiles) for computational efficiency. The data at time 0 represent

controls (untreated). There were two, three, or four replicated observations for each time point.

Since corticosteroid pharmacokinetics/dynamics in skeletal muscle have been established

based on differential equations [115] as shown in Fig. 3.11, the time-dependent concentration of
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Table 5.4: Comparison of the proposed method, that of using UKF, and GeneNet from a yeast cell-cycle
network, where networks inferred by GeneNet were used as the original networks for the former two
methods.

PR RR F-measure TP FP TN FN
GeneNet 0.375 0.230 0.286 6 10 54 20
UKF 0.680 0.654 0.667 17 8 56 9

HMEnPF 0.730 0.730 0.730 19 7 57 7

corticosteroid in nucleus in rat skeletal muscle dt can be obtained. The details are explained in

Chapter 3.3.2.

Furthermore, corticosteroid catabolic/anabolic processes in rat skeletal muscle have been

partially established [100]; thus, we handled gene (i) TFs, Trim63, Akt1, Akt2, Mstn, Mtor,

Irs1, and (ii) non-TFs, Akt3, Anxa3, Bcat2, Bnip3, Foxo1, Igf1, Igf1r, Pik3c3, Pik3cb, Pik3cd,

Pik3c2g, Rheb, Slc2a4 with their regulatory relationships. Additionally, we handled genes (iii)

TFs, Cebpb, Cebpd, Gpam, Srebf1 and (iv) non-TFs, Rxrg, Scarb1, Scd, Gpd2, Mapk6, Ace, Ptpn1,

Ptprf, Edn1, Agtr1a, Ppard, Hmgcs2, Serpine1, Il6r, Mapk14, Ucp3 and Pdk4 that are suggested

as corticosteroid related genes [5]. Note that the microarray (GSE490) does not include three

genes in the original pathway [100], Redd1, Bcaa and Klf15. In summary, we handled the time-

dependent concentration of corticosteroid in nucleus, these 40 genes (shown in Table 5.5) and

an original network that was inferred by G1DBN with regulatory relationships among (i) and

(ii). Note that TF information was derived from ITFP [122].

Table 5.5: Sets of pharmacogenomic genes handled in the real data experiment.
Gene Set Literature [115]/ [5] TF candidate

(i) Trim63, Akt1, Akt2, Mstn, Irs1 ◦/- ◦
(ii) Akt3, Anxa3, Bcat2, Bnip3, Foxo1, Igf1, Igf1r, Mtor ◦/- -

Pik3c3, Pik3cb, Pik3cd, Pik3c2g, Rheb, Slc2a4
(iii) Cebpb, Cebpd, Gpam, Srebf1 -/◦ ◦

Rxrg, Scarb1, Scd, Gpd2, Mapk6, Ace, Ptpn1
(iv) Ptprf, Edn1, Agtr1a, Ppard, Hmgcs2, Serpine1 -/◦ -

Il6r, Mapk14, Ucp3, Pdk4

Consequently, we obtained the improved network as illustrated in Fig. 5.4. A purple circle,

blues circles, and green circles represent corticosterid, TF candidates and non-TF candidates,

respectively. In the center of this figure, there exist corticosteroid regulations to several TF

and nonTF genes and regulatory effects transmit to down stream genes of TF candidates genes.

Since some combinatorial regulations were inferred, it is conceivable that higher moment ap-

proximation can affect the estimation results beyond linear models.
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Figure 5.4: An inferred network of corticosteroid pharmacogenomics in rat skeletal muscle by the proposed
algorithm. Since a part of the pharmacogenomic system has been investigated previously, we inferred
the relationships incorporating known pathways (red dotted arrows) and related genes [100,115], where a
purple circle, blues circles and green circles represent corticosterid, TF candidates and non-TF candidates,
respectively.
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5.4 Discussion

In this chapter, we developed a novel approach to restore original GRNs to be consistent with

time-course mRNA expression data based on the combinatorial transcription model. Since we

applied a state space representation with the nonlinear system equation in the context of data as-

similation, the posterior distributions of the hidden variables can be non-Gaussian distributions.

In contrast to the previous approaches using particle filter algorithm, Gaussian approximation

and regression-based solutions, our proposed approach, HMEnPF, can retain the first, second,

third and fourth central moments through filtering steps to estimate near optimal parameter

values by the EM-algorithm.

According to the comparison results using two synthetic data based on the real biological

pathways, the proposed method successfully explored better models than previous methods,

G1DBN and GeneNet, considering linear relevance. Moreover, the proposed algorithm using

HMEnPF outperformed that of using UKF. This concludes that HMEnPF retaining parts of

higher moment information can improve the accuracy of the estimation of the parameter values

beyond unscented approximation (that cannot retain any moment through filtering steps based

on Gaussian approximation). Through the experimental results, we also observed that the

performance of the restoration algorithm strongly depends on the original network, which was

prepared by literature information or some GRNs inference methods. Thus, one of significant

points is to select methods to infer the original network.

As an application example, we prepared corticosteroid pharmacogenomic pathways in rat

muscle that have been investigated and established a part of regulatory relationships and related

genes. Additionally, the intracellular concentration of corticosteroid that directly/indirectly

affects gene expression can be obtained by the previously developed differential equations and

TF information for rat genes can also be utilized. In summary, we added the time-depending

concentration of corticosteroid to the model and inferred the regulatory relationships among

40 genes and corticosteroid with fixing the established pathways and restricting that only TF

candidates can regulate other genes. G1DBN was employed to construct the original model

for the proposed method. Consequently, several combinatorial regulations and regulations by

corticosteroid were inferred by extending the original network. Since previous linear models may

not be able to infer these regulations, the proposed method can be valuable to restore inferred

and literature-based networks to be consistent with the data.



Chapter 6

Comprehensive Pharmacogenomic

Pathway Screening by Data

Assimilation

6.1 Background

Construction and simulation of biological pathways are crucial steps in understanding complex

networks of biological elements in cells [59, 72, 77, 79, 108, 113, 117]. To construct simulatable

models, structures of networks and chemical reactions are collected from existing literature and

the values of parameters in the model are set based on the results of biological experiments or

estimated based on observed data by some computational method [79]. However, it is possible

that there are some missing relationships or elements in the literature-based networks. Therefore,

we need to develop a computational strategy to improve a prototype model and create better

ones that can predict biological phenomena.

To propose novel networks of genes, statistical graphical models including Bayesian networks

[54] and vector autoregressive models [33, 98] have been applied to gene expression data. An

advantage of these methods is that we can find networks with a large number of genes and

analyze them by a viewpoint of systems. However, due to the noise and the limited amount of

the data, some parts of the networks estimated by these methods are not biologically reasonable

and cannot be validated. In this chapter, we focus on another strategy. Unlike the statistical

methods, our method can create a set of extended simulatable models from prototype literature-

based models.

There are two key points in our proposed strategy: One is that various structures of candidate

simulation models are systematically generated from the prototypes. The other is that, for

each created model, the values of parameters are automatically estimated by data assimilation

technique [79, 117]; the values of parameters will be determined by maximizing the prediction

capability of the model. For each of simulation models, by using data assimilation technique, we

can discover that which genes are appropriately predicted their temporal expression patterns by
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Table 6.1: Parameter Setting for the core model and for the constructed pharmacogenomic models.

Fixed Parameter Value Unit

ks Rm 2.90 fmol/g/h
kd Rm 0.1124 fmol/g/h

IC50 Rm 26.2 fmol/mg
kon 0.00329 l/nmol/h
kT 0.63 h−1

kre 0.0572 h−1

Rf 0.49
ks R 1.2 h−1

kd R 0.0572 h−1

mRNA0
R 25.8 fmol/g

R0 540.7 fmol/mg

the candidate model. Since we consider pharmacogenomic pathways, these genes are possibly

placed on the mode-of-action of target chemical compound. The results obtained by our proposed

strategy could be essential to create a larger and more comprehensive simulation model and

systems biology driven pharmacology.

To show the effectiveness of the proposed strategy, we analyze time-course microarray data of

rat liver cells treated with corticosteroid [47]. In the previous study, differential equation-based

simulation models, named fifth generation model [106], were used and predictable expression

patterns by this model were discussed for 197 genes selected by clustering analysis [47]. In this

chapter, we systematically generated 58 simulatable models from five prototypes and determined

which 63 models suitably predict expression pattern of each gene. Finally, we show a compre-

hensive pharmacogenomics pathway screening that elucidates associations between genes and

simulation models.

6.2 Methods

6.2.1 Corticosteroid Pharmacokinetic and Pharmacogenomics Models

In this chapter, we also handle the corticosteroid pharmacogenomic pathways [47] as illustrated

in Fig. 6.1 explained in Chapter 3.2.2. However, in rat liver cell, the reaction parameters were

set according to Sun et al. [106] and summarized in Table 6.1.

Based on the fundamental model represented in Fig. 6.1, we want to know how DR and

DR(N) affect other genes in transcriptional level. As a basic pharmacogenomic model for find-

ing relationship between drug-receptor complex and other genes, we consider extending five

pharmacogenomic models [47] shown in Fig. 6.1 (right). The original five pharmacogenomic

pathways [47] have the same elements as the core pharmacokinetic pathway, DR and DR(N),

and represent relationships between corticosteroid and its downstream genes. However, more

variations can be considered as candidates of pharmacogenomic pathway of corticoid. Therefore,
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Table 6.2: Parameter settings for constructed pharmacogenomic model.

Estimated Parameter Model Unit

k sm All l/nmol/h
k dm All l/nmol/h

l/nmol/h
S or IC 50 All or

fmol/mg
k sBSm C l/nmol/h
k dBSm C l/nmol/h
k sBS C, DE l/nmol/h
k dBS C l/nmol/h

l/nmol/h
S bs or IC 50bs C, DE or

fmol/mg
S dr C l/nmol/h

mRNA BS0 C fmol/mg
BS0 DE fmol/mg

from these five models, we automatically constructed 58 models with the following three rules.

(i) If a regulator, DR(N), DR or BS, activates (represses) the synthesis (degradation) of mRNA,

a revised model tests to repress (activate) the degradation (synthesis) of mRNA. However,

we do not consider combination effects of them.

(ii) If two regulators regulate the same element, we also consider either two regulator model or

one regulator model that is defined by removing one of two edges.

(iii) If two regulators regulate the same element, we consider either independent regulation

model that employs additive form or cooperative regulation model with the product of the

regulators.

We create these rules for generating simulation models that covers all patterns of regulations

when we do not change the number of elements such that mRNAs and proteins in each simulation

model.

From Model A: One model with three parameters (“k sm”, “k dm” and “S or IC 50”) was

generated by applying the rule (i). These models include only mRNA and can simply represent

activation of mRNA expression.

From Model B: One model with three parameters (“k sm”, “k dm” and “S or IC 50”) was

generated by applying the rule (i). These models include only mRNA and can simply represent

repression of mRNA expression.

From Model C: First, 15 models with 11 or 10 parameters (“k sm”, “k dm”, “S or IC 50”,

“k sBSm”, “k dBSm”, “k sBS”, “k dBS”, “S bs or IC 50bs”, “S dr”, and “initial values of

mRNA BS” and “BS”) were generated by applying the rule (i) and (ii). These models include

mRNA, BS, and mRNA BS. Since DR is included only in Model C, we evaluate the necessity
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Figure 6.1: Core model for corticosteroid pharmacokinetics and prototype pharmacogenomic models.
The left and right figures shows core model for corticosteroid pharmacokinetics and prototype pharma-
cogenomic models with extensions respectively. In the right figure, the dashed lines with circle are the
candidate relations to be extended and BS is the intermediate biosignal.

of the presence of DR by creating models without DR (rule (ii)). Therefore, 16 models that do

not have DR were additionally created and finally we have 31 models from Model C.

From Model DE: 24 models with 5 or 6 parameters (“k sm”, “k dm”, “S or IC 50”,

“k sBS”, “S bs” or “IC50 bs”, and “initial value of BS”) were generated by applying the rules

(i), (ii) and (iii). These models include mRNA and BS. We unified the notation of Model D and

E, because these two models are similar and the extended models are hard to be separated. We

constructed 16 models, 4 models and 4 models according to rule (i), (ii) and (iii) respectively.

In these simulation models, the parameters, “k sBSm”, “k sBS”, “k sm”, “BS0 (initial concen-

tration of BS)” and “mRNA0
BS (initial concentration of mRNABS)” were fixed in the original

work [47], but we estimate these five parameters together with the other parameters. Note that

we focused on the dynamics behavior of the most down stream gene of each model and compared

it to observation data of each gene according to the previous work.

Trash Model: Trash Model: To identify genes whose expression data do not significantly

changes over time, we created a trash model. Since the trash model is the simplest model that

has only two parameters (“k sm” and “k dm”), genes with unchanged expression patterns most

fit to the trash model in terms of BIC described in the next section.

For these 58 and original 5 pharmacogenomic models, we estimate the values of parameters by

using time-course microarray gene expression data from liver cells of rats received glucocorticoid.

We also evaluate which models can predict the expression profiles of each gene; it enables us to

find better pharmacogenomic models for each gene. For this purpose, a mathematical technique

called data assimilation for parameter estimation and model selection is described in the next

section.
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Figure 6.2: Six representative pharmacogenomic simulation models. Six representative pharmacogenomic
simulation models (From top left to right, Model A, B, C12, DE10, DE12 and DE20). These models have
high predictive power for many of 8,799 rat liver genes. These models are described by Cell Illustrator
5.0.

6.2.2 Data Assimilation for Parameter Estimation and Model Selection

To perform simulations by the pharmacogenomic models described in the previous section, we

implemented them using Cell Illustrator [77], a software for biological pathway simulation based

on hybrid functional Petri net with extensions. Six representative models in Cell Illustrator are

shown in Fig. 6.2.

The differential equations of a candidate simulation model give the time evolution x, which is

a vector including simulation values of nodes, e.g., a concentration of the drug-receptor complex

‘DR’. In obtaining x in the candidate simulation models, Cell Illustrator uses DA 1.0 [59] in

which simulation models described by differential equations are discretized to be simulated

utilizing the hybrid functional Petri net with extension (HFPNe) [77]. In this framework, the

mth candidate simulation model is represented by a function fm of which x is obtained at

evenly spaced time-points {. . . ,xt−1, . . . ,xt−∆t,xt,xt+∆t, . . . ,xt+1, . . .} through the procedure

of HFPNe [77], where xt is the vector of values of nodes at time t and ∆t is a minute displacement.

For simplicity, we represent, fm, as a function that maps xt−1 to xt, although fm minutely

updates simulation values toward xt. Then, we consider a stochastic simulation model of the

form:

xt = fm(xt−1,θm ,vt), t ∈ T , (6.1)
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where θm is the parameter vector, vt represents system noise according to a log-normal distribu-

tion p(v), with the location parameter 0 and the scale parameter 0.1 (derived from the previous

study [77]), and T = {1, ..., T} is the set of simulation time points.

Let yj [t] be the expression value of jth gene at time t. We consider the following model to

connect the simulation model with the observed data:

yj [t] = h(xt) + wt, t ∈ Tobs, (6.2)

where h is a function that maps simulation variables to the observation and wt is a Gaussian

observation noise, with mean 0 and variance σ2. Here, Tobs ⊂ T is the set of time points of

time-course gene expression data. The model constructed by combining Eqs. (6.1) and (6.2)

is called a nonlinear state space model. For simplicity, we assume Tobs = T , since it is easy to

extend the general case of Tobs ⊂ T .
The parameter vector, θm , is estimated by the maximum likelihood method that chooses

the values of θm as the maximizer of the likelihood

L(θm ,m|YjT ) =
∫

p(x0)

T∏
t=1

p(yj [t]|xt)p(xt|Yjt−1,θm,m)dx1 · · · dxT , (6.3)

where YjT = (yj [1], ..., yj [T ]) and p(yj [t]|xt) is a Gaussian distribution with mean h(xt) and

variance σ2. In order to calculate the integral in Eq. (6.3), we use the particle filter (PF) [36,57].

The procedure to calculate the conditional distributions in PF is introduced in Chapter 2.

To find the best simulation model among all M candidate simulation models f1, ...,fM , we

employ the BIC [96]. For the mth model fm and the jth gene, BIC is defined by

BIC(m, j) = −2 logL(θ̂m,m|YjT ) + νm log T, (6.4)

where νm is the dimension of θ̂m. Therefore, the best simulation model for jth gene f j
best can

be obtained by

f j
best = fargminm BIC(m,j). (6.5)

The derivation of BIC is briefly introduced in Chapter 2

6.3 Results

6.3.1 Time-course Gene Expressions

We analyze microarray time-course gene expression data of rat liver cells [47]. The microarray

data were downloaded from GEO database (GSE487). The time-course gene expressions were

measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12, 18, 30, 48 and 72 hours (16 time-points)

after receiving glucocorticoid. The data at time 0 hour are control (non-treated). The number
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Figure 6.3: Top 5 simulation models for 197 gene. Top 5 simulation models for each gene in a cluster
defined by Jin et al. [47] are represented by a heat map. The green elements means that the model well
fits to the gene expression profiles. The histograms of the frequencies of the models selected as top 5 are
shown in the middle panels, and gene expression profiles are also shown in the right panels.

of replicated observations is 2, 3 or 4 at a time point.

6.3.2 Results for Selected 197 Genes

First, we focused on 197 genes that were identified by the previous work [47] as the drug-affected

genes by the clustering analysis. For the genes in each cluster, we explored which simulation

models have better prediction power and the results are summarized in Fig. 6.3. According to

the results obtained previously [47,106], the genes in the clusters 1, 2, 3, 4, 5 and 6 were reported

to be well predicted by the Models “A”, “A”, “C”, “D or E”, “cell-cell interaction model”and

“B, D or E”, respectively. This result indicated that the genes in the cluster 1, 2 have almost

same expression profiles. We should note that the cell-cell interaction model is not included in

the five prototype models.

Fig. 6.3 shows the results for each cluster and the gene expression profiles. We can summarize

the results as follows:
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Cluster 1: The previous research [47] suggested that these genes are well predicted by

Model A. However, interestingly, in our results, Model A was not selected. On the other hand,

Models D and E and their extended models were selected many times. We presume the reason is

that, particularly in the early observed time points, the profiles of these genes are not so simple.

Cluster 2: These genes are also suggested to be suitably predicted with Model A. However

like cluster 1, similar results were obtained; for these genes, Model A was not selected in many

times, and unlike cluster 1, the trash model was sometimes selected.

Cluster 3: The previous research [47] suggested that these genes fitted to Model C. However,

in our results, not so many genes in cluster 3 are well predicted by Model C, but they fit to

Models D and E and their extended models. We guess the reason is that Model C has more

parameters than necessary. Therefore, in BIC, the second term, i.e., penalty for the number of

parameters, takes large value and BIC cannot be small, so Model C and its extended versions

were not selected. The same things can be said from the other works [41,115].

Cluster 4: These genes were suggested to be fit with Models D or E. In our results, Model

B and its extension and extension of Model A fit well, and Model E is especially fit, but Model

D is not selected much. Instead, some extended versions of Models D and E fit well. The genes

in cluster 4, we can see that some expression profiles do not vary widely. Such genes are well

fit to Models A, B and its extensions, because of these simplicity. On the other hand, Models

D and E and their extended models can follow complex behaviors and were selected in many

times for other genes.

Cluster 5: Since these genes were judged to be fitted with the cell-cell interaction model

that is not included in the five prototypes, these genes are not covered by our prepared models.

However, in practice, the extended models of Model DE showed high predictive power for these

genes. The expression profiles of these genes show sudden increasing patterns. Actually, our

models can represent such dynamic patterns of gene expression profiles.

Cluster 6: These genes were suggested to be fit with Models B, D and E, but most genes

were selected as the extended models of Models D and E. We presume the reason is that Models

D and E are flexible and can follow various types of complex expression patterns.

6.3.3 Comprehensive Pathway Screening for 8,799 Genes

We next illustrate the results of pharmacogenomic pathway screening for whole 8,799 rat liver

genes. Fig. 6.4 shows the results with heatmap of the selected top 5 models for each gene and

time-course expression profiles of genes that are specific for Models C6, C12, DE10 and DE12.

For each gene, we test the significance of the top ranked simulation model by using Smirnov–

Grubbs test. If the expression profile of a gene was predicted very well by several simulation

models, we cannot find pharmacogenomic mechanism specific for the gene. However, if only

one model could predict the behavior of a gene, the model is a strong candidate that represents

corticosteroid’s mode-of-action for the gene. In such a case, we say the gene is specific for the

above model.

Unlike the genes from the clustering analysis, the trash model, Model A, Model B and their
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Figure 6.4: The result of comprehensive pharmacogenomic pathway simulation model screening. The
result of comprehensive pharmacogenomic pathway simulation model screening. Heat map for top 5
models is shown from 63 simulation models for 8,799 rat liver genes. Time-course expression profiles are
shown for genes that are specific for Models C6, C12, DE10 and DE12.

extensions were selected as top 5 in many times. We presume the reason is that, in the whole

gene, there are many genes whose expression patterns are almost flat (not show clear dynamic

patterns) and these models can follow them with a small number of parameters. Although the

prototype D and E models were not selected many times, their extended models were frequently

selected as top 5. This suggests that Models D and E can work well as the seed models for

generating other simulation models with higher predictive power. The amount of genes obtained

by this test varied widely depending on the models. From ModelA1, B1, C6, C12, C16, DE2,

DE10, DE12 and DE20, we can obtained some specific genes. Interestingly, the number of genes

fitting to Model C is relatively low, but many specific genes are obtained by Model C. It suggest

that there are some expression profiles that can be represented by only the one of Model C.

We then perform a functional analysis in order to reveal enriched gene functions for each set

of Model-specific genes. For the functional analysis, we used Ingenuity and the results can be

summarized as follows:

ModelC 6: These genes have function of “Cellular Assembly and Organization” and “RNA

Post–Transcriptional Modification” and relate to “Protein Ubiquitination Pathway”. Mod-
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elC 12: These genes are most interesting genes. These have “Amino acid Metabolism”, “Nu-

cleic Acid Metabolizm”, “Cell Death”, “Cellular Grows and Proliferation”, “Drug Metabolism”

and “Lipid Metabolism” and so on. Additionally, these genes relate to “Aldosterone Signaling

Epithelial Cells” and “Glucocorticoid Recepter Signaling”. Beneficial effects of Corticosteroid

is inhibition of immune system and adverse effect is numerous metabolic side effects, including

osteoporosis, muscle wasting, steroid diabetes, and others. Therefore, these result in ModelC 12

is biologically significant because these genes may have a function concerning metabolic side

effects. ModelDE 10: These genes are also interesting. The functions are “Neurological Dis-

ease”, “Organismal Injury and Abnormalities” and “Immunological Disease”, and are affected

by “Graft–versus–Host Disease”, “Autoimmune Thyroid Disease, “T Helper Cell Differentia-

tion” and so on. Because of the above therapeutic and adverse effects of CS, the function of

these genes are also significant concerning immune system function. ModelDE 12: The func-

tions of these genes are “Cellular Development”, “Cardiovascular Disease”, and “Hematological

Disease”. These are also affected by “EIF2 signaling”.

We consider that such genes are important among 8,799 genes, because these were estimated

to have a similar pathway and it may be difficult to collect these genes by clustering analysis

simply using the gene expression profile.

6.4 Discussion

In this chapter, we proposed a computational strategy for automatic generation of pharmacoge-

nomic pathway simulation models from the prototype simulation models that are built based

on literature information. The parameters in the constructed simulation models were estimated

based on the observed time-course gene expression data measured by dosing some chemical com-

pound to the target cells. We constructed totally 63 pharmacogenomic simulation models on a

pathway simulation software, Cell Illustrator, and used data assimilation technique for parame-

ter estimation. For pathway screening, we introduce Bayesian information criterion for pathway

model selection in the framework of data assimilation. We performed comprehensive pathway

screening for constructed 63 pharmacogenoimc simulation models with gene expression data of

rat liver cells treated with glucocorticoid.

The prototype five models fit to somewhat large number of genes well. However, there are

more extended models that can predict the dynamic patterns of gene expressions better than

the prototypes. This suggests that, from the prototype simulation models, we can automatically

construct various extended simulation models and some of them could have higher prediction

ability than the originals. Also, we performed a functional analysis to the sets of Model-specific

genes identified by the Smirnov-Grubbs test. As shown above, some meaningful functions were

found.



Chapter 7

An Efficient Method of Exploring

Simulation Models by Assimilating

Literature and Biological

Observational Data

7.1 Background

Given the remarkable developments in biotechnology, many biomolecular reactions, e.g., gene-

protein and protein-protein interactions, have been discovered experimentally, and when com-

bined, represent several parts of intracellular systems. In order to understand the dynamic

behavior and control of these systems, simulation models have been constructed and evaluated

by using biological observational data, e.g., time-course RNA expression data [13, 61, 79, 108].

However, the results of such simulations can be incompatible with the observational data if

molecules or reactions are omitted, or suspect molecules or reactions are included. Thus, such

models should be improved on in order to ensure that simulation results are consistent with the

observational data.

Schematic representations of regulatory structures are collected from the literature as path-

way models, to which are the ascribed mathematical formulas, which represent the dynamic

behavior of biomolecules, as simulation models based on biologically reliable models, e.g.,

Michaelis-Menten equation [91] or S-system [92], which are described by differential equations.

Their parameters, e.g., initial concentrations and synthesis rates, are estimated to predict ob-

servational data maximally by some computational methods [11, 62, 67, 79, 89]. Then, the abil-

ity of these simulation models to predict the data is measured by some model criterion, e.g.,

BIC [96]. Through such a procedure, i.e., modeling and evaluation, in order to obtain better

models, which can better predict observational data than can be done by the literature-recorded

model, several computational approaches, e.g., data assimilation [59, 77, 79, 108] and ensemble

modeling [61, 93], have been developed. In our previous study, many candidate pathway mod-
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els were automatically generated by partially changing the literature-recorded pathway models

(template pathway models), which are tried to be improved, and their simulation models (candi-

date simulation models) were comprehensively evaluated to obtain better models using the data

assimilation technique [40]. However, since evaluation of even a single simulation model is com-

putationally costly, a large number of candidates cannot be handled. Furthermore, to evaluate

one model that includes high-dimensional parameters is also computationally intensive, due to

dimensionality.

In order to overcome the problem, we propose an efficient method for selectively and sequen-

tially exploring candidates by exploiting the similarity of regulatory structures among candidate

models (structure similarity). The proposed method uses an algorithm resembling the sim-

ulated tempering algorithm [35, 65, 71], which was developed to efficiently obtain probability

distributions of parameter values with controlling the temperature parameter, to search a can-

didate model space. Thus, instead of evaluating candidate models comprehensively, the method

employs an evaluated candidate as the current model according to the selection criterion and

sequentially evaluates the next candidate with a regulatory structure similar to that of the

current model. Furthermore, estimated parameter values for the current model are used to esti-

mate parameter values of the next model, in order to reduce computational cost. Additionally,

in order to assimilate simulated results to the observation data, we applied the nonlinear state

space model [36, 57], which is a type of time-series modeling consisting of system and observa-

tional models, describing regulatory relationships and connecting simulated values to the data,

respectively.

We have exemplified the method by applying it to pharmacogenomic pathways of corticos-

teroids [47]. In the Method Section, we have first introduced the pharmacogenomic pathways,

including pharmacokinetics/dynamics [17, 38, 47, 84, 106], as template pathway models and ex-

plained the process of generating candidate pathway models from them. As a method for

estimating the parameter values of their simulation models and ranking them according to their

prediction ability, the data assimilation technique is explained briefly. In the results section,

we have provided three experimental results using corticosteroid pharmacogenomics. First, we

confirmed whether simulation modes sharing a certain amount of regulatory structure have ap-

proximately the same potential for predicting the data. Second, to show the effectiveness of the

proposed method, we compared the performance of the proposed method with the comprehen-

sive analysis [40] by using alternatively smaller number of candidates (195 models) and target

genes (200 genes). Third, we applied the proposed method to an increased number of candidates

(1,170 models), the relevance of 142 genes to corticosteroid validated biologically [47].

7.2 Methods

7.2.1 Corticosteroid Pharmacokinetics/dynamics and Pharmacogenomics

In this chapter, we also use the corticosteroid pharmacogenomic pathways [47] as illustrated in

Fig. 7.1 used in Chapter 6.2.1.
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Figure 7.1: Corticosteroid pharmacokinetic/dynamic model. The corticosteroid pharmacodynamic model
described here was developed by [84], where ‘ks Rm’, ‘ks R’, ‘kon’ and ‘kT ’ are synthesis quantities, ‘kd Rm’,
‘kd R’ and ‘kre’ are degradation quantities, and ‘Rf ’ and ‘IC50Rm’ are tuning parameters. ‘Syn’ and ‘Deg’
mean synthesis and degradation processes, respectively, ‘D’ is a concentration of corticosteroid modeled
by corticosteroid pharmacokinetics [106], ‘R’ is a receptor of ‘D’, ‘DR’ is a complex of ‘D’ and ‘R’, ‘DRN’
is ‘DR’ in nucleus, and ‘mRNAR’ is a mRNA of ‘R’.

Based on this pharmacokinetic/dynamic model (PK/PD model), [47] and other groups [41,

115] developed several types of intracellular pharmacogenomic pathway models (PG models),

including corticosteroid (‘DRN’ or ‘DR’ in PK/PD model) and corticosteroid-induced genes.

As an example, two pathways of PG models are illustrated in Fig. 7.2. PG models are used

as an application example of the proposed method to explore improved simulation models for

observational data, in the results section. Thus, PG models are handled as template pathway

models.

mRNA

BS

DR Syn Deg

Syn Deg

N

PK/PD

mRNADR Syn DegN

   PD

Activation

Activation

Activation

Repression

PK/PD

Figure 7.2: Examples of pharmacogenomic pathway models. These are examples of pharmacogenomic
pathway models [47]. ‘mRNA’ is a mRNA regulated by the corticosteroid and ‘BS’ is an intermedi-
ate biosignal. A dotted rectangle ‘PK/PD’ means the pharmacokinetic/dynamic model represented in
Fig. 7.1. Syn and Deg mean synthesis and degradation processes, respectively.
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7.2.2 Create Candidate Pathway Models from Template Pathway Models

To explore improved simulation models, we require candidate pathway models that have been

modified partially from the template ones. In our proposed method, we first set a regulator

and a target, which are the up-stream and the down-stream biomolecules on a part of the tem-

plate pathways that is tried to be improved. For example, in corticosteroid pharmacogenomics of

Fig. 7.2, the regulator is drug (‘DRN’) and the target is a corticosteroid-induced gene (‘mRNA’).

Then, the target is assumed to be directly or indirectly influenced by the regulator. This rela-

tionship can be illustrated in Fig. 7.3(a) as a type of feed-forward loop (FFL) [97]. Considering

the existence and the type of regulation, we can obtain 15 types of regulatory structures, as

illustrated in Fig. 7.3(b). Additionally, 15 structures are extended, as illustrated in Fig. 7.3(c),

by increasing the number of intermediate nodes to delay the effect and adding a node, ‘Product’,

which represents a product of the target, to promote self-regulation. We apply these regula-

tory structures (basic structures) to the relationship between the regulator and the target using

the other regulation and regulatory functions in the template pathways. Since the components

of the basic structures have been found commonly in biological systems [44, 97, 116], they can

conceivably extend the template pathways.
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Figure 7.3: Basic regulatory structures as a form of feed-forward loop. These figures illustrate the basic
regulatory structures as a form of feed-forward loop [97]. In order to generate candidate pathway models,
we consider a regulatory structure as illustrated in (a), where ‘Int. Node’ represents an intermediate node.
From (a), we construct four types of regulatory structures illustrated in (b), and 15 basic structures are
captured by considering their types of regulation, i.e., activation and repression. Then, as an extension,
we increase the number of intermediate nodes to delay the effect and self-regulation through their product
‘Product’ to promote self-regulation as summarized in (c). For example, when selecting activation by
‘Regulator’ and removing regulations by both of ‘Product’ and ‘Int. Node’, the extracted structure
corresponds to ‘Direct Regulation’ in (b). Furthermore, when adding regulation by ‘Product’ extensions
of this basic structure can be obtained.

In order to generate candidates covering these basic structures in combination with the tem-

plate pathway models, we first established a large pathway model, termed an integrated model,

by integrating them. An integrated model for corticosteroid pharmacogenomics is illustrated in

Fig. 7.4. The procedure for generating the integrated model is summarized as follows:

1. Integrate components of the template pathway models, i.e., direct activation/repression

of ‘mRNA’ by ‘DRN’, indirect activation of ‘mRNA’ by ‘DRN’ and direct repression of
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‘mRNA’ by ‘DR’. Here, all intermediate nodes in the template pathways, e.g., proteins

affecting ‘mRNA’, are represented as an intermediate biosignal ‘BS’ for ease of viewing,

i.e., BS1, . . ., BSr.

2. The basic structure is combined to the relationships between ‘DRN ’ and ‘mRNA’ in the

obtained model. Here, their regulatory functions are given from those of the template

pathway models.

3. The number of ‘BS’ (intermediate biosignal), r, is set at 3 (= 2 in the template pathways).

In Fig. 7.4, ‘mRNA’ represents a corticosteroid-target mRNA, the dotted block corresponds to

the corticosteroid pharmacokinetics/dynamics in Fig. 7.1, Syn is a synthesis process, and Deg

is a degradation process. Dotted and solid arrows mean regulation and fixed processes (syn-

thesis, degradation, and activation between BS1,2,3), respectively. Nevertheless, we can delay

the regulatory effect by setting the values of threshold parameters sufficiently high; this also

shortens an effective term. This means that, since the regulatory effect can be valid when the

abundance of regulator is larger than the threshold, a high threshold value causes not only a

delay but also the abbreviation of operating time by the regulator. Then, the number of ‘BS’

is increased. The effect of the transcriptional cascade through intermediate biosignals was dis-

cussed in [44]. These intermediate biosignals are summarized as ‘BS1,2,3’ (‘BS3’ is upstream and

‘BS1’ is downstream in the regulatory order). We should mention that, although the production

process of each intermediate biosignal is described as a one-step model (a set of synthesis and

degradation processes), in some cases, two-step models, e.g., consisting of production processes

of mRNA and protein, may be better to represent the dynamics of the biosignals, for example,

in order to introduce additional delays. In addition, to avoid the curse of dimensionality and

the combination explosion, we focused on the dynamic behavior of the most downstream gene

in candidate models and then estimated genes corresponding to intermediate biosignals after

obtaining their simulation dynamics in the results section.

Finally, we generate candidate pathway models from the integrated model by selecting the

type and the existence of regulation. In order to create candidate models covering all basic

structures, we consider the following rules (i)-(v):

(i) ‘DRN’ can regulate either the synthesis or the degradation process of ‘mRNA’ through

either activation or repression,

(ii) ‘BS1’ and ‘Product’ can regulate only the synthesis process of ‘mRNA’ by either activation

or repression (‘BS2,3’ cannot regulate ‘mRNA’ directly),

(iii) ‘DRN’ can also activate or repress only a single node of ‘BS1,2,3’.

(iv) ‘Product’ can activate or repress only a single node of ‘BS1,2,3’.

(v) ‘DR’ can repress the degradation process of ‘mRNA’.
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Figure 7.4: Integrated model for constructing candidate pathway models. This pathway model, termed
the integrated model, is constructed to create candidate pathway models. ‘BS1’, ‘BS2’ and ‘BS3’ are
intermediate biosignals and ‘Product’ is a product of ‘mRNA’. By selecting an edge from edges anno-
tated ‘select’ and the type of regulation (Activation/Repression/No Regulation) of dotted edges, we can
generate 1,170 (All-Models) and 195 (Core-Models) candidate pathway models. For Core-Models, edges
and the type of regulation in the left top block are considered and the remainder are deleted.

To compare the proposed method with the existing method [40], we constructed 195 pathway

models (Core-Models) using rules (i)-(iii), because these three rules were adopted in previous

studies [41,115] and Core-Models are feasible as an application of the existing one. Using rule (i)-

(v), 1,170 candidate pathway models (All-Models) are constructed to find improved simulation

models for corticosteroid-induced genes. Note that Core-Models are included in All-Models.

7.2.3 Data Assimilation

In this chapter, the estimation of the parameter values and the evaluation of candidate models

are according to the same way with introduced in Chapter 6.2.2.

7.2.4 Model Transition Rule for Efficient Model Exploration

Since a numerical optimization of the non-differentiable parameters is involved in the process of

choosing the best simulation model, the model evaluation is computationally costly [40]. How-

ever, if we know pairs of candidate simulation models that express similar qualitative dynamics,

their ability to predict the data can be highly correlated. In this case, starting from a simpler

candidate, to sequentially and selectively evaluate candidates for which possible dynamics are
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similar to those of previously evaluated models having higher prediction ability, can be an effi-

cient way to find the best model. One approach to obtaining such correlated pairs of candidates

involves the following procedure. At first, for each candidate simulation model, the BIC scores

of Eq. (6.4) are calculated for several genes and the sequence of the BIC scores is regarded as

the feature vector of the model. Next, Spearman’s rank correlations in the model are obtained

to select highly correlated pairs of candidates setting a threshold. If the feature vector is con-

structed using a sufficiently large data set, these selected pairs can be considered to express

similar qualitative dynamics. As an example, the relationships network among Core-Models,

showing their connections, is illustrated in Fig. 7.5. The relevant details are described in the

results section.
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Figure 7.5: Relationships network of candidate simulation models. This figure shows relationships among
Core-Models (each node represents a candidate simulation model) by drawing edges between correlating
candidate simulation models. These edges are drawn according to the following criteria. For each candi-
date simulation model, the BIC scores of Eq. (6.4) were calculated for Test-Genes in Core-Models and
we regarded the sequence of the BIC scores as the feature vector of the model. For a candidate simu-
lation model, we drew edges between the model and the five models that have five highest Spearman’s
rank correlations to the model. As an example, pathway models of six candidate simulation models are
illustrated.

However, in this approach, we must calculate the BIC scores in Eq. (6.4) of all candidate

simulation models for a sufficient amount of gene expression data in order construct the relation-

ships network. On the other hand, we observed that, when candidate pathway models include

the same or a similar basic structure, their simulation models can express similar qualitative
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dynamics. Therefore, we can connect candidates according to the similarity of their dynamics

based on these basic structures. Then, we propose the model transition rule described in Fig. 7.6

instead of the relationships network as: (a) add or reduce an intermediate biosignals to delay

or shorten the effect; (b) change the type of regulation (activation or repression) of the direct

regulation from ‘DRN’; (c) change the indirect regulation while retaining the effect; (d) add

or remove either a direct or an indirect regulation; (e) add, remove, or change self-regulation

through ‘Product’. These rules give the transition between the candidate simulation models that

can express similar simulation dynamics, except for (b). Thus, rule (b) was prepared to enable

the algorithm to move to slightly similar models for escaping from local minimum. We should

note that an additional rule, (f) add or remove repression of ‘mRNA’ by ‘DR’, was applied to

All-Models.

Add/Remve Self-Regulation

Syn Deg

BS1BS2BS3

DR(N)

Change Direct Regulation (Keeping Effect)

Ch
an

ge
 D

ire
ct

 R
eg

ul
at

io
n

    
    

 (C
ha

ng
e 

Eff
ec

t)

Change Indirect Regulation (Keeping Effect)

Add Remove

Sh
oe

te
n 

Dr
ug

 E
ffe

ct
De

la
y 

Dr
ug

 E
ffe

ct

(a) (b) (c)

(d) (e)

activation/repression

process

activation

repression

Add/Remove Direct Regulation

Ad
d/

Re
m

ov
e 

In
di

re
ct

 R
eg

ul
at

io
n

Ch
an

ge
 S

el
f-R

eg
ul

at
io

n

Add Remove

mRNA

BS1BS2

DR(N) mRNA

BS1

DR(N) mRNA

DR(N) mRNA
DR(N)

mRNA Syn Deg

DR(N)

mRNA

Syn Deg

DR(N)

mRNA Syn Deg

DR(N)

mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

BS1,2,3

DR(N) mRNA

Deg

mRNA

Pro

Deg

mRNA

Pro

Deg

mRNA

Pro

Figure 7.6: The model transition rule. Instead of using the relationships network, the model transition
rule is used to select the next candidate simulation model from the current model. One of rules (a)-(e)
is applied in selecting the next model according to the model transition probability q(mcurrent,mnext).
The rule is constructed by completely or partially retaining the basic structures.

7.2.5 Simulated Tempering Like Exploration Algorithm

For an exploration algorithm using the model transition rule, we consider following three require-

ments. Firstly, all candidate simulation models should be explored if the algorithm is executed

for a sufficiently long time. Secondly, the algorithm should escape from a local minimum quickly.

Thirdly, simulation models should be recursively evaluated since it is difficult to estimate pa-

rameter values maximizing the prediction ability. Then, we propose a simulated tempering like

exploration algorithm (STE algorithm). The simulated tempering (ST) algorithm [35, 65, 71]

was proposed to obtain distributions of the parameter vector θST for the Boltzmann distribu-
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tion bT (θST ) ∝ exp {−H(θST )/T}, where H(θST ) and T are an objective function, often a log-

likelihood function, and a temperature, respectively. ST algorithm treats the temperature T as a

dynamic variable and adds a one-dimensional temperature ladder Tk (T1 < . . . < Tk < . . . < TK)

to change T . We use the algorithm by setting m={1, . . ., M} as θST and apply to the problem.

Let q(m,m′) be the model transition probability from fm to fm′ .

1. Set the initial temperature T = T0 and evaluate a simple simulation model fmsimple
to

obtain P (YjN |msimple) by data assimilation, and set fmsimple
as fmcurrent

.

2. Decide upon the next candidate simulation model fmnext
from the current simulation

model fmcurrent
according to q(mcurrent,mnext) and calculate P (YjN |mnext).

3. If P (YjN |mnext) is higher than P (YjN |mnext)highest, store P (YjN |mnext) as P (YjN |mnext)highest.

Initially, P (YjN |mnext)highest is stored zero.

4. Set the next temperature Tnext according to the temperature radder. Generally, the proba-

bility Pa,b from temperature Ta to Tb is set as P0,1 = PK,K−1 = 1 and Pa,a+1 = Pa,a−1 = 0.5.

5. Accept fmnext
and Tnext as the current model and the current temperature with probability

βj(mcurrent,mnext) = min{1,
bTnext,j(mnext)q(mnext,mcurrent)

bTcurrent,j(mcurrent)q(mcurrent,mnext)
}, (7.1)

bT,j(m) = exp{−Hj(m)

T
+ gT,j}, (7.2)

gTk+1,j − gTk,j = (
1

Tk+1
− 1

Tk
)
Ej(Tk) + Ej(Tk+1)

2
, (7.3)

Hj(m) = − log{P (YjN |m)highest}, (7.4)

where Ej(Tk) is an expectation value of Hj(m) at temperature Tk. Alternatively, if fmnext

and Tnext were not accepted, retain the current model and temperature, and then return

to Step (2) to seek another candidate.

6. Repeat steps 2-5 until the iteration is maximized.

We used the results of the first several steps to approximate Ej(Tk). An example of STE

algorithm is illustrated in Fig. 7.7. Note that we can evaluate some simple candidates and set

one of them as f current in step 1 of STE algorithm.

7.2.6 Efficient Parameter Estimation in STE algorithm

PF is used to calculate the marginal probability distribution of parameter θm for a simulation

model fm in step 2 of STE algorithm. While using PF, we set the ranges of prior distributions

of parameter values θm by referring to the literature, if available, or widely set the ranges.

Since setting an appropriate prior distribution is highly effective, the prior distribution of fnext

should be determined by referring to estimated parameter values of f current. Hence, f current



116 Chapter 7. An Efficient Method of Exploring Simulation Models by Data Assimilation

Candidate

Simulation Model

m (Current)

Candidate

Simulation Model

m+1

Candidate

Simulation Model

m+2

(ii) Rejected

(iv) Accepted

Next Model
(iii) Evaluate

Next Model
(i) Evaluate

Next Model
(v) Evaluate

Figure 7.7: Simulated Tempering Like Exploration. This illustrates an example of the simulated
tempering-like exploration algorithm. The algorithm accepts or rejects the next candidate as the current
model according to the criterion.

and fnext share a certain amount of regulatory structure; some common parameter values are

directly utilized to set prior distributions of corresponding parameters. Nevertheless, in some

cases, parameter values in f current cannot be directly utilized for setting the prior distribution

of fnext. In this case, we set the ranges of prior distributions widely. Additionally, we here

derived a constraint for Syn/Deg by focusing on simulation expression profiles of ‘mRNA’ in a

steady state condition in the rest of this section.

7.2.6.1 Case: Direct Regulation

We consider the model transition from the left top model in Fig. 7.6(b) to the right top model

in Fig. 7.6(b). The left top model in Fig. 7.6(b) is described by

d

dt
mRNA = Syn · (1 + FDRN

)−mRNA ·Deg, (7.5)

FDRN
=

SDRN
·DRN

ICDRN
+DRN

, (7.6)

and the right top model in Fig. 7.6(b) is described by

d

dt
mRNA = Syn− (1−GDRN

) ·mRNA ·Deg, (7.7)

GDRN
=

S′
DRN
·DRN

IC ′
DRN

+DRN
, (7.8)

where Syn and Deg are synthesis and degradation quantities of ‘mRNA’, respectively, SDRN
is

an amplification parameter for the mRNA synthesis process from the drug, ICDRN
is a tuning

parameter for the mRNA synthesis process from the drug, S′
DRN

is a reduction rate for mRNA

degradation process from the drug and IC ′
DRN

is a tuning parameter for the mRNA degradation
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process from the drug.

Let mRNAss be the expression level of mRNA in the steady state. Eq. (7.5) in the steady

state is

mRNAss =
Syn · (1 + FDRN

)

Deg
. (7.9)

Because DRN becomes zero in the steady state, FDRN
also becomes zero, and then mRNAss

becomes Syn
Deg . Through a similar procedure, mRNAss from Eq. (7.7) yields the same value as

that from Eq. (7.5), i.e., Syn
Deg . Then,

Syn
Deg in the left top model of Fig. 7.6(b) can be applied to

the parameter estimation of the right top model in Fig. 7.6(b) as a restriction in distribution

of particles. This transformation can be applied to the adding/removing/changing transition of

the direct regulation in Figs. 7.6(b) and (d).

7.2.6.2 Case: Indirect Regulation

We can also apply the same steady state solution for ‘BS1,2,3’ of Fig. 7.6(a) (which updates

the model from the bottom one to top one or from the top to the bottom in this figure). We

exemplify using Eq. (7.5) and a complicated simulation model, including direct activation,

indirect repression, and self-activation, given by

d

dt
mRNAcomp = Syncomp · (1 + FDRN

) · (1−GBS1) · (1 + FPro)

−mRNA ·Degcomp, (7.10)

GBS(BS1) =
S′
BS1
· BSγ1

IC ′γ
BS1

+BSγ1
, (7.11)

FPro(Pro) =
SPro · Pro

ICPro + Pro
, (7.12)

where S′
BS1 is the reduction rate of ‘BS1’, IC

′
BS1 is a tuning parameter of ‘BS1’, γ is a tuning

parameter for the sensitivity of ‘BS1’, SPro is an amplification parameter of ‘Product’, ICPro is

a tuning parameter of ‘Product’, and the notation ·comp stands for the case of this model. BS1

and Pro represent the level of ‘BS1’ and ‘Product’, respectively.

mRNAss for Eq. (7.10) is given by

mRNAcomp
ss = (1−GBS1(BS1,ss))(1 + FPro(Pross)) ·

Syncomp

Degcomp
, (7.13)

where BS1,ss and Pross are the level of ‘BS1’ and ‘Product’ in the steady state, respectively. By

solving the equation mRNAcomp
ss = mRNAss, we have

Syncomp

Degcomp
=

Syn

(1−GBSBS
(BS1,ss))(1 + FPro(Pross)) ·Deg

. (7.14)
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This can be applied as a restriction for setting prior distributions. Each term representing

regulatory effects in Eq. (7.13) can be removed and applied to another cases in Fig. 7.6, if

necessary.

7.3 Results

7.3.1 Time-course Gene Expression

We have analyzed microarray time-course gene expression data from rat liver cells [47]. The

microarray data were downloaded from the GEO database (GSE487). The time-course of gene

expression was measured at 0, 0.25, 0.5, 0.75, 1, 2, 4, 5, 5.5, 7, 8, 12, 18, 30, 48, and 72 h (16

time-points) after corticosteroid stimulation. The data at time 0 h are considered to be controls

(untreated). There are two, three, or four replicated observations for each time point.

7.3.2 Relationships among Candidate Models Represented by a Comprehen-

sive Search

First, we investigated the assumption that the simulation models that share a certain amount of

regulatory structure (the basic structures) can show equal prediction ability. For each simulation

model in Core-Models, the BIC scores of Eq. (6.4) were calculated for 200 genes (Test-Genes)

and we regarded the sequence of the BIC scores as the feature vector of the model. Test-Genes

were selected as centers by k-means (k = 200) clustering of the 8,799 gene expression profiles.

Thus, totally 39,000 (200 × 195) simulation models were evaluated. In Fig. 7.5, five clusters

of models that are highly correlated (Spearman’s rank correlation) are observed, where an edge

was drawn if and only if a correlation coefficient was higher than the fifth highest one for each

simulation model. In this figure, we find that simulation models sharing the basic structures

among the candidates are connected by edges. Therefore, we confirmed that candidates sharing

the same or similar basic structures can have a similar tendency in prediction ability.

7.3.3 Comparison of Comprehensive Search and Proposed Method

To demonstrate the validity of the proposed method, we compared it to the previously reported

comprehensive search (C-Search) [40]. Core-Models and Test-Genes were used in this comparison

because using All-Models is not computationally feasible for C-Search.

For C-Search, we obtained the complete results of Core-Models for 200 Test-Genes. Next,

we applied the proposed method and obtained the ranking of Core-Models for each of the

Target-Genes. Finally, we compared the performance of the proposed method in terms of the

correct rate, which represents the percentage of the best models (ranked as the top model by the

proposed method) satisfying the following two conditions: it is the same as the correct model

(ranked as the top model by C-Search) and its BIC score is lower than that of the second top

model by C-Search.
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Fig. 7.8 summarizes the comparison of calculation speed (blue bar) and the correct rate

(other color bars). The colors in Fig. 7.8 are assigned as follows: (i) The green bar represents

the correct rate. It also includes the case of finding a candidate model that has a lower BIC

score than that of the correct model. (ii) The light blue bar represents the incorrect rate caused

by failure of the parameter estimation. Thus, the method searched for the correct model from

the initial candidate using STE algorithm, while the BIC score is higher than that of the second

top model by C-Search. (iii) The red bar also represents the incorrect rate caused by failure

of the model transition. This indicates that the method could not even evaluate the correct

model. (iv) The blue bar represents the calculation time for the proposed method for each gene.

C-Search requires approximately 400 h on average for a gene in Test-Genes. The horizontal

axis represents the measured time points of the proposed method. In order to compare the

performance in terms of execution time, the proposed method was executed for a given time.

The left and right vertical axes represent the percentages of the number of candidates and

calculation time relative to C-Search, respectively. For instance, 10 [%] on the left vertical

axis means 20 [genes] in this case. Note that all calculations were executed on an HGC super

computer (http://www.hgc.jp/english/) and its executing time was limited to 48 h.
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Figure 7.8: Comparison results for the proposed method and C-Search. This figure illustrates the com-
parison results of the proposed method with the C-search in terms of the correct rate and execution time.
The green bar represents the correct rate. It means that the rate at which the best simulation model that
is consistent with the correct model is obtained. The light blue bar represents the incorrect rate caused
by failure of parameter estimation. The red bar also represents the incorrect rate caused by failure of
model transition. The blue bar represents the calculation time for the proposed method for each gene.
The results of the proposed method are evaluated at 6, 12, 18, 24, 30, 36, and 42 h.
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Figure 7.9: Top five candidate simulation models selected by C-Search. This illustrates a histogram of
frequencies of candidate simulation models selected as top five for the Test-Genes by C-Search. The right
top graph is the same as in Fig. 7.5. Highly selected candidates are indicated their positions.

Fig. 7.8 indicates that the proposed method attained more than 80% of the correct answers

within 10[%] to 15 [%] of the calculation time required by C-Search. In addition, we have also

shown histograms for the top five candidate simulation models for each gene selected by C-Search

and the proposed method in Figs. 8 and 9, respectively. In these figures, 10 of the top 10 and

16 of the top 20 selected candidates are the same. Thus, the high degree of similarity suggests

that the proposed method selectively explored candidates that have high prediction ability, and

did so within a short span of time.

7.3.4 Exploring Better Corticosteroid Pharmacogenomics

We applied the proposed method using the corticosteroid pharmacogenomic pathways and ex-

plored simulation models having higher prediction ability for the observational data than those

reported in the literature. For this purpose, we focused on 142 unique genes (PG-Genes), which

have been biologically validated in terms of their relevance to corticosteroid responses [47], and

applied these to All-Models. The template pathways of PG-Genes can be found in [47] and

examples are illustrated in Fig. 7.2.

We obtained 142 best simulation models, which had the lowest BIC score of Eq. (6.4)

among All-Models for each gene. In these models, only the three simulation models of ‘Odc1’,

‘Map1lc3b’, and ‘Ccng1’ could absolutely match the template simulation models of these genes,
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Figure 7.10: Top five candidate simulation models selected by the proposed method. This illustrates a
histogram of frequencies of candidate simulation models selected as top five for the Test-Genes by the
proposed method. The right top graph is the same as in Fig. 7.5. Highly selected candidates are indicated
their positions. This result is obtained from the right-most case (42 h) in Fig. 7.8.

and then the residual 134 simulation models (five genes, ‘Il1a’, ‘Il1b’, ‘Ccl2’, ‘Ccl4’, and ‘Vcam1’,

did not have templates) were selected from the others. For example, ‘A2m’ was previously as-

signed to Model 14 (one of the template pathways), in which expression is only activated by

‘DRN’. However, since the observational data of ‘A2m’ has a profile representing both the

activated and repressed forms, our algorithm selected Model 870, in which mRNA is directly

activated by ‘DRN’, directly repressed by ‘DR’, and indirectly repressed by ‘BS’. The formula-

tion processes of the best candidate models for these 142 genes are concluded in Tables 7.2-7.4.

Additionally, the simulation expression profiles of ‘BS1,2,3’ for each best simulation model were

used to identify their candidate genes using the Smirnov-Grubbs test (outliers test) if interme-

diate biosignals were present. The outliers test was performed by calculating least-square errors

between the simulation expression profiles of BS1,2,3 and expression profiles of the observed 8,799

genes (5,162 unique genes), where the p-value for deciding outliers is 0.01. These genes, selected

from among 5,162 genes, are named intermediate genes. After the procedure, we obtained the

regulatory pathways and orders of intermediate genes (upstream and downstream genes) of the

best simulation models for PG-Genes.

Interestingly, only 20 genes (0.39%) were selected as intermediate genes for BS1, 21 genes

(0.41%) for BS2, and 20 genes (0.39%) for BS3. The details of each gene are summarized in
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Table 7.1: The Best Model For Each Time-Point (i).
GeneSymbol 6h 12h 18h 24h 30h 36h 42h Selected

A2m 53 53 1167 1037 1037 1000 870 870
Abat 47 38 38 244 246 246 246 36

Abhd14b 8 215 215 215 215 215 215 215
Acsl1 255 255 228 228 228 293 293 363
Adk 27 27 27 27 1047 666 666 666

Adra1b 27 34 294 294 231 231 231 231
Ahcy 40 320 320 320 645 621 621 621

Akr1c12 40 38 293 293 293 506 1058 1058
Akr1d1 40 60 153 493 493 493 493 493
Akr7a2 307 307 307 683 683 683 683 683
Aldh3a2 40 40 40 40 40 40 40 1113
Anpep 40 856 856 856 856 856 856 856
Aqp9 632 311 439 439 790 790 790 790
Arg1 632 896 896 948 623 623 623 595

Asnsd1 1 899 318 903 903 903 903 903
Atic 1 1 679 679 679 679 679 679

Cacna1d 315 315 315 315 315 315 57 57
Cald1 38 233 707 707 707 707 707 707
Camk1 40 8 8 8 8 8 8 34
Ccdc56 10 319 319 320 320 320 320 320
Ccl2 27 27 256 256 256 256 1122 1122
Ccl4 14 14 14 14 14 14 14 14
Ccng1 53 53 53 53 53 53 53 53
Cox6a1 27 55 229 229 229 229 229 229
Cps1 40 731 731 731 731 738 738 738
Csda 273 990 990 990 990 990 990 990
Ctsh 27 34 34 34 34 34 34 34
Cxxc5 38 660 660 660 660 660 660 660
Cyb5b 27 27 844 909 909 909 909 909
Cyb5r3 739 739 739 36 766 766 766 766
Cyc1 40 633 893 685 685 685 685 308

Cyp2a1 27 27 27 27 27 27 27 27
Cyp2a2 268 268 268 268 36 426 426 426
Cyp2b3 60 259 387 322 322 322 322 1026
Cyp4f4 64 12 12 12 1123 1123 1123 1123
Dio1 263 530 530 530 530 530 530 530
Dpys 40 309 47 47 47 1074 948 621
Enpp3 27 785 785 229 229 426 426 426
Ephx2 40 40 292 292 71 71 71 71
Epn2 53 53 53 801 801 801 801 801
Fbp2 1 1 1 1 1 161 98 98
Fdft1 27 27 1057 997 1127 1127 602 604
Fkbp4 34 34 34 34 34 746 744 744
Fn1 27 27 307 307 307 307 307 307
Fn3k 27 23 23 616 616 696 696 1011
Gcgr 27 27 27 33 293 298 298 816
Gchfr 47 203 203 8 8 8 8 8
Gclm 27 294 233 233 608 608 608 608
Grhpr 40 645 645 645 645 645 645 645
Gstk1 27 27 27 27 27 27 113 113

Table 7.5. The expression profiles of these genes are relatively simple and smooth, as shown

in Fig. 7.11. Their biological functions were investigated by FatiGo [4], for example, biological
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Table 7.2: The Best Model For Each Time-Point (ii).
GeneSymbol 6h 12h 18h 24h 30h 36h 42h Selected

Haao 40 25 278 278 278 38 181 51
Hagh 1 649 649 649 1060 774 774 774
Hmbs 27 27 27 27 27 27 27 27
Homer2 27 27 27 27 965 662 610 610
Hpn 229 229 595 603 1115 1115 1115 1115

Hsd17b12 27 27 857 857 1130 1130 1130 1130
Hsd17b13 27 618 839 839 138 138 138 138
Hsd3b7 27 27 27 27 27 27 27 27
Idh1 27 27 617 617 617 1081 769 769
Ifrd1 54 258 258 258 318 184 184 184
Igfals 40 40 40 40 40 40 40 40
Il1a 1 1 36 10 10 10 10 10
Il1b 14 14 14 14 14 14 14 14
Itga7 100 100 100 100 100 100 623 38
Kmo 8 49 49 49 967 967 967 967
Kras 53 53 53 53 67 67 67 67
Lgr4 60 60 114 94 94 94 484 484
Lipa 27 27 787 792 592 592 592 592

LOC100360011 27 294 296 296 296 296 296 296
LOC689574 645 593 593 894 894 894 894 894

Lyve1 14 14 14 14 14 14 1058 1058
Maob 255 203 203 203 8 296 293 293

Map1lc3b 14 14 14 14 14 14 14 14
Mapk9 8 8 8 8 528 528 608 606
Marc2 27 27 27 858 650 650 650 650
Mgat1 27 27 957 957 315 315 315 605
Mgp 53 638 639 906 769 641 641 641
Ncl 53 53 53 53 53 53 1160 1160

Ndufc1 27 27 27 52 52 52 52 52
Ndufv3 27 27 27 27 27 27 166 166
Nfia 27 8 853 853 853 853 853 853
Nfyb 27 27 27 910 908 1013 1013 1013
Nme1 53 316 316 316 316 316 316 316
Nolc1 14 41 305 305 773 780 780 1055
Npm1 53 53 53 53 53 671 608 608
Nr1h3 40 40 40 40 40 440 440 440
Nr1h4 34 216 216 933 933 933 933 933
Nudt4 53 15 15 15 193 193 193 193
Odc1 1 14 14 14 14 14 14 14
Oplah 27 203 203 203 203 203 203 203
Otc 40 40 40 40 40 40 40 40
Pcyt2 40 40 40 40 609 609 667 674
Pde3b 40 40 21 21 21 21 21 21
Pigr 27 250 250 250 250 250 250 164

Pla2g16 27 229 21 855 926 796 605 605
Pold3 164 164 164 892 892 644 644 644
Ppdpf 29 31 31 31 31 161 567 179
Ppil3 60 60 125 125 125 125 125 125
Ppox 40 309 309 874 874 874 874 874
Prkaca 40 8 8 892 879 879 619 619

functions of response to corticosteroid stimulus (GO:0031960) (p = 1.63× 10−4), inflammatory

response (GO:0006954) (p = 1.98 × 10−4), regulation of cell proliferation (GO:0042127) (p =
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Table 7.3: The Best Model For Each Time-Point (iii).
GeneSymbol 6h 12h 18h 24h 30h 36h 42h Selected

Prmt7 54 314 314 145 186 123 123 123
Qdpr 27 778 1116 1116 1116 1116 1116 1116
Rab8a 40 27 27 267 267 267 267 267
Raf1 40 40 40 421 421 421 421 493
Rb1 40 40 608 629 844 844 844 844

Rdh10 27 27 27 27 425 425 425 362
RGD1565496 14 14 14 14 14 14 14 14
RGD620382 27 42 42 42 309 309 309 309

Rgn 571 571 571 571 606 606 606 606
Rpp21 59 57 57 57 905 863 863 863
Scly 64 179 904 974 961 961 961 961
Scp2 27 216 216 216 216 216 216 216
Sdc1 40 40 40 8 8 8 8 597

Slc10a1 317 408 1126 621 621 1162 1162 1089
Slc12a7 27 27 27 27 27 27 27 360
Slc25a10 27 27 27 27 27 27 27 27
Slc25a11 27 27 27 27 27 27 27 27
Slc25a23 8 296 296 34 597 597 597 597
Slc30a1 27 10 10 541 541 541 541 541
Slc37a4 27 35 35 35 35 35 35 35
Slc6a13 610 974 517 517 517 803 803 803
Slco2a1 1 29 38 298 233 233 233 233
Smn1 53 54 249 279 409 409 409 409
Sord 228 488 34 34 51 34 634 634
Sri 27 259 127 153 226 226 226 857

Sult1a1 48 626 626 626 626 637 615 615
Sult1b1 27 27 27 27 27 27 373 373
Sult1e1 27 27 320 320 320 16 12 12
Sult2a1 7 7 7 7 616 616 616 616
Sult2a2 47 51 51 246 246 34 34 34
Sult2al1 27 23 23 23 23 23 23 23
Tmem53 47 294 294 294 506 493 493 493
Tnk2 1 53 53 53 53 320 60 60

Tomm20 53 210 210 210 210 210 210 210
Trmt6 14 316 286 286 286 286 249 249
Tyro3 47 826 822 822 970 970 970 42
Ugt2b 613 1153 102 102 102 102 102 102
Ugt2b1 40 285 298 298 298 298 298 298
Uox 1 1 269 269 269 6 6 6
Vars 14 380 380 380 380 380 380 380

Vcam1 14 14 14 14 14 14 14 14
Zadh2 198 601 289 597 727 727 727 727

1.85 × 10−5), and negative regulation of metabolic process (GO:0009892) (p = 1.28 × 10−5)

were ascribed to these intermediate genes. The functions of response to corticosteroid stimulus

and inflammatory response are clearly related to the corticosteroid. Furthermore, in a previous

study [41], the relationships between corticosteroid and metabolic pathways were investigated,

and intermediate genes with functions related to metabolic process were also obtained. Their

regulating genes can be candidate genes related to the same biological functions.

Using the procedure shown in Fig. 7.12, the simulation models obtained were integrated to

construct a biological pathway model, starting from ‘DRN’ and ‘DR’, as illustrated in Fig. 7.13.
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Table 7.4: The list of genes selected as intermediate genes.
Gene Symbol BS1/BS2/BS3 Entrez Gene Name

A2M ◦/◦/◦ alpha-2-macroglobulin
ATP1B1 ◦/◦/- ATPase, Na+/K+ transporting, beta 1 polypeptide
ATP2B2 -/◦/◦ ATPase, Ca++ transporting, plasma membrane 2
Bmyc ◦/◦/- brain expressed myelocytomatosis oncogene
Cebpd ◦/◦/◦ CCAAT/enhancer binding protein (C/EBP), delta
CITED2 ◦/◦/◦ Cbp/p300-interacting transactivator,

with Glu/Asp-rich carboxy-terminal domain, 2
Cxcl2 ◦/◦/◦ chemokine (C-X-C motif) ligand 2
DIO3 ◦/◦/◦ deiodinase, iodothyronine, type III
FABP4 ◦/◦/◦ fatty acid binding protein 4, adipocyte

GUCY2C ◦/◦/◦ guanylate cyclase 2C
(heat stable enterotoxin receptor)

IL10 ◦/◦/◦ interleukin 10
INPP4A ◦/◦/◦ inositol polyphosphate-4-phosphatase, type I, 107kDa
ITPR1 ◦/-/- inositol 1,4,5-trisphosphate receptor, type 1
Mmp8 -/-/◦ matrix metallopeptidase 8
MYC ◦/◦/◦ v-myc myelocytomatosis viral oncogene homolog

NOLC1 ◦/◦/- nucleolar and coiled-body phosphoprotein 1
PPP1R15A ◦/◦/◦ protein phosphatase 1, regulatory subunit 15A

Pvr ◦/◦/◦ poliovirus receptor
RGS1 ◦/◦/◦ regulator of G-protein signaling 1
Scd4 ◦/◦/- stearoyl-coenzyme A desaturase 4

SEC22A -/◦/◦ SEC22 vesicle trafficking protein homolog A
Tgm1 ◦/◦/◦ transglutaminase 1 (K polypeptide epidermal type I

protein-glutamine-gamma-glutamyltransferase)
VHL ◦/◦/◦ von Hippel-Lindau tumor suppressor
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Figure 7.11: Expression profiles of genes selected as intermediate genes.

Let green and purple edges mean activation and repression, respectively. Genes that have virtu-

ally the same regulatory structures, (i.e., that are regulated by the same gene) are summarized in

‘Group1-15’ for ease of viewing. These are illustrated as circles with red outlines and are summa-

rized in Table 7.6. Intermediate genes are illustrated as circles with filled in red. Intermediate

biosignals that are not associated with particular genes by the outliers test are described as

‘BS1’, ‘BS2’, ‘BS3’, ‘BS12’, ‘BS23’, and ‘BS123’. The notations ‘+’ and ‘-’ mean activation and

repression by ‘DRN’, respectively. For example, ‘BS12+’ represents the intermediate biosignals
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‘BS1’ and ‘BS2’, that are activated by ‘DRN’.
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Figure 7.12: An example for integrating obtained pathways. Two pathways in the left are integrated to
the gene network in the right. Arrows in this figure are the same as those in Fig. 7.6.

Table 7.5: Grouped Genes in Fig. 7.13.
Group Genes

Group1 Grhpr,Npm1,Epn2,Hsd17b12
Group2 Ndufv3,Raf1,Fn1,Il1a
Group3 Cebpd,Cited2,Il10,Cxcl2,Rgs1,Myc,Ppp1r15a,Tgm1
Group4 Nolc1,Dio3,Fabp4,Inpp4a,A2m,Gucy2c
Group5 Adra1b,Haao,Itga7,LOC100360011,Tmem53,LOC689574,Acsl1

Abat,Slco2a1,Enpp3,Akr1d1,Slc25a23
Group6 Ifrd1,Tomm20,Trmt6,Prmt7,Smn1
Group7 Sdc1,Zadh2,Cxxc5,Aqp9,Sord,Rgn,Ppdpf,Scly,Cyb5r3,Dpys

Ahcy,Cyp2b3,Sri,Hpn,Gcgr
Group8 Slc6a13,Gclm,Mapk9
Group9 Aldh3a2,Nfia,Nfyb,Prkaca,Arg1,Fn3k
Group10 Ugt2b1,Oplah,Sult2a2,Ctsh,Cox6a1,Gchfr,Dio1,Hsd17b13

RGD620382,Sult1e1
Group11 Slc30a1,Sult2al1,Scp2,Pde3b,Tnk2,Ppil3,Ccdc56
Group12 Otc,Cyp2a1,Igfals,Hsd3b7,Hmbs,Slc25a11,Slc25a10
Group13 Ccng1,Il1b,Ccl4,Vcam1,Map1lc3b,Odc1,Nme1,RGD1565496
Group14 Cyp4f4,Cald1,Akr1c12,Kmo,Lyve1,Rpp21
Group15 Mgp,Homer2,Pla2g16

7.4 Discussion

We have developed a computational method to explore simulation models that can predict

observational data better than those reported in the literature. For generating candidate models,

we applied the regulatory structures [97] to the template models. Instead of evaluating all of the

candidates, the proposed method can selectively evaluate high-potential candidates and obtain

the best model within a short span of time.
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Figure 7.13: A pathway model of the best pathways for 142 focused genes. Pathways of simulation
models selected as the best among All-Models are integrated into a pathway model. Genes regulated by
the same genes are summarized to ‘Group1-15’ and indicated as circles with red outlines. These genes are
summarized in Table 7.6. Intermediate genes are illustrated as circles filled in red. Thus, the red circles
represent both grouped and intermediate genes. Dotted purple arrows and green arrows mean activation
and repression, respectively.

The effectiveness of the proposed method was demonstrated through numerical experiments

using corticosteroid pharmacogenomics reported for the rat. In comparison with the previously

reported method, the proposed method achieved a performance of 80% accuracy rate while

consuming less than 15% computational time than a comprehensive search [40]. The method

is expected to correctly identify candidates that have higher prediction ability if the model

transition rule appropriately captures the relationships among candidate models. In contrast,

it requires a long time to search for the best candidate if pairs of connected simulation models

do not represent almost the same simulation results. In fact, after 42 h of computation, 8.5% of

the correct candidates could not even be investigated. In order to reduce computational cost,

in the proposed method, the estimated parameter values of simple simulation models are used

for parameter estimation of complicated simulation models. From the comparison of results, it

appears that even the complicated models could be evaluated correctly within a short span of

time.

In the final experiment, for 134 of 142 corticosteroid-induced genes, simulation models differ-
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ent from the template models of these genes were selected as the best model for predicting the

data. Furthermore, 23 genes were selected as candidates of intermediate biosignals regulating

corticosteroid-induced genes. Certainly, intermediate biosignals can be other biomolecules, e.g.,

proteins and chemical compounds, and mRNA expression profiles may not correspond to their

protein expression profiles, and some of their simulation expression profiles in the selected 142

simulation models could not be represented by the 5,162 gene expression profiles. However, we

focused on the fact that some of the simulation expression profiles of intermediate biosignals

could match the observed gene expression profiles and that some of them have biological func-

tions related to the corticosteroid. Thus, biological functions and related genes can potentially

facilitate the investigation of corticosteroid pharmacogenomics. In addition, since some simu-

lation models including three intermediate biosignals were selected as the best, more extended

models with more than three biosignals might be selected as the best. These results demon-

strate that there is room for improvement in literature-reported pathways, and that improved

pathways and their details can be proposed systematically by simulation-based approaches, by

assimilating biological observational data. Furthermore, although we utilized the software DA1.0

for biological simulation and the corticosteroid pharmacogenomic pathways, we believe that the

procedure in this study, (i) extracting the template, (ii) creating candidates, (iii) estimating

parameter values and (iv) finding the best model, is capable of applying to other models with

different simulation methodologies.



Chapter 8

Conclusion

In this thesis, we studied mainly three topics in the field of systems biology, (i) the inference of

GRNs using a VAR-SSM, (ii) the restoration of GRNs based on a nonlinear SSM and (iii) the

exploration of candidate pathways based on a differential equation-based SSM.

The main contributions of the first topic are to establish a VAR-SSM describing GRNs and

develop a network inference method with L1 regularization utilizing the EM-algorithm. In con-

trast to the previous methods, the proposed linear VAR-SSM was constructed to cover basic

processes of gene regulatory systems, i.e., a synthesis process, a degradation process and mutual

regulations among genes. This results in enabling us to handle expression data with dynamic

and steady state profiles. Since GRNs are known to have sparse structures, we developed an

algorithm to infer GRNs under the constraint of L1 regularization to the regulatory matrix

maximizing the regularized log-likelihood. For this model, we further considered two extensions;

(i) adding a term representing the existence of other biomolecules, e.g., drugs, that can affect

gene expressions, and (ii) giving weighted regularization terms for plausible genes, e.g., known to

be TF candidates and established pathways. Including these extensions, the proposed method

can infer the regulatory relationships among genes and other biomolecules with weighting plau-

sible regulations. The effectiveness of the proposed method was shown using three synthetic

data that were generated from the networks described by linear difference equations and hill

function-based differential equations, and also the network used in a part of DREAM 4 chal-

lenge. As a real application example, we handled the microarray data in rat skeletal muscle with

a stimulation of corticosteroid. Since a part of rat pharmacogenomic pathways, related genes,

TF candidate genes and corticosteroid pharmacodynamics have been available, we incorporated

these information to infer the GRNs with regard to rat pharmacogenomics.

In the second topic, we established a state space representation of the combinatorial tran-

scription model, which is a simple nonlinear model representing combinatorial effects by sets of

two genes, and proposed novel algorithms to infer GRNs that can best predict the data. At first,

since the conditional distributions of the hidden state variables in this nonlinear SSM can be

non-Gaussian forms, we applied UKF to efficiently approximate these distributions as Gaussian

distributions. Then, we also developed an algorithm to restore given GRNs to be consistent with
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the data based on the model by modifying the original model. As a result using two synthetic

data generated from WNT5A and a yeast cell-cycle networks, the proposed method could out-

perform the previous regression-based method. Although the proposed method outperformed

the previous method, there exists a drawback in the utilization of UKF to the nonlinear SSM.

Thus, the parameter estimation procedure for the model requires to retain the first four moments

of the conditional distributions of the hidden state variables. Therefore, we further proposed a

novel method termed HMEnPF, which can retain the first two moments and the third and the

fourth central moments through the prediction, filtering and smoothing steps, and developed an

algorithm to explore the best model incorporating UKF and HMEnPF. Through the simulation

studies to restore the original GRNs inferred by other well-known GRNs inference methods, the

proposed method could show better performance. Moreover, the significance of HMEnPF, to

retain higher moment information, could also be shown by comparing the results of the proposed

algorithm to that of using UKF only.

In the last topic, we considered relatively small pathways described by differential equations

within a state space representation. Utilizing pharmacogenomic pathways in rat liver cells as an

application example, we first proposed a systematic way to create candidate models based on

the original pathways and a procedure to evaluate their validity. By comprehensively evaluating

63 created candidate pathways for 8,799 genes, we could suggest better candidate pathways that

can predict the expression profile of each gene. However, because even the evaluation of one sim-

ulation model needs a high computational cost, it is computationally intensive to handle more

than several hundreds candidate models, which should be more complicated than 63 candidate

models used for the previous study. To address the problem, we proposed an efficient explorative

method that can find better candidates by sequentially creating plausible candidates, estimat-

ing the parameter values with prior information and evaluating the validity of the model. The

proposed method imitates the way employed in the simulated tempering algorithm. Through

the simulation studies, the proposed method could successfully find better candidate models

that were selected by the comprehensive procedure within short span of time. Finally, for 142

corticosteroid pharmacogenomic genes that were suggested their regulatory systems by corticos-

teroid, we proposed the alternative candidate pathways that can better predict the observation

data.

Future Direction

For further developments of data assimilation techniques, we here introduce some directions.

At first, for a set of time-course observation data that are affected by some different drugs or

silenced some different genes in the same type of cells, we should develop methods to infer

GRNs incorporating the whole dataset in different conditions. These types of time-course data

have been recently established, e.g., real data in the DREAM challenges. Second, it is useful

to develop methods that can further combine other pathway information such as metabolic

pathways. Thus, although we dealt with pharmacogenomic pathways in which transcriptional

sequences can be mainly represented by gene regulations in this thesis, there are many types of
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biological systems that should be represented by the combination of GRNs, PPIs, CRNs and

so on. Third, if we could efficiently estimate the parameter values and infer the regulatory

relationships based on more complex nonlinear SSMs, it can contribute to the comprehensive

understanding of biological systems in cells.

In this thesis, we tried the tasks in the filed of system biology mainly for gene regulatory

networks and biological systems. We believe that these works can contribute to the developments

of systems biology and understanding of biological systems, and further to create innovative

drugs and medical treatments. Moreover, the hope is that, along with the developments of

computer science and statistical theories, these studies could contribute to other scientific fields.
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